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Abstract
Quality control has become a priority in the inspection processes of industrial manufacturing of gears. Due to the
advancement of technology and the realizations of Industry 4.0, smart factories demand high precision and accuracy in the
measurements and inspection of industrial gears. Machine vision technology provides image-based inspection and analysis
for such demanding applications.With the use of software, sensors, cameras, and robot guidance, such integrated systems can
be realized. The aim of this paper is to deploy an improved machine vision application to determine the precise measurement
of industrial gears, at subpixel level, with the potential to improve quality control, reduce downtime, and optimize the
inspection process. A machine vision application (Vision2D) has been developed to acquire and analyze captured images to
implement the process of measurement and inspection. Firstly, a very minimum calibration error of 0.06 pixel was obtained
after calibration. The calibrated vision system was verified by measuring a ground-truth sample gear in a Coordinate
Measuring Machine (CMM), using the parameter generated as the nominal value of the outer diameter. A methodical study
of the global uncertainty associated with the process is carried out in order to know better the admissible zone for accepting
gears. After that, the proposed system analyzed twelve other samples with a nominal tolerance threshold of ± 0.020 mm.
Amongst the gears inspected, the Vision2D application identified eight gears which are accepted and four bad gears which
are rejected. The inspection result demonstrates an improvement in the algorithm of the Vision2D system application when
compared with the previous existing algorithms.

Keywords Quality control · Machine vision · Inspection metrology · Accuracy · Precision · Image-based process

1 Introduction

The advancement of technology and the realizations of
Industry 4.0 in modern world applications have amplified
the research possibilities in the field of machine vision and
industrial inspections. Image-based inspection and auto-
matic application analysis, such as robot guidance, process
control, and automatic inspection, are the mainstream tech-
nologies of machine vision in today’s industries [29, 32].
These conventional technologies usually involve a stream

� Desmond K. Moru
dmoru@ceit.es

Diego Borro
dborro@ceit.es

1 Ceit, Manuel Lardizabal 15, 20018 Donostia/San
Sebastián, Spain

2 University of Navarra, Tecnun, Manuel Lardizabal 13, 20018
Donostia/San Sebastián, Spain

of integrated systems, hardware products, methodologies,
and expertise that use software algorithms across sensors,
cameras, and hardware processing to automate mundane
and complex inspections that guides the precise handling
of tasks and equipment during the assembly of products.
The distinctions of such applications vary from verification,
positioning, flaw detection, identification, and measure-
ment. In the bit to improve control quality, low produc-
tion cost, and higher yields, a machine vision system can
work pertinaciously accomplishing very low error rates dur-
ing inspection processes [26]. The system configuration
involves diverse components, ranging from the sensor cam-
eras to image acquisitions for inspection, critical to the
processing framework that provides and communicates the
outcome [27]. With the rapid development of image pro-
cessing and pattern recognition, machine vision technology
has attracted more and more attentions and is widely used in
industry area, for its simplicity, non-contact, and robustness
[21]. It is a pre-eminent tool for quality control inspection
of a variety of products such as industrial components and
manufacturing tools.
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Most industrial and haulage application use gears as
common mechanism for conveying power and motion. This
element is important and frequently used as fundamental
component [1]. As current methodologies of gear mea-
surement are expensive and time consuming, precision and
accuracy become evidently crucial in the measurement and
inspection of industrial products. There are very few meth-
ods available of measuring gear parameters accurately, and
at the same time, minimizing error and production cost [11].
As a key to production and inspection, the utilization of
machine vision applications to develop accurate and precise
measurement system with the ability to perform appro-
priate inspection and measurement is fundamental to any
manufacturing process [13].

The aim of this paper is to deploy an improved machine
vision application to determine the precise measurement of
gears, at subpixel level, with the potential to improve quality
control, reduce downtime, and optimize the inspection
process. The original contribution of this paper can be
summarized as follows:

– Implementation of the algorithm on an improved
system configuration, with the use of a telecentric lens.

– high-quality setup with low system calibration error
obtained.

– Increase amount of experimental proofs on the gear
inspection process.

– Significantly low tolerance to enhance a limited
error-prone system for an improved quality control
inspection.

– Methodological study of the uncertainty associated with
the measurement process.

The paper is arranged as follows. Section 2 describes
related works done. In Section 3, we describe the overall
layout of the proposed system and Section 4 describes
the system calibration process. Section 5 describes the
algorithmic structures and the calculations of the other
parameters of the gear nomenclature. The inspection
decision process is described in Section 6. Section 7 shows a
deep analysis of the uncertainty of the inspection. Sections 8
and 9 include validation and conclusion respectively.

2 Related works

Kerr [22] observed that vision systems have been widely
used in many applications. Computer vision systems have
been developed for quality control and started to be used
as an objective measurement and evaluation systems [7].
Robinson et al. [28] described the design of an involute
spur gear inspection system in which measurements were
made using a video camera and image analysis software.

They investigated the possible measurement accuracy and
the possible sources of error identified. They concluded
that the measurement accuracy is comparable with that of
current methods for tolerance inspection of spur gears. In
addition, the low cost and ease of use made image analysis
measurement systems an attractive alternative.

Sung et al. [33] utilize wavelet transform, with high
accuracy, to identify the positions of deformities in a gear
system. The research reviews significant studies of gear
dynamics, gear deficiencies, and the background theories
of wavelet transform. A gear failure test rig was designed
and envisioned for the implementation of the technique
of wavelet transform. The study reports the possible
improvement of fault identification of a gear transmission
system using this designed approach, especially when the
angular speed of the faulty gear rotates in a manner close
to those of the other gears. However, this research does not
address measurement accuracy precisely.

