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Abstract
Milling chatter is a harmful phenomenon, which seriously affects the quality of the workpiece and limits the processing
efficiency. The milling with variable spindle speed is an effective method for chatter suppression. In this paper, the reconstructed
semi-discretization method (RSDM) is proposed to analyze the stability of the delay differential equations with varying delay
term (VDDE) established based on the milling process with variable spindle speed. Firstly, the modulation period is discretized,
and the time periodic delay term in VDDE is approximated at the discrete intervals based on the Shannon orthogonal basis.
Secondly, the transitionmatrix is constructed, and the Floquet theory is used to build the stability boundary ofmilling system. The
validity of the proposed method is verified by comparing with the well-accepted semi-discretization method (SDM) via a single
degree of freedom milling system. Considering the limit of the acceleration of the spindle speed of machine tool, the modulation
parameters RVF and RVAwith sinusoidal and triangular wave modulations are optimized. Finally, the chatter frequencies and
chatter types are analyzed and compared based on the reconstructed semi-discretization method.

Keywords Milling chatter . Chatter suppression . Variable spindle speed . Reconstructed semi-discretization method . Chatter
types

1 Introduction

The chatter in metal cutting process is an unfavorable phe-
nomenon, which not only reduces production efficiency, dam-
ages to machining quality, but also damages machine tool and
cutting tool. The chatter is attributed to the self-excited vibra-
tion of the machining system consisted of machine tool, cut-
ting tool, workpiece, and fixture [1–6]. The self-excited chat-
ter may be induced by mode coupling, regenerative effect of
the chip thickness, etc.; however, the regenerative chatter oc-
curs earlier than the other types of chatter in most machining
processes [7]. As a result, the regenerative effect has become
the most common accepted explanation for chatter in metal

cutting, which is related to the cutting force variation due to
the wavy workpiece surface left during the previous revolu-
tion in cutting [7, 8].

In order to avoid chatter, the stability of the dynamics of
machining system is studied from different perspectives, such
as the frequency method [9–11], the semi-discretization meth-
od [12–17], the numerical method [18–20], the full-
discretization method [21], the temporal finite element analy-
sis method [22], the numerical integration method [23], and
the reconstructed semi-discretization method [24, 25]. The
stability analysis of machining systems can help engineers to
choose cutting parameters without chatter, but it cannot im-
prove the stability boundary of the machining system and
cannot enhance machining efficiency. Chatter suppression
can improve the stability boundary and enhance the machin-
ing efficiency.

In general, the means of chatter suppression are divided
into the passive and active chatter suppressions. The passive
chatter suppression is carried out by improving the structure
dynamic of the machining system or adding auxiliary device,
such as the application of variable pitch and helix angle for the
milling tool and the addition of tuned vibration absorber.
Active chatter suppression is carried out by controlling the
parameters of dynamic model for the machining system or
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the cutting parameters in real time, such as the real-time con-
trol of stiffness variation for the spindle via piezoelectric stack
actuators, active vibration damping controller, and active pie-
zoelectric actuator. In addition to the above active chatter sup-
pression, the chatter suppression based on variable spindle
speed is an efficient method which does not need to add an
active control device.

The ways of suppressing chatter based on variable spin-
dle speed were first proposed by Stoferle and Grab in the
1970s [26]. The corresponding dynamic equation is delay
differential equations with varying delay (VDDE). Several
methods have been proposed for the stability analysis of
the VDDE in the past 20 years. Pakdemirli et al. (1997)
used the perturbation method to analyze the stability of
varying spindle speed in turning, in which the angle of
revolution is taken as the independent coordinate for
maintaining a constant delay in the equations, and the
amplitude of speed fluctuation is assumed to be small
which are used as the perturbation parameter to construct
the approximate analytical solutions [27]. Jayarma et al.
(2000) used the Fourier analysis to transform the VDDE
and obtained the solution of an infinite order characteristic
equation, and the approximate solution of the stability of
VDDE can be obtained by considering the truncated equa-
tion [28]. Sastry et al. (2001) presented a discrete time
approach to the stability of the variable spindle speed in
face-milling process, in which the dynamics are described
by a set of differential equations with time-varying peri-
odic coefficients and time delay. The eigenvalues of the
state transition matrix of the finite dimensional system are
then used to build the stability criteria [29]. Yilmaz et al.
(2002) proposed a chatter suppression technique using
multilevel random spindle speed variation, and the stabil-
ity was assessed by the Lyapunov exponent [30].
Namachchivaya et al. (2003) adapt the perturbative meth-
od to obtain finite dimensional equations by describing the
explicit time-dependent delay term as a new state variable
to the original equations of motion with appropriate initial
conditions [31]. Insperger and Stepan (2004) proposed the
semi-discretization method to analyze the stability of turn-
ing with varying spindle speed modulated by a sinusoidal
variation [14]. Long et al. (2005) used the semi-
discretization method to the stability analysis for milling
process with variable spindle speed [32]. Zatarain et al.
(2008) presented the general theory for stability analysis
in the frequency domain and for any speed variation strat-
egies, and it was compared with the semi-discretization
method for stability [33]. Seguy et al. (2010, 2011) adapt
the semi-discretization method to analyze the effect of
spindle speed variation (triangular and sinusoidal shape
variations) in high-speed domain (corresponding to the
first flip and to the first Hopf lobes), and show the period
doubling chatter can effectively be suppressed by spindle