Hui et al. [39] proposed a gain-scheduling fault detec-
tor and augmented system based on the uncertain linear-
parameter varying model. The scheduling vector relates
to the vehicle longitudinal velocity for an electric ground
vehicle. Due to the difficulty to measure the longitudinal
velocity precisely, the uncertain measurement on the longitu-
dinal velocity is considered. To deal with the uncertainties,
Lemma 2 and Lemma 4 [23] are adopted, in which the
studied setup is a Takagi-Sugeno fuzzy system. Due to
the nonlinearities of the model and the uncertainties in the
scheduling vector, the fault detection work proved to be
more challenging. Yunfeng et al. [18] proposed an adaptive
robust triple-step control method for compensating cog-
ging torque and model uncertainty. The model uncertainty
was estimated by an extended state observer that consisted
of an adaptive steady-state controller and robust feedback
controller. The effectiveness and the satisfactory control
performance of the controller were evaluated through com-
parative experiments. The related works on robust control
attempt to improve the proposed method designs; neverthe-
less, a methodological study of the uncertainties associated
with the measurement process is found lacking.

The use of machine vision systems for inspection aspires
to improve the quality control process of manufacturing
industries, especially as market demand constantly requires
higher quality productions [5]. Several measurement esti-
mations by either perimeter [30], diameter [6], or area [34]
have been developed to enhance machine vision inspection
systems. However, a challenge often faced when developing
a machine vision system is the attempt to resolve, either by
reduction or by elimination, measurement uncertainty and
error.

Gadelmawla [12] utilized computer vision technology
to develop a non-contact measurement system capable
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of measuring most of spur gear parameters rapidly with
a reasonable accuracy. This can facilitate and speed up
the measurement and inspection processes of spur gears.
The investigation demonstrated the maximum differences
between the calculated parameters and the design values
as ± 0.101 mm for a spur gear with 156 mm outside
diameter. The accuracy of the system is affected by the size
of the gear to be measured. Hence, the difference between
the calculated parameters and the design values can be
decreased by measuring small gears.

This paper expands the conceptual model of Gadelmawla
[12] to determine the accuracy of the system affected by the
size of the gear measured. It also tests if the number of gears
measured within the system limit reveals a varied effect on the
accuracy level, and hence determine the sensitivity of the
inspection process and the authenticity of the Vision2D
application. In addition, a methodological study of the uncer-
tainty associated with the measurement process is established.

3 The proposed system

The Vision2D application has been developed to perform
inspections and measurements to determine the precise and
accurate measurement of the gear parameters to enhance

quality inspection control. Figure 1a shows the proposed
system configuration. The gear was placed in a mechanical
system configuration by an M-10iA Fanuc robot (1). The
robot is a six-axis, high-performance industrial robot. It
weighs 130 kg and provides 10-kg payload with the
highest wrist moments and inertia in its class. The M-
10iA can be floor or wall mounted at any angle. For the
experiment of this paper, the robot was floor mounted.
A dynamic inspection belt was used to convey the gear
piece from a start state, during the inspection (Fig. 1b).
The belt configuration is setup with a sensor. The sensor
triggers when the gear is detected. The robot receives
the trigger signals from the sensor, automatically picks
the gear from the dynamic belt, and places it on the
mechanical system (3). When the gear has been placed on
the mechanical system, a Manta G-504 camera acquires
the image of the gear. The Manta G-504 is a machine
vision camera that combines the high-quality Type 2/3′′
(11.016 mm diagonal) Sony ICX655 CCD sensor with a
resolution of 2452 (H) × 2056 (V). This camera runs at
9.2 frames per second at full resolution. With a smaller
region of interest, higher frame rates are possible. The
Manta is an adaptable GigE Vision camera with an extensive
range of characteristics. It is attached to a telecentric lens
(4) that can take advantage of high-resolution detectors

Fig. 1 The proposed system
configuration. a Robot and
telecentric lens configuration. b
The inspection belt. c The
vision2D application interface
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such as 5 MP - 2/3′′, acquiring images with exceptional
fidelity and precision maximizing the performance of
the proposed system. Telecentric lenses eliminate the
parallax error characteristic of standard lenses by having
a constant, non-angular field of view. A high-performance
telecentric illuminator (2) specifically designed to back
illuminate objects imaged by telecentric lenses was used.
The telecentric illuminators offer higher edge contrast
when compared with diffused back light illuminators
and therefore higher measurement accuracy. This type of
illumination is especially recommended for high-accuracy
measurement of round or cylindrical parts where diffusive
back lighting would offer poor performances because of
the diffuse reflections coming from the edges of objects
under inspection. The Vision2D application was developed
in-house in C# programming and Visual Studio 2015,
incorporating the Halcon 13 integration libraries. Halcon 13
is a comprehensive standard software for machine vision
with an integrated development environment. Its flexible
architecture facilitates rapid development of any kind of
machine vision application. C# programming was used to
develop the user interface for a better touch and feel. To
perform the measurement process, several image processing
and machine vision algorithms are applied (explained in
Section 5) to the acquired images.