speed variation, and the technique is not effective for the
quasi-periodic chatter above the Hopf lobe [34, 35]. Wu
et al. (2010) developed the dynamic model of the noncir-
cular turning process. By using the spindle’s angular po-
sition as the independent variable, the dynamic model of
the variable spindle speed in noncircular turning process is
described by differential equation with linear periodic
time-varying coefficients and a fixed delay, and the
Floquet theory is applied to determine the stability bound-
ary [36]. Long et al. (2010) made use of the semi-
discretization method for stability prediction of up-
milling and down-milling operations [37]. Xie et al.
(2012) improved the semi-discretization method to stabil-
ity predictions of milling with variable spindle speed [38].
Otto et al. (2013) developed the frozen time approach to
calculate the stability lobes of machining with spindle
speed variation [39]. Liang et al. (2013) proposed an im-
proved numerical integration method to the stability anal-
ysis of VDDE [40]. Totis et al. (2014) proposed the
Chebyshev collocation method to analyze the stability in
milling with spindle speed variation [41]. Ding et al.
(2015) proposed the numerical integration method to analyze
the stability of VDDE in which the time delay is determined
by the integral transcendental equation [42]. Urbikain et al.
(2016) used the enhanced multistage homotopy perturbation
method to the stability of turning process with spindle speed
variation, and the balance between the improved stability mar-
gins and acceptable behavior of the spindle is identified by
energy consumption measurement [43]. Niu et al. (2016) used
the Fourier series and numerical integration method to the
stability analysis of VDDE, and different spindle speed mod-
ulation schemes are compared [44].

The above researchers studied the stability of VDDE based
on different methods, which play a very vital role in
prompting the development of the stability analysis of
VDDE. In above methods, the semi-discretization method is
an efficient numerical method that provides a finite dimen-
sional matrix approximation of the infinite dimensional
monodromy matrix, while the numerical scheme is relatively
simple. In the following researches, based on the semi-discrete
method, we analyze the stability of the VDDE from the views
of signal sampling and reconstruction, and compare the pro-
posed method with the semi-discrete method.

This paper is organized as follows: In Section 2, the recon-
structed semi-discretization method is present based on the
Shannon orthogonal basis function for the stability analysis of
VDDE. In Section 3, the dynamic model of milling with vari-
able spindle speed is introduced. In Section 4, two different
methods for stability analysis are compared. In Section 5, two
different modulation laws of the spindle are compared, and the
values of the RVA and RVF are optimized. In Section 6, the
chatter types based on the reconstructed semi-discretization
method are analyzed. Section 7 concludes this work.

Int J Adv Manuf Technol (2019) 105:2021–20372022



2 Theoretical basic

2.1 Shannon sampling theorem

The sampling theorem was first proposed in 1928 by Harry
Nyquist, and Claude Elwood Shannon, the founder of the
information theory, described in detail the theorem in 1948.
The derivation process of the theorem is not expressed here;
the main contents are described as follows:

Assuming the continuous function f(t) ∈ L2(R) (where
L2(R) is the square integrable function space in which the

function satisfies the rule: ∫þ∞
−∞ f tð Þj j2dx < þ∞ ), when the

Fourier transform of the continuous function f(t) has the fol-
lowing property: F(ω) = 0, | ω | > L (where L is real that is
called cutoff frequency) and the sampling interval satisfies
Δ ≤ π/L, f(t) can be reconstructed without any loss of infor-
mation through the following reconstruction formula:

f tð Þ ¼ ∑
n∈Z

f nΔð Þ sinΔ
−1 π t−nΔð Þ

Δ−1 π t−nΔð Þ ð1Þ

where the term sinΔ−1 π t−nΔð Þ
Δ−1 π t−nΔð Þ in Eq. (1) is called the Shannon

interpolation function.

2.2 Shannon orthogonal basis function

According to Eq. (1), the functions f(t) can be reconstructed.
When L = π, that is, the sampling frequency is equal to two
times highest frequency of the sampling signal, the sampling
interval Δ is equal to 1, and Eq. (1) can be transformed as:

f tð Þ ¼ ∑
n∈Z

f nð Þ sin π t−nð Þ
π t−nð Þ ; n∈Z ð2Þ

Denoting ϕ1 μð Þ ¼ sinπμ
πμ , which is called the sinc function,

and its curve is shown in Fig. 1. The areas of a, b, c, d, e, f, g, h,
i, and j which are surrounded by the sinc function curve and
the horizontal axis are respectively 0.5895, − 0.1381, 0.0817,
− 0.0581, 0.0451, − 0.0369, 0.0312, − 0.0270, 0.0239, and −
0.0213. These areas can be approximated as weight coeffi-
cients in different sampling intervals. By using the Parseval
theorem for sinc function ϕ1(μ), Eq. (3) is obtained:

< ϕ1 μ−nð Þ;ϕ1 μ−mð Þ >¼ ∫
þ∞

−∞
ϕ1 μ−nð Þϕ1 μ−mð Þdu

¼ 1

2 π
∫

þ∞

−∞
Φ1 ωð Þj j2e−iω n−mð Þ dx ¼ δ n−mð Þ ð3Þ

where the variable δ(n) is the unit impact sequence, that is,

δ nð Þ ¼ 1 n ¼ 0
0 n≠0

�
ð4Þ

According to Eqs. (3) and (4), it is known that the {ϕ1(μ −
n); n ∈ Z} is the standard orthogonal basis in the function
space { f(x); F(ω) = 0, | ω | > π}.