4 System calibration

Calibration in machine vision associates the pixel coordi-
nates of the camera sensor to a world coordinate system.
This associative process determines the relationship that dis-
tinguishes a distance measured in pixel in the camera to
the real distance of the imaged object. The system mem-
ory records an array of the amount of charge generated at
each discrete sensor pixel position. Conventional electronic
imaging in machine vision treats the top left corner of the
image as origin and assembles all sources to the pixel posi-
tion in a coordinate system in which position x-direction
runs across the rows and position y-direction runs down the
columns of the sensor [35].

4.1 Sensor coordinate system

The camera sensor frame of reference initiates characteris-
tics located in the image, such as distances, lines, and edges,
and scale to the prevailing scale of the frame. That is, when
there is no calibration, all positions are in pixel coordinates
as regards to the top left of the image, and the subsequent
recorded distances are in pixels as well. Calibration proce-
dures enables for the specification of further useful system
of coordinates and scaling. A calibration object of notable

accurate metric properties is necessary for the best com-
pletion of a calibration process [35]. The caliber of the
calibration object and images acquired overly determines
the success rate of the calibration. In order to understand
the importance of the calibrations in a measurement system,
it is necessary to know the internal geometry of the cam-
era and its behavior. The calibration process allows for the
specification of important parameters of the new calibrated
coordinate system. The camera parameters are divided into
the extrinsic and intrinsic camera parameters.

4.1.1 Extrinsic camera parameters

The extrinsic parameters define the position and orientation
of the world coordinate system relative to the camera
coordinate system in space, hence expounding the 3D
pose. Thus, extrinsic camera parameters are rotation and
translation of the Euclidean coordinate transformation.
Figure 2 shows the graphical Euclidean tranformation of the
coordinates. The mathematical definition of the Euclidean
transformation of the 3D points to 2D in matrix form is
given as follows:

⎡
⎣

x

y

1

⎤
⎦ =

[ �R −→
t−→

O T
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]⎡
⎢⎢⎣
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1

⎤
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Where �R is the rotation matrix and −→
t is the translation

matrix. The coordinates (X, Y, Z, 1) represent the point of
the object in space while the coordinates (x, y, 1) represent
the point of the image plane.

4.1.2 Intrinsic camera parameters

The intrinsic camera parameters expound the distinctive
features of the camera in use. These parameters notably

Fig. 2 Euclidean transformation from world coordinates to camera
coordinates
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define the dimension of the sensor and the projection
properties of the combination of lens and camera in use.
These parameters represent digital and geometric optical
characteristics that define the operation of camera. The
intrinsic parameters which serve to understand the concept
of imaging are:

– Perspective projection
– Focal length
– Principal point
– Skew
– Distortion coefficients

Perspective projection consists of the projection of a 3D
point in space with coordinates (X, Y, Z) known through the
intersection of the center of the camera and the 3D cutting
with a flat point image [16]. In the first place, it is assumed
that the world coordinates of the points of the space and
the coordinates of the camera are aligned. In this way, the
camera plane is parallel to the image plane. Figure 3 shows
a projection model of a pinhole camera, a simple camera
without a lens but with a small aperture. The plane Z cuts
with the image plane and generates a point called the main
point (P).

The expressions of the equation are obtained by
similarity of triangles, as follows:

x = f
X

Z
(2)

y = f
Y

Z
The screening process can be expressed mathematically

using homogeneous coordinates as a linear system in the
following way:
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abbreviated as:

x = PX = KPNX (4)

P is the projection matrix, product of the matrix K, matrix
of intrinsic parameters, and PN matrix of standardized
homogeneous projection. The vector x defines the projected

Fig. 4 Skewing of pixels

2D point in the image plane while the vector X represents
the 3D point in space.

These equations mathematically represent the ideal
model. However, they do not represent the real model.
The real model has several imposed inaccuracies that
make some of these expressions vary. On the one hand,
the distortions generated in the images mean that, in the
projection of the points of the main plane, the 3D point, the
2D projected point, and the center of the camera are not
aligned; therefore, the mathematical expressions that have
been described so far will be altered by this effect. On the
other hand, another effect that modifies the ideal behavior
previously presented is the lack of perpendicularity of the
sensor with respect to the lens. As a consequence, the pixels
of the image stop being squares and acquire an inclination
called skew. Figure 4 and expression (5) represents this
effect.

s = tanα
f

sy
(5)

This effect generates two different focal lengths depend-
ing on sx and sy pixel dimensions. These focal lengths are
calculated according to the following equations:

fx = f

sx
(6)

fy = f

sy

Thus, taking account of this effect, Eq. (3) results in:
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Fig. 3 Projection model of the
pinhole camera
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Lastly, despite the fact that the origin of the coordinates
of the image plane coincides with the principal point, it
is not always the case. In general, the coordinate system
of the image is usually found at the upper left corner;
therefore, the point that cuts the main plane is not in the
origin but moved (px , py). Therefore, taking into account the
mentioned effects, the equation that models the projection
of a real camera is the following:
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y
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Normally, apart from the regular challenges of image
processing, a standard lens presents diverse minimizing
considerations that affect measurement application accu-
racy such as poor image resolution, image distortion, per-
spective error, object edge position uncertainty, and changes
in magnification. The use of a telecentric lens removes or
diminishes nearly all of these challenges. Therefore, the
development of high-accuracy applications hinges on its
usage. In the case of an object displacement, the image size
stays unaltered, due to the particular path of the rays within
the optical system, in as much as the object remains within
a given range, usually called the depth of field (DOF), as
illustrated by Fig. 5. Hence, it is important that the front lens
diameter should be measurably as large as the object field
diagonal.

Figure 6 illustrates the projection model of a camera with
a telecentric lens. (Xw, Yw, Zw) is the 3D coordinate of the
object point P in the 3D world coordinate system. (Xc, Yc,

Fig. 5 a Rays entering a standard lens generates images of distinct
sizes on the sensor when changing the object to lens distance. b Rays
entering a telecentric lens generate images of unaltered size on the
sensor with object to lens distance rearrangement

Fig. 6 Perspective projection model of a camera with a telecentric lens

Zc) is the 3D coordinate of the object point P in the 3D
camera coordinate system. (xu, yu) is the image coordinate
of P(Xc, Yc, Zc) if a perfect orthographic projection model
is used. (xd , yd ) is the actual image coordinate which
differs from (xu, yu) due to lens distortion. (u, v) is the
image coordinate of the computer in pixels. Telecentric
lenses perform scaled orthographic projection [16]; thus, the
projection of an arbitrary point P to the ideal (undistorted)
image plane in metrical units is expressed as:

⎡
⎣
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yu

1

⎤
⎦ =

⎡
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where m is the effective magnification of telecentric
lens, which needs to be calibrated. And the relationship
between the world and camera coordinate systems (extrinsic
parameters) is given by the same Eq. (1).

Without any loss of generality, the image coordinate
system oxy coincident is set with the computer image
coordinate system. Thus, the transformation from image
coordinate (x, y) to computer image coordinate (u, v) in
pixels is described by:

⎡
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v
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⎤
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where du and dv are the sizes of a pixel in the x and y

directions respectively.
Combining Eqs. (1), (9), and (10), the orthographic

projection of telecentric lenses is formed and expressed by
the equation:
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Int J Adv Manuf Technol (2020) 106:105–123110



Fig. 7 Perspective projection model

4.2 Calibration process

As a result of different calibration processes [17, 40], the
intrinsic parameters of the camera are determined to define
the concept of imaging. There are different calibration
techniques, but all of them have a common objective,
they try to minimize projection errors [36]. The perfect
calibration of a camera would guarantee that the projected
points coincide with the points detected. In reality, however,
there is a certain projection error calculated as the Euclidean
distance between the two points. Therefore, the objective of
the calibration process is to minimize these errors to ensure
the highest possible accuracy.

A distinctive feature of a calibration process is based
on matching specific measured positions on the camera
sensor with the specific real-world position on a calibration
target. A calibration target with accurately known metrics
properties is chosen to fill approximately 80% of the field
of view (FOV). Before calling the actual calibration, a series
of images of the calibration object in different orientations

are obtained and care is taken to make sure that the whole
field of view or measurement volume is covered.

Figure 7 show a point in space with known coordinates
(X, Y, Z). For that 3D point, a point (h, v) is detected in the
image plane. In addition, 3D points are projected through
several initial intrinsic parameters. The points detected (h,
v) and the projected points do not occupy the same position
in the plane. In such a way that it is necessary to apply the
correction of distortions in order to obtain the point (p, q).

After applying the correction to the detected points,
it does not occupy yet the same position in the image.
Therefore, the difference between the horizontal and
vertical coordinates of the corrected points (p, q) and the
2D projected points define the residual error terms (rp, rq )
according to Eq. (12).

rp = (pi − 2DXi) (12)

rq = (qi − 2DYi)

By grouping the terms of residual errors in a vector
(Eq. (13)), the vector that is intended to be minimized by
calibration is achieved.

[
r

] =

⎡
⎢⎢⎢⎢⎣

r11
r21
·
r1N
r2N

⎤
⎥⎥⎥⎥⎦

=

⎡
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(p1 − 2DX1)

(q2 − 2DY2)

·
(pN − 2DXN)

(qN − 2DYN)

⎤
⎥⎥⎥⎥⎦

(13)

The quality of the acquired calibration images and the
calibration object directly influences the realization of a
well-calibrated system. In the wake of an accomplished
calibration, the optimized intrinsic and extrinsic parameters
and the root mean square of the back projection of the
optimization are generated. The root mean square error
indicates, in general, the success of the optimization
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Fig. 8 Halcon calibration process interface with a used calibration plate image on the left
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Fig. 9 Nomenclature of gear

process. In this paper, a calibration target of 80 mm is used
to generate the coordinates of the calibration marks in the
acquired image and to calculate the estimate for the camera
parameters. A root mean square error of 0.06 pixels was
obtained. Figure 8 shows the Halcon calibration process
interface.

5 The algorithms

The Vision2D application interface performs the measure-
ment of all gear parameters, as shown in Fig. 9, by calcu-
lating only three parameters: the outer diameter, the inner
diameter (also called root diameter), and the number of
tooth. These three parameters are the most necessary values
needed to calculate the rest of the gear parameters. Many
of the gear parameters are well known to be correlated to
each other by known equations [14]. For example, the pitch
diameter is correlated to the number of teeth and the mod-
ule, while the module is correlated to the pitch diameter
and the number of teeth. In this situation, computer vision
algorithms were developed to calculate the outer diameter,
the inner diameter, and the number of teeth of the gear to
be measured; then, the rest of the gear parameters are calcu-
lated using their equations based on these three parameters.

The image processing starts with the camera acquiring
the image, and several algorithmic steps are used for
thresholding, segmentation, detection, and measurement of
the gear. Figure 10 shows a block diagram of the algorithms
used. The next sections describe the algorithms in detail.