2.3 The reconstructed semi-discretization method
of VDDE

The dynamic equation of the cutting process with variable
spindle speed can be described as the delay-differential equa-
tions (DDE) with time periodic regenerative delay term. The
equation is described as:

x˙ tð Þ ¼ A tð Þx tð Þ þ B tð Þx t−τ tð Þð Þ; ð5Þ

where the variables A(t + T) = A(t), B(t + T) = B(t), τ(t +
T) = τ(t), T is the principal period of the system. The first step
is that the T is divided into k numbers of discrete time intervals
Δt, as shown in Fig. 2a.

The delay term τ(t) in discretization interval [ti, ti + 1] is
approximated as

τ i ¼ 1

Δt
∫tiþ1

ti τ tð Þdt ð6Þ

The series of integers are defined asmi ¼ int τ iþΔt=2
Δt

� �
, and

defined M ¼ max
i¼1;…;k

mið Þ. In the ith discretization interval

[ti, ti + 1], Eq. (5) can be approximated as

x˙ tð Þ ¼ Aix tð Þ þ Bix t−τ ið Þ ð7Þ

where the variables Ai ¼ 1
Δt ∫

tiþ1

ti A tð Þdt, Bi ¼ 1
Δt ∫

tiþ1

ti B tð Þdt.

Fig. 1 The curve of the sinc function
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The solutions of Eq. (7) consist of homogenous xih and
particular xip solutions. The homogenous solution is

xih ¼ x tið Þ � eA� t−tið Þ. Assuming that eA� t−tið Þ � u1 tð Þ is the
solution of Eq. (7), and its derivatives are described as:

A� eA� t−tið Þ � u1 tð Þ þ eA� t−tið Þ � du1 tð Þ
dt

; t ∈ ti; tiþ1½ �; i ∈ R ð8Þ

By substituting Eq. (8) into Eq. (7), Eq. (9) can be obtained:

eA� t−tið Þ � du1 tð Þ
dt

þ A� eA� t−tið Þ � u1 tð Þ ¼ A� eA� t−tið Þ

� u1 tð Þ þ B� x t−τ ið Þ; t ∈ ti; tiþ1½ �; i∈R

ð9Þ

Equation 9 can be simplified as:

eA� t−tið Þ � du1 tð Þ
dt

¼ B� x t−τ ið Þ; t ∈ ti; tiþ1½ �; i ∈ R ð10Þ

du1 tð Þ
dt

¼ e− A� t−tið Þð Þ � B� x t−τ ið Þ; t ∈ ti; tiþ1½ �; i ∈ R ð11Þ

The variable x(t − τi) can be reconstructed (as shown in Fig.
2b), according to Eq. (1), as follows:

x t−τ ið Þ ¼ …þ xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ
Δ−1π t− i−mþ 1ð Þ �Δð Þ

þ xi−m � sinΔ−1π t− i−mð Þ �Δð Þ
Δ−1π t− i−mð Þ �Δð Þ

ð12Þ

According to Eq. (12), it can be known that it is made up of
infinite items. Substituting Eq. (12) into Eq. (11) yields:

du1 tð Þ
dt

¼ e− A� t−tið Þð Þ � B� ð…þ xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ
Δ−1π t− i−mþ 1ð Þ �Δð Þ

þ xi−m � sinΔ−1π t− i−mð Þ �Δð Þ
Δ−1π t− i−mð Þ �Δð Þ Þ

ð13Þ

To calculate the integral on both sides of Eq. (13)

∫
t

ti

du1 tð Þ
dt

dt ¼ ∫
t

ti

e− A� t−tið Þð Þ � B�
�
…þ xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ

Δ−1π t− i−mþ 1ð Þ �Δð Þ
þxi−m � sinΔ−1π t− i−mð Þ �Δð Þ

Δ−1π t− i−mð Þ �Δð Þ
�

2
6664

3
7775dt

ð14Þ

u1 tð Þ−u1 tið Þ ¼ ∫
t

ti

e− A� t−tið Þð Þ � B�
�
…þ xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ

Δ−1π t− i−mþ 1ð Þ �Δð Þ
þxi−m � sinΔ−1π t− i−mð Þ �Δð Þ

Δ−1π t− i−mð Þ �Δð Þ
�

2
6664

3
7775dt

ð15Þ

Replacing the variable t with variable η on the right side of
Eq. (15) yields:

∫
t

ti

e− A� τ−tið Þð Þ � B�
�
…þ xi−mþ1 � sinΔ−1π η− i−mþ 1ð Þ �Δð Þ

Δ−1π η− i−mþ 1ð Þ �Δð Þ
þxi−m � sinΔ−1π η− i−mð Þ �Δð Þ

Δ−1π η− i−mð Þ �Δð Þ
�

2
6664

3
7775dη; η∈ ti; t½ �

ð16Þ

Fig. 2 The discretization of
curves and the approximation of
the delayed term. a The
discretization of time period T. b
The reconstruction of function
based on interpolation function
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sinΔ−1π η− i−mþ1ð Þ�Δð Þ
Δ−1π η− i−mþ1ð Þ�Δð Þ is denoted as ϕ(η − (i −m + 1));

sinΔ−1π η− i−mð Þ�Δð Þ
Δ−1π η− i−mð Þ�Δð Þ is denoted asϕ(η − (i −m)). The equivalent

transformation of Eq. (16) is as follows:

∫
t

ti

e− A� τ−tið Þð Þ � B�
�
…þ xi−mþ1 � ϕ η− i−mþ 1ð Þð Þ

þxi−m � ϕ η− i−mð Þð Þ
�

2
4

3
5

dη ¼ …þ xi−mþ1 � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mþ 1ð Þð Þdη

þ xi−m � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mð Þð Þdη

ð17Þ

Equation (15) is converted as:

u1 tð Þ ¼ …þ xi−mþ1 � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mþ 1ð Þð Þdη

þ xi−m � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mð Þð Þdηþ C

ð18Þ

where the C = u1(ti) = 0. xip is expressed as:

xip ¼ eA� t−tið Þ � ½…þ xi−mþ1 � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mþ 1ð Þð Þdη

þ xi−m � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mð Þð Þdη�

ð19Þ

The solution of Eq. (7) in the time interval [ti, ti + 1] can be
expressed as:

x tð Þ ¼ xih þ xip ¼ x tið Þ � eA� t−tið Þ þ eA� t−tið Þ

� ½…þ xi−mþ1 � ∫
t

ti

e− A� η−tið Þð Þ � B�
ϕ η− i−mþ 1ð Þð Þdη

� �

þ xi−m � ∫
t

ti
e− A� η−tið Þð Þ � B� ϕ η− i−mð Þð Þdη�;

t∈ ti; tiþ1½ �; i∈R

ð20Þ

When t = ti + 1, Eq. (20) is obtained:

x tiþ1ð Þ ¼ xiþ1 ¼ x tið Þ � eA� Δð Þ þ eA� Δð Þ

�
h
…þ xi−mþ1 � ∫

ti

tiþ1

e− A� η−tið Þð Þ � B� ϕ η− i−mþ 1ð Þð Þdη

þ xi−m � ∫
ti

tiþ1

e− A� η−tið Þð Þ � B� ϕ η− i−mð Þð Þdη
i ð21Þ

Denoting η = μ + ti, Eq. (21) can be rearranged as follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δð Þ þ eA� Δð Þ

�
h
…þ xi−mþ1 � ∫

Δ

0
e− A�μð Þ

� B� ϕ μ− i−mþ 1ð Þð Þdμþ xi−m

� ∫
Δ

0
e− A�μð Þ � B� ϕ μ− i−mð Þð Þdμ

i
; 0≤μ≤Δ ð22Þ

where ∫Δ0 e− A�μð Þ � B� ϕ μ− i−mþ 1ð Þð Þdμ is equal to

∫Δ0 e− A�μð Þ � B� ϕ μð Þ� �
dμ. The equivalent transformation

of Eq. (22) is as follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δð Þ þ eA� Δð Þ �
h
…þ xi−mþ1

� ∫
Δ

0
e− A�μð Þ � B� ϕ μð Þdμþ xi−m

� ∫
Δ

0
e− A�μð Þ � B� ϕ μð Þdμ

i

ð23Þ

According to the normalized reconstruction formula of Eq.
(2), Eq. (23) can be expressed as follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� 1ð Þ þ eA� 1ð Þ �
h
…þ xi−mþ1

� ∫
1

0
e− A�μð Þ � B� ϕ1 μð Þdμþ xi−m

� ∫
1

0
e− A�μð Þ � B� ϕ1 μð Þdμ

i

ð24Þ

In Eq. (2), the sampling intervalΔ = 1 means that the prin-
cipal period T is sampled by 1/(2f0)time interval (where f0 is
the chatter frequency). “Δ = 1” is the normalized sampling
interval; the actual sampling interval can be expressed as
Δ1 = 1/(2f0) (in the actual choice, Δ1 = 1/[(3f0)~(5f0)]).

In the actual sampling process, Eq. (24) is expressed as
follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δ1ð Þ þ eA� Δ1ð Þ �
h
…þ xi−mþ1

� ∫
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμþ xi−m

� ∫
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμ
i

ð25Þ

Denoting

N ¼ eA� Δ1ð Þ � ∫
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμ ð26Þ

N can be approximated as:

N ¼ eA� Δ1ð Þ � ∫
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμ≈0:5895eA� Δ1ð Þ � ð∫
0

Δ1

e− A�μð ÞdμÞ � B

¼ 0:5895eA� Δ1ð Þ � e− A�μð ÞjΔ1

0
−A−1 � B
� � ¼ 0:5895eA� Δ1ð Þ � e− A�μð Þ−I

� �
� −A−1 � B
� � ¼ 0:5895� I−e− A�μð Þ

� �
� −A−1 � B
� � ¼ 0:5895

� e− A�μð Þ−I
� �

� A−1B
� �
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Denoting (e−(A × μ) − I) × (A−1B) = Ri. When considering
the influence in other sampling intervals[ti, ti + 1], and the
mean values of the first 10 sampling intervals of the ϕ1(μ)
(according to Fig. 1) are considered. Eq. (25) can be
expressed as:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δ1ð Þ−0:0213xi−mþ10Ri þ 0:0239xi−mþ9

Ri−0:027xi−mþ8Ri þ 0:0312xi−mþ7Ri−0:0369xi−mþ6Ri

þ 0:0451xi−mþ5Ri−0:0581xi−mþ4Ri þ 0:0817xi−mþ3

Ri−0:1381xi−mþ2Ri þ 0:5895xi−mþ1Ri þ 0:5895xi−mRi

ð27Þ

According to Eq. (27), the discrete map

yiþ1 ¼ Ciyi ð28Þ
yi ¼ col xi; x˙ i; xi−1;…; yi−M

� � ðwhereÞ

Ci ¼

eAΔ1 0 0 … 0:0817Ri −0:1381Ri 0:5895Ri 0:5895Ri 0 … 0 0 0
I 0 0 … 0 0 0 0 0 … 0 0 0
0 I 0 … 0 0 0 0 0 … 0 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ : : ⋮
0 0 0 … 0 0 0 0 0 … 0 0 0
0 0 0 … 0 0 0 0 0 … I 0 0
0 0 0 … 0 0 0 0 0 … 0 I 0

2
66666666664

3
77777777775

The connection between y0 and yk is described as follows:

yk ¼ Φy0 ð29Þ

Where Φ =Ck − 1Ck − 2…C2C1C0, Φ is the transition matrix
over the principal period. The stability lobes can be deter-
mined by scanning the spindle speed at the different axial
depths (the Floquet theory). In using the Floquet theory, the
ratio of the period of spindle speed variation and the tooth
passing period is set to be a rational number.

max λj jð Þ ¼
< 1; stable
¼ 1; critical stable
> 1; unstable

8<
: ð30Þ

The variable max(|λ|) indicates the biggest modulus in all
modulus of eigenvalues of the transition matrix Φ.

3 Dynamic model of turning with variable
spindle speed

3.1 Milling dynamic model

The mechanical model is show in Fig. 3, the workpiece is
assumed to be flexible in x-direction, and the milling cutter
is assumed to have enough rigidity compared with the
workpiece.

The dynamic model can be described as:

mx:: tð Þ þ cx˙ tð Þ þ kx tð Þ ¼ Fx tð Þ ð31Þ
where the parameter m is the modal mass, c is the damping, k
is the stiffness, and Fx(t) is the cutting force in the x-direction
which is expressed as [45]:

Fx tð Þ ¼ G tð Þðx tð Þ−x t−τ tð ÞÞð Þ ð32Þ
G tð Þ ¼ ap qf q−1

� �
∑
N

j¼1
g j tð Þ sinφ j

� �q
Ktccosφ j þ Krcsinφ j

� �h i
ð33Þ

where ap is the axial depth of cut, q is the cutting force expo-
nent, φj is the angular position of the jth cutting edge, and Ktc

and Krc denote the cutting force coefficients in tangential and
radial directions, respectively. f is the feed per tooth, x(t) is the
current position of the tool, and x(t − τ(t)) is the positon at the
previous cut. gj(t) is the switch function, which is applied to
judge whether the tooth j is cutting or not, that is,

g j tð Þ ¼ 1; φst ≤φ j≤φex
0; otherwise

�
ð34Þ

where the terms φst andφex are respectively the start and exit
angles of the jth cutting edge. Equation (31) is transformed
into the state equation as follows:

X˙ tð Þ ¼ A tð ÞX˙ tð Þ þ B tð Þu t−τ tð Þð Þ
u t−τ tð Þð Þ ¼ CX t−τ tð Þð Þ
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where X tð Þ ¼ x tð Þ
x˙ tð Þ

� �
, A tð Þ ¼

0 1
H tð Þap

m
−
c
m

" #
, B tð Þ ¼

0
H tð Þap

m

" #
,

u t−τ tð Þð Þ ¼ x t−τ tð Þð Þ 0½ �, C ¼ 1 0½ �,

H tð Þ ¼ g j tð Þ ∑
N

j¼1
Krccosφ j−Ktcsinφ j

� �h i
cosφ j

3.2 Approximation of the time delay term

In Fig. 3, N(t) is the time periodic spindle speed, N(t + T) =
N(t); the time delay τ(t) is also time periodic, τ(t + T) = τ(t).
The time delay τ(t) between the present and the previous cuts
is determined by the following equation [45]:

∫tt−τ tð Þ
R2πN Sð Þ

60
ds ¼ 2πR

N
þ x tð Þ−x t−τ tð Þð Þ ð35Þ

If the term x(t) − x(t − τ(t)) is negligible, then Eq. (35) gives

∫tt−τ tð Þ
R2πN Sð Þ

60
ds ¼ 1

N
ð36Þ

It is assumed that the spindle speed is modulated around an
average values as follows:

N tð Þ ¼ N0 þ N 1S tð Þ; S t þ Tð Þ ¼ S tð Þ ð37Þ
1) Time delay term with sinusoidal shape

Defining S(t) as cosine modulation, S(t) is given by S(t) =
sin(2πt/T).