5.1 Image segmentation

Bali et al. [2] describe segmentation as a method of
partitioning an image or picture into different regions
which has same attributes like texture, intensity, and

gray level with the motive to yield object of interest
from the background. Image segmentation methods have
been extensively used in the identification of images
and classification of image in numerous fields [38].
Thresholding, because of its clarity and direct nature,
and clustering, because of its ability to categorize images
efficiently, are the very well-known method for image
segmentation between image segmentation techniques [8].
K. Singh et al. further discussed the different types
of image segmentation thresholding techniques for the
different application areas: pixel-based, edge-based, and
region-based segmentation techniques [31]. Pixel-based
segmentation is conceptually the simplest approach used for
segmentation. In this approach, information from the input
image fuses in a pixel-by-pixel basis either in the transform
or in spatial domain. Edge-based segmentation is based on
the fact that the position of an edge is given by an extreme
of the first-order derivative or a zero crossing in the second-
order derivative. Region-based method focus attention on an
important aspect of the segmentation process missed with
pixel-based techniques: it classifies a pixel as an object
pixel judging solely on its gray value independently of the
context. This paper implements thresholding at subpixel
level using the edge-based method.

5.2 Edge detection subpixel

In industrial applications, like measurement of gears with
high precision, it is sometimes necessary to detect edges
with subpixel precision. The need of subpixel accuracy in
image processing and analysis was firstly pointed out in
the late 1970s [25]. Since then, the issue of edge detection
at the subpixel level has gained attention of approaches of
many scientists and researchers [10]. Detection of edges
with subpixel accuracy improves the measurement accuracy
and reduces hardware cost.
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Fig. 10 Flowchart of the Vision2D application

Hagara et al. [15] describe that most edge detectors at
subpixel level fall in three groups: fitting, moment-based,
and interpolation-based methods. Fitting method uses
continuous functions, such as hyperbolic tangent [24], to fit
samples of image function. Moment-based methods apply
moment to determine unknown edge model parameters. For
example, gray level moments tangent [9], spatial moments
[3], Fourier-Mellin moments [4], or Zernike moments [37].
Interpolation-based methods achieve the subpixel accuracy
by interpolating the image data to obtain a finer grid of
pixels.Thresholding at the subpixel extracts segments from
the image with subpixel accuracy. A segmentation process

develops with the analysis of the input image as a surface,
where the gray values are bilinearly interpolated amid the
centers of the individual pixels. Each pixel is thus extracted
forming a segmented line, consistent with the image surface,
and then associated into intact topological contours. The
segmentation contours therefore are accurately divided at
intersecting points. Only image borders of areas containing
extended gray values are generated. Figure 11 a, b, c, and
d show the edge detection at different levels. Figure 11 a
shows the edge pixel detection of the gear tooth. Figure 11 b
shows the edge subpixel detection of the gear tooth.
Figure 11 c shows the principal outer edge detected applying
the threshold subpixel algorithm. Figure 11 d shows the
diametric intersections generated to calculate the distance
between two points of the outer tooth edge across the area
center. It also shows the intersecting distance between two
points in the inner circle across the area center.

5.3 The outer diameter algorithm

To calculate the external diameter of the gear from the
extracted edge of the outer contour, the outer diameter
algorithm was developed. Figure 12 shows the flow process.

– Threshold the acquired image: The threshold subpixel
algorithm extracts segments of the input image with
subpixel accuracy.

– Select edge contour: The select contour algorithm
selects contours from the input image according to a
contour length specified. All contours whose length is
far away from the parameter specified are not returned.

– Fit circle contour: The fit circle contour algorithm
approximates the contours by a circle. The operator
returns the area center, and the radius.

– For five teeth, generate a radius line from two points:
the tooth edge and the area center of the circle contour.

– Extending the radius lines, the intersection points at
the edge contour are generated for each teeth, and the
corresponding distance diameter computed.

Distance =
√

((R1 − R2)2 + (C1 − C2)2)

where R1 and R1 are the row coordinates of the first
and second point respectively, and C1 and C2 are
the column coordinates of the first and second points
respectively.

– The average of all the computed distances is reserved as
the outer diameter.

5.4 The inner diameter algorithm

The root diameter algorithm calculates the inner diameter
from the extracted edge pixels. Figure 13 illustrates the flow
process.
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Fig. 11 The edge detection
details. a The edge pixel
detection of the gear tooth.
b The edge subpixel detection of
the gear tooth. c The outer edge
detection of gear. d The
intersection points to determine
the diameter of tooth

– Generate region from contour: The generate region
contour algorithm creates a region from a subpixel
contour. The contour is sampled according to the
Bresenham algorithm [20]. Open contours are closed
before converting them to regions.

Fig. 12 Flowchart of outer diameter algorithm

– The shape transform is used to transform the shape of
the input regions to derive the largest circle fitting into
the region.

– Generate contour of region: The generate contour
region algorithm generates contours from the regions.

Fig. 13 Flowchart of inner diameter algorithm
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– Fit circle contour approximates the contours by circles.
The operator returns the contour area center and radius.

– Arbitrary lines are generated from the area center to
intersect with the circle contours.

– The average of all intersection points is then used to
calculate the inner diameter across the area center of the
circle contour.

5.5 The tooth number algorithm

The tooth number algorithm counts the number of teeth
in the gear image. Figure 14 shows the flowchart. The
algorithm works as follows:

– Threshold the acquired image: The threshold subpixel
algorithm extracts segments of the input image with
subpixel accuracy.

– Select edge contour: The select contours algorithm
selects contours from the input image according to a
contour length specified. All contours whose length is
far away from the parameter specified are not returned.

– Fit circle contour: The fit circle contour algorithm
approximates the contours by a circle. The operator
returns the area center, and the radius.

– Intersect contours: Generates intersecting points of the
tooth edge contour and circle contour which, if any, are
returned.

– Select object: This algorithm selects all the intersecting
points generated.

Fig. 14 Flowchart of tooth number algorithm

Table 1 The gear nomenclature and formulas

Denomination Symbol Formulas

Module m m = da/(z + 2)

Clearance c c = ((1/6) × m)/((1/4) × m)

Pitch diameter d d = m × z

Addendum ha ha = m

Dedendum hf hf = ha + c

Whole depth h h = ha + hf

Circular pitch p p = m × π

Circular tooth thickness s; e s; e = p/2

Base circular diameter db db = d × cosα

Cordal addendum hac hac = m[1 + (z/2))(1 − cos90/z)]

– Count object: This algorithm counts the intersecting
points and determines as output parameter the average
of the counted objects. The average is considered as the
output because the number of teeth is twice the number
of the intersection points.

5.6 The other parameters

The above three algorithms calculate the outer diameter, the
inner diameter, and the number of teeth of the gear to be
measured. Using these parameters, all other gear parameters
can be calculated. Table 1 describes the different gear
parameters and the subsequent formulas used to generate
the values.

6 Inspection process

To accomplish the desired quality inspection process, the
measurement of the gear acquired from the Vision2D
application is compared with the measurement of the
nominal gear derived from the CMM analysis, within
a specified tolerance. The interface of the Vision2D
application (Fig. 15) deals with this process. The inspection
process performed uses the following four steps:

– The standard gear parameters: The standard gear
parameters are set into the Vision2D application
for automatic reference. The reference values were
obtained from a CMM analysis of a nominal gear.

– The tolerance: The tolerance is set in the Vision2D
application. The parameters to be inspected are verified
and their allowable tolerances assigned. Each parameter
can be assigned unique tolerance values. Alternatively,
the same tolerance values can be applied to all
parameters.

– Measuring the gear to be inspected: The gear to be
inspected is acquired and measured by the Vision2D
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Set Tolerance

Tooth Diameter (mm)
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2 62.015
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Calculate
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Set as Reference Close

Element Value
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Outer Diameter (mm)

Inner Diameter (mm)

Fig. 15 The main interface of the Vision2D application

system; then, the calculated parameters are compared
with the nominal gear parameters according to the
tolerances given.

– Taking an inspection decision: The inspection decision
is displayed automatically in the Inspection section.
The decision is accepted if all inspected parameters for
the gear satisfy the corresponding parameter conditions
from the nominal reference, within the specified
tolerances. Otherwise, the decision is rejected.

7Measurement error and uncertainty
analysis

The existence of some degree of uncertainty in any given
measurement system is caused by different sources of
error. Error is the discrepancy between the optimal value
and the measured value. The quality of the experiment
of a measurement system is certain by the minimization
or eradication of as many sources of error. Measurement
errors are grouped as either random or systematic. Random
error usually emerges from unpredictable alterations of
dominating quantities. It is almost impossible to requite
for the random error of measurement; however, an increase

in the number of experimentation can oftentimes minimize
it. A system error emerges from an observable effect of a
dominating quantity on a measurement. It is quantifiable. A
level of rectification can be applied to requite for the effect.
Random and systematic errors are analogous to precision
and accuracy. Precision denotes the quality of measurement,
with no attestation that the measurement is right, while
accuracy ascertains that there is an optimal value, normally
referenced, to know how distant the feedback is from
the optimal value. According to GUM [19], uncertainty
components are grouped into two categories based on
their method of evaluation “A” and “B.” Both types are
different forms to evaluate the uncertainty and are based
on probability distributions. Type A standard uncertainty is
calculated from a series of repeated observations and is the
square root of the statistically estimated variance (i.e., the
estimated standard deviation). This technique principally
encompasses random errors. Type B standard uncertainty is
also the square root of an estimated variance, but rather than
being evaluated by repeated measurement, it is obtained
from an assumed probability density function based on the
degree of belief that an event will occur. This technique
encompasses systematic errors and the other uncertainty
factors considered important.
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The individual uncertainty components ui (sometimes of
type A and sometimes of type B) should be combined using
the law of propagation of uncertainties, commonly called
the “root-sum-of-squares” or “RSS” method to obtain the
combined standard uncertainty, denoted by uc.

uc =
√∑

u2i (14)

However, when this is done, the combined standard
uncertainty should be equivalent to the standard deviation
of the result, making this uncertainty value correspond with
a 68% confidence interval (with a normal distribution). If
a wider confidence interval is desired, the uncertainty can
be multiplied by a coverage factor (usually k = 2 or 3) to
provide an uncertainty range that is believed to include the
true value with a confidence of 95% (for k = 2) or 99.7%
(for k = 3). This is called expanded uncertainty and is
denoted by Uc.

Uc = k

√∑
u2i (15)

Another possibility is, instead of assuming a normal
distribution in all the uncertainties, calculating the coverage
factor independently for each uncertainty depending on its
specific distribution.