Substituting Eq. (38) into Eq. (36) yields the implicit equa-
tion:

1

60
N0τ tð Þ þ T

2π
N1 sin 2πt=Tð Þ−sin 2π t−τ tð Þð Þ=Tð Þð Þ

� �
¼ 1 ð38Þ

The ratios of modulation amplitude and modulation fre-
quency are respectively defined:

RVA ¼ N1

N0
; RVF ¼ 60

N 0Tð Þ ð39Þ

If the N1 is small enough compared with the N0, the time
delay τ(t) can be approximated as:

τ tð Þ≈τ0‐τ1S tð Þ ; τ0 ¼ 60

N � N0
; τ1 ¼ τ0 � RVA ð40Þ

The exact and the approximate time delays τ(t) are calcu-
lated respectively based on Eqs. (36) and (40), as shown in
Fig. 4 (mean spindle speed is selected as 6000 r/min, and the
exact term τ(t) is computed numerically with root-finding
method). When RVF = 0.01 (corresponding to T = 1 s), the
ratios of the maximum deviation and exact maximum between
the exact and the approximated delay terms τ(t) are equal to
0.99% for RVA = 0.1, 3.99% for RVA = 0.2, and 8.98% for
RVA = 0.3. When RVF = 0.02, the ratio of maximum devia-
tion and exact maximum has the same change laws; that is, the
maximum deviation will be raise with the increase of RVA. In
the following content, the small RVA is only considered for
stability analysis.

2) Time delay term with triangular shape

In Eq. (37), the triangular shape function is defined as [16]:

S tð Þ ¼ 1‐4mod t; Tð Þ=T if 0 < mod t; Tð Þ≤T=2
‐3þ 4mod t; Tð Þ=T ifT=2 < mod t; Tð Þ≤T

� 	
ð42Þ

where function mod (t,T) denotes the modulo function, for
example, mod(13,5) = 3. The spindle speed based on triangu-
lar shape is described as follows:

N tð Þ ¼
N0 1þ RVAð Þ‐ 4N0RVA

T
mod t;Tð Þ if 0 < mod t; Tð Þ≤T=2

N 0 1−3RVAð Þ þ 4N0RVA
T

mod t;Tð Þ ifT=2 < mod t; Tð Þ≤T

8><
>:

9>=
>;

ð43Þ

According to Eq. (40), time delay τ(t) corresponding to Eq.
(43) is given:

τ tð Þ ¼
τ0 1‐RVAð Þ þ 4τ0RVA

T
mod t; Tð Þ if 0 < mod t; Tð Þ≤T=2

τ0 1þ 3RVAð Þ‐ 4τ0RVA
T

mod t;Tð Þ ifT=2 < mod t;Tð Þ≤T

8><
>:

9>=
>;
ð44Þ

Fig. 3 Mechanical model of the milling process with single degree of
freedom
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4 Comparison of the stability analysis
with different methods

In order to prove the effectiveness of the RSDM meth-
od (the reconstructed SDM), two cases with single de-
gree of freedom were analyzed and compared by SDM
and RSDM.

Case 1 The parameters of milling system in reference
[45] are selected as follows: modal stiffness is defined
as k = 20 × 106 N/m, natural frequency is defined as fn
= 400 Hz, damping rate is defined as ξ = 0.02, tangen-
tial cutting force coefficient is defined as ktc = 107
MPa, radial cutting force coefficient is defined as krc
= 40 /107, the cutting force exponent is defined as q
= 0.75, the radial immersion ratio is defined as ae/D =
0.5 (where the term ae denotes the radial immersion and

D denotes the diameter of the milling cutter), and the
number of the teeth is selected as N = 4. The stability
boundaries are calculated respectively based on the
RSDM and SDM under different RVF values, as shown
in Fig. 5.

Case 2 The parameters of milling system in reference [37]
are selected as follows: modal stiffness is defined as k =
9.14 × 105 N/m, natural frequency is defined as fn =
729.07 Hz, damping rate is defined as ξ = 0.0107, tan-
gential cutting force coefficient is defined as ktc = 600
MPa, radial cutting force coefficient is defined as krc =
0.42, the cutting force exponent is defined as q = 1, the
radial immersion ratio is defined as ae/D = 0.05 (where
the term ae denotes the radial immersion and D denotes
the diameter of the milling cutter), the number of the
teeth denotes N = 2, and feed per tooth denotes fz = 0.1

Maximum deviation / exact maximum: 0.99% Maximum deviation / exact maximum: 0.97%

Maximum deviation / exact maximum:3.99% Maximum deviation / exact maximum:3.95%

Maximum deviation / exact maximum: 8.98% Maximum deviation / exact maximum: 8.92%

Fig. 4 The exact and approximated time delay in different RVF and RVA for Ω0 = 6000 r/min
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mm. The stability boundaries are calculated respectively
based on the RSDM and SDM under different RVF
values, as shown in Fig. 6.