Uc =
√∑

(kiui)2 (16)

In that case, Table 2 can be used to obtain the parameter k
looking for a confidence of 95% that is the usual one. As our
uncertainties only fall in rectangular or normal distributions,
we will take k = 1.65 and k = 1.96 respectively.

In this work, the most significant uncertainties (ui) that
have been considered are:

– Resolution uncertainty (type B)

– Pattern (plate) uncertainty (type B)
– Calibration uncertainty (type A)
– Measurement uncertainty (type A)

7.1 Resolution uncertainty

One of the sources of uncertainty of an instrument is the
resolution of the device (if it is a digital instrument), or the
uncertainty due to the resolution of reading (if it is an analog
instrument) that depends on the operator or the way used in
the reading.

If the resolution of the indicating device is δx, the input
signal value that produces an indication given X can be
placed with equal probability at any point within the interval
from (X−δx/2) to (X+δx/2). The input signal can then be
described by means of a rectangular distribution with range
δx and standard deviation (typical uncertainty) of:

ur = δx

2
√
3

(17)

Taking into account that the theoretical subpixel object
space resolution is given by:

δx = FOV

256 × #pixels
(18)

where FOV is the field of view (70 mm), #pixels is the
number of pixels, and each pixel has 8 bits of depth.

7.2 Pattern uncertainty

The uncertainty of the pattern should be given by the
calibration laboratory, by a formula or simply by its value. In
our case, the plate calibration certificate points out that the
maximum uncertainty of the plate is 0.15 μm. That means an
expanded uncertainty with a 100% level of confidence U ′

p.
The typical uncertainty is obtained by dividing the expanded

Table 2 Coverture factor for
different probability
distributions

Rectangular distribution Normal distribution

Level of confidence p (%) Coverture factor k Level of confidence p (%) Coverture factor k

57.74 1 68.27 1

95 1.65 90 1.645

99 1.71 95 1.960

100 1.73 95.45 2

99 2.576

99.73 3
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uncertainty by the coverage factor. In this case k′ = 3
(normal distribution).

up = U ′
p

k′ (19)

Finally, to obtain the expanded uncertainty with a 95%
level of confidence, a k = 1.96 should be used.

Up = kup (20)

7.3 Calibration uncertainty

In most cases, the best available estimate of the expected
value of a quantity that varies randomly (uncertainty type
A), and for which n independent observations qk have been
obtained under the same conditions of measurement, is
the arithmetic mean or average q̄ of the n observations.
The estimate of variance and its positive square root
σ (standard deviation) characterize the variability of the
observed values.

σ =

√√√√√
n∑

k=1
(qk − μ)2

n − 1
(21)

According to statistical theory, the best estimate for type
A standard uncertainty is given by standard deviation of the
mean:

uc = σc√
n

=

√√√√√
n∑

k=1
(qk − μc)2

n(n − 1)
(22)

Knowing the nominal distance between two horizontal
points in the plate (2.58065 mm), a set of 18 distance
measurements close to 62 mm (roughly the size of the gear)
were performed computing its μc = 65.6610 mm and σc =
0.0017 mm. A calibration correction can also be computed
as follows:

�qc = q0 − μc (23)

This calibration correction can be applied in two ways.
On the one hand, correcting the value of the measurements,
each time a measurement is made, with the deviation value
obtained in the calibration correction �qc. On the other
hand (the chosen one in this work), including as a cause of
calibration uncertainty the term of the systematic correction,
assuming it distributed according to a normal function
�qc√

9
. This is more comfortable as it has an expression

System Error Chart
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Fig. 16 Graph to check the minimum system error
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Table 3 Summary of involved uncertainties

Name Symbol Standard uncertainty Probability distribution Coverture factor Contribution to expanded uncertainty

ui ki Ui

Resolution ur
FOV

512
√
3×#pixels

Rectangular 1.65 1.65×FOV
512

√
3×#pixels

Pattern up up Normal 1.96 1.96up

Calibration uc
σc√
n

Normal 1.96 1.96 σc√
n

Calibration correction �qc
q0−μc√

9
Normal 1.96 1.96 q0−μc√

9

Measurement um σc Normal 1.96 1.96σc

Combined uncertainty (uc) uc =
√∑

u2i

Expanded uncertainty (Uc) Uc =
√∑

U2
i

that already introduces this systematic variation, although
increases unnecessarily the value of the global uncertainty.

7.4 Measurement uncertainty

It is accepted that the variance obtained in the process of
calibration be the same as that obtained in the process of
usual measurement; so, the uncertainty associated with the
measurement process will be the same as uc with n = 1,
i.e., um = σc.

Before performing measurements, it is important to
check the system error measuring the ground-truth nominal
sample gear. Figure 16 shows the measurement data of
different camera exposures of the ground-truth sample gear,
in order to check the minimum system error. The minimum
error obtained is 0.002 mm at a exposure time of 7500 μs,
very coherent to um (see Table 4).

A summary of the different uncertainties involved in the
combined standard uncertainty is shown in Table 3.

8 Validation and analysis

For the proper verification of the gear system, the developed
Vision2D application inspected twelve gear pieces. The

inspection process aimed at ascertaining if each of the
gear had any defective component. This is to enhance the
quality control inspection in the inspection process. The
Vision2D application applies the corresponding algorithms
to the image processed and determines if the gear is non-
defective or defective. If the image processed meets all
the required conditions, the Vision2D application outputs
“accepted,” and sends a positive signal to the robot sensor.
The robot picks the gear piece from the configuration setup
and delivers it to the appropriate section. If the image
processed fails the required condition set, the Vision2D
application outputs “rejected,” and sends a negative signal
to the robot sensor. The nominal value acquired from the
CMM with the ground-truth sample gear is used to verify
the values generated by the Vision2D application. The error
margin sets as tolerance of the system is ± 0.020 mm for a
gear nominal diameter of 62.014 mm.

In order to compute the uncertainty of the process, before
the gears measurement Table 3 is filled with numerical
values (shown in Table 4).

This allows to conclude that if a measurement m is made
close to 62 mm, and for instance 62.012 is obtained, the real
value will be:

M = (62.012 ± 0.004 mm) (24)

Table 4 Summary of involved uncertainties with numerical values

Name Symbol Standard uncertainty Probability distribution Coverture factor Contribution to expanded uncertainty

(μm) (μm)

Resolution ur 0.0322 Rectangular 1.65 0.0531

Pattern up 0.05 Normal 1.96 0.098

Calibration uc 0.3966 Normal 1.96 0.7772

Calibration correction �qc 0.9889 Normal 1.96 1.9382

Measurement um 1.6824 Normal 1.96 3.2976

Combined uncertainty (uc) 1.9923 μm
Expanded uncertainty (Uc) 3.9048 μm
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Fig. 17 Computation of the
admissible zone

where the number following the symbol ± is the numerical
value of an expanded uncertainty Uc, determined from (a
combined standard uncertainty) uc and the related coverture
factors based on both rectangular and normal distributions,
and defines an interval estimated to have a level of
confidence of 95%.

Once the measurement is made, the decision must
be made to consider the piece valid or not, according
to the value of the nominal size (m0), the specified
nominal tolerance interval (t0) and the computed expanded
uncertainty (Uc). The admissible zone is shown in Fig. 17
from the next equations:

tas = m0 + t0 − Uc = 62.014 + 0.020 − 0.004 = 62.030

(25)

tai = m0 − t0 + Uc = 62.014 − 0.020 + 0.004 = 61.998

Table 5 Inspection details of accepted gear 1

Gear teeth Outer diameter (mm) Error (mm)

1 62.016 0.002

2 62.015 0.001

3 62.017 0.003

4 62.014 0.000

5 62.018 0.004

Average 62.016 0.002

Table 5 shows the inspection result details of an accepted
gear. The Vision2D application inspects and measures
each tooth of the gear. It performs the evaluation, and
the measured values and difference between the ground-
truth value are generated. After the verification process,
the Vision2D application accepts the gear because of the
condition for verification is satisfied (i.e., if the tolerance
limit is not exceeded).

Table 6 shows the verification details of a rejected gear. In
this case, the Vision2D application rejects the gear because
of the tolerance limit (16 μm), considering the nominal
tolerance and the vision system uncertainty, was exceeded.

The inspection result details of all twelve gears are
shown in Table 7. The summary verification chart for the
twelve gear pieces inspected is shown in Fig. 18. The figure
illustrates visibly the tolerance levels set for the gear. The
data points below the set tolerance illustrate acceptance,

Table 6 Inspection details of rejected gear 12

Gear teeth Outer diameter (mm) Error (mm)

1 62.065 0.051

2 62.018 0.004

3 62.056 0.042

4 62.019 0.005

5 62.020 0.006

Average 62.036 0.022
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Table 7 The inspection results
Nominal value m0 (mm) 62.014

Tolerance t0 (mm) ± 0.020

Expanded uncertainty Uc (mm) ± 0.004

Gear Outer diameter (mm) Error (mm) Decision

1 62.016 0.002 Accepted

2 62.006 0.008 Accepted

3 62.024 0.010 Accepted

4 62.040 0.026 Rejected

5 62.012 0.002 Accepted

6 62.028 0.014 Accepted

7 61.984 0.030 Rejected

8 62.025 0.011 Accepted

9 62.024 0.010 Accepted

10 62.015 0.001 Accepted

11 62.034 0.020 Rejected

12 62.036 0.022 Rejected

while the data points outside of the set tolerance illustrate
rejection.

9 Conclusion

This paper further exposes the development of an improved
Vision2D for quality control inspection. The experiments
carried out with different gears reveal the functionality of
the developed Vision2D application taking into account not
only the nominal tolerance but also the computed uncer-
tainty of the process. Several emphasized considerations

were implemented to better enhance the results generated
by the application, as follows:

– The use of a telecentric lens.
– An improved camera configuration and setup.
– A high-quality system with a very low calibration error

result.
– A greater amount of proofs done on an increased

number of gear inspections.
– A significantly low tolerance to enhance a limited

error-prone system for better quality control inspection.
– A methodological study of the uncertainty associated

with the process

Fig. 18 The verification chart
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The successful implementation of these emphasized
considerations and the achievements of the significant
uncertainties that have been considered are the contributions
that distinguish this paper.

10 Future work

Many challenges often befall the calibration process due
to various factors such as camera and sensor configuration
setup, lighting effects, room temperature, camera resolution,
and the quality of calibration plate. All of these variables
can influence measurement error, accuracy, and precision
of the machine vision system. The Vision2D application
developed in this paper obtains a minimum calibration error
of 0.06 pixel. Nevertheless, future research can be carried to
obtain a calibration error of a lower degree, keeping in mind
the aforementioned variables that could affect or impede the
realization of the result. In addition, the global uncertainty
associated with the process of measurement to know the
tolerance limit for acceptance could be further improved
upon.
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