As can be seen from Figs. 5 and 6, the stability
boundaries calculated based on the reconstructed SDM
are highly consistent with the stability boundaries calcu-
lated based on the SDM, but the calculation efficiencies
of the stability boundaries based on RSDM are obviously
improved. The calculation efficiency based on RSDM
has been improved nearly three times, compared with
that based on SDM.

5 Stability analysis at two different
modulation waves and the optimization
of modulation parameters

In order to compare the effect of triangle and sinusoidal modu-
lation on the stability boundary, the system parameters of case 2
are selected. The stability boundary at two different modulation
waves is calculated based RSDM, as shown in Fig. 7.

As can be seen in Fig. 7, the stability boundaries construct-
ed based on two different modulation waves are significantly
improved compared with those based on constant spindle

The First - order SDM (FSDM) The Reconstructed SDM (RSDM)

RVF=0.5, RVA=0.1, calculation time: 1450.0872s RVF=0.5, RVA=0.1, calculation time: 504.5693s 

RVF=0.2, RVA=0.1, calculation time: 3658.0973s RVF=0.2, RVA=0.1, calculation time: 1256.0208 s

RVF=0.1, RVA=0.1, calculation time: 6462.2381s RVF=0.1, RVA=0.1, calculation time: 2345.4916

Fig. 5 The calculation of the stability boundaries of case 1 with sinusoidal spindle speed modulation. VSS denotes the modulation of variable spindle
speed, and CSS denotes the modulation of constant spindle speed
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speed (VSS). Within the range of spindle speed 2000–4500
r/min, that is, the left side of the line “AB,” the stability bound-
ary based on triangular wave is higher than that based on
sinusoidal wave. However, with the range of spindle speed
4500–5000 r/min, the stability boundary based on triangular
wave is lower than that based on sinusoidal wave. In general,
for the system parameters of case 2 and RVA = 0.1 and RVF =
0.5, the improvement of the triangular wave to the stability
boundary is better than that of the sinusoidal wave.

Under different RVA and RVF, the stability boundaries of
case 2 are different; thus, the optimal RVA and RVF are ana-
lyzed. Considering the limit of acceleration of spindle speed,

the RVA and RVF are also limited. For the sinusoidal wave
variation, the maximum acceleration of spindle speed is iden-
tified as follows:

amax ¼ 2π� N2
0 � RVA� RVF
3600

ð45Þ

For the triangular wave variation, the maximum accelera-
tion of spindle speed is identified as follows:

amax ¼ 4� N 2
0 � RVA� RVF

3600
ð46Þ

The First - order SDM The reconstructed SMD

RVF=0.5, RVA=0.1, calculation time: 1450.0872s RVF=0.5, RVA=0.1, calculation time: 504.5693s 

RVF=0.2, RVA=0.1, calculation time: 3658.0973s RVF=0.2, RVA=0.1, calculation time: 1256.0208 s

RVF=0.1, RVA=0.1, calculation time: 6462.2381s RVF=0.1, RVA=0.1, calculation time: 2345.4916

Fig. 6 The calculation of the stability boundaries of case 2 with sinusoidal spindle speed modulation
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Assuming the maximum acceleration is selected as 100rev/
s2 [34], the optimal RVA and RVF are selected respectively as
N0 = 3000 r/min and N0 = 4900 r/min based on two different
modulation waves. The results are shown in Figs. 8 and 9, and
the optimized parameters of RVA and RVF are calculated, as
shown in Table 1.

As shown in Table 1, the axial milling depth based on two
modulation waves significantly increased compared with that
based on constant spindle speed. In general, the improvements
of the axial milling depth based on triangular wave are better
than that based on sine wave.

6 Analysis of the chatter types

The chatter frequencies of the constant spindle speed are de-
termined as follows [45]:

f ¼ �ω1

2π
þ j

τ0
¼ �ω1

2π
þ j

NN0

60
; j ¼ 0; 1;…; n ð47Þ

where the variable ω1 denotes the imaginary part of critical
characteristic exponent, τ0 denotes the constant time delay
term, N denotes the teeth of the tool, and N0 denotes the spin-
dle speed. According to the chatter frequencies of variable

Triangular wave modulation Sinusoidal wave modulation

  

Fig. 8 The critical axial milling depth at different RVA and RVF at spindle speed 3000 r/min

A

B

Fig. 7 Stability boundaries at two
different modulation waves under
RVA = 0.1 and RVF = 0.5 based
on RSDM

Int J Adv Manuf Technol (2019) 105:2021–2037 2031



spindle speed in turning, the chatter frequencies of variable
spindle speed in milling are described as [14]:

f ¼ �ω1

2π
=T þ j

RVF � N tð Þ
60

; j ¼ 0; 1;…; n ð48Þ

where the term N(t) denotes variable spindle speed.
The modulation frequencies are defined as [14]

f m ¼ j
RVF � N0

60
; j ¼ 1;…; n ð49Þ

According to Eqs. (47)–(49), the chatter and modulation
frequencies are calculated, as shown in Fig. 10.

Figure 10d denotes the stability lobes of case 2 under
different modulation laws. Figure 10a–c denote the corre-
sponding chatter frequencies and modulation frequencies.
As seen in Fig. 10, frequency bands of triangular and si-
nusoidal modulation waves are wider than those of con-
stant spindle speed. In the following section, the chatter
types are analyzed based on the reconstructed semi-
discretization method. The critical points of the stability
boundaries were selected at different modulation laws, as
shown in Fig. 10.

Points A and B denote the critical points of the con-
stant spindle speed, and the corresponding time vibration
signals and Poincare section are calculated as shown in

Triangular wave modulation Sinusoidal wave modulation

Fig. 9 The critical axial milling depth at different RVA and RVF at spindle speed 4900 r/min

Table 1 Optimization of modulation parameters considering the limit of acceleration of spindle speed

Triangular wave modulation Sinusoidal wave modulation

RVF RVA Axial milling
depth (mm)

Improvement rate (%) RVF RVA Axial milling
depth (mm)

Improvement rate (%)

3000 r/min 0.08 0.125 2.6487 221% (point A) 0.0484 0.136 2.1795 182% (point B)

4900 r/min 0.022 0.1505 3.3407 239% (point C) 0.02 0.118 2.7 193% (point D)
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Fig. 11a–d. The time vibration displacement signals x and
velocity signals ẋ can be calculated by recursive formula
of Eq. (28) using the first two elements of each yi. The

black symbols “o” in Fig. 11a–d denote the values of the
variable x and ẋ corresponding to the time interval of one
revolution of the spindle.

a) b)

c) d)

Fig. 10 Chatter frequencies andmodulation frequencies under different modulationwaves. a Frequency analysis at CSS. b Frequency analysis at VSS—
sinusoidal. c, d Frequency analysis at VSS—triangular

a) Time vibration signals at point A b) Poincare section at point A

c) Time vibration signals at point B d) Poincare section at point B

Fig. 11 Two chatter types of the
constant spindle speed. a Time
vibration signals at point A. b
Poincare section at point A. c
Time vibration signals at point B.
d Poincare section at point B
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The black symbols “o” change with the law of sinusoidal
function in Fig. 11a, and the black symbols “o” are converged
to a circle in Poincare section in Fig. 11b. The chatter with the
above properties is called secondary Hopf bifurcation which
the critical characteristic multipliers are on the unit circle that

are a complex conjugate pair. The black symbols “o” appear
alternately in two positions in Fig. 11c, and the black symbols
“o” are converged to two small areas in Poincare section in
Fig. 11d. The chatter with the above properties is called
period-2 or flip bifurcation that the critical characteristic

Sinusoidal wave modulation Triangular wave modulation

a) b)

Fig. 12 The selection of the critical point of the case 2 under sinusoidal wave modulation

a) Time vibration signals at point C b) Poincare section at point C 

c) Time vibration signals at point D d) Poincare section at point D

e) Time vibration signals at point E  f) Poincaresection at point E

g) Time vibration signals at point F h) Poincare section at point F 

Fig. 13 Three chatter types of the
variable spindle speed based on
sinusoidal wave. a Time vibration
signals at point C. b Poincare
section at point C. c Time
vibration signals at point D. d
Poincare section at point D. e
Time vibration signals at point E.
f Poincare section at point E. g
Time vibration signals at point F.
h Poincare section at point F

Int J Adv Manuf Technol (2019) 105:2021–20372034



multiplier is equal to − 1. Hopf and period-2 bifurcations
usually exist in milling process (Fig. 12).

Points C, D, E, and F denote the critical points of the variable
spindle speed with sinusoidal wave modulation, and the corre-
sponding time vibration signals and Poincare section are de-
scribed as shown in Fig. 13a–h. The chatters of point C and
D respectively belong to Hopf and period-2 bifurcations. The
black symbols “o” appear in one positions in Fig. 13e and g,
and the black symbols “o” are converged to one small area in
Poincare section in Fig. 13f and h. The chatter with the above
properties is called period-1 bifurcation that the critical charac-
teristic multipliers are equal to 1. The period-1 bifurcation did
not appear in milling process with constant spindle speed, but it
appears in milling process with sinusoidal wave modulation.

Points H, I, J, and K denote the critical points of the vari-
able spindle speed with triangular wave modulation, and the
corresponding time vibration signals and Poincare section are
described as shown in Fig. 14a–h. The chatters of points H, I,
J, and K respectively belong to period-1, Hopf, period-1, and
period-2 bifurcations. The period-1 bifurcation also exists in
milling process with triangular wave modulation.

7 Conclusions

In this work, the reconstructed semi-discretization meth-
od is established to analyze the milling stability with
sinusoidal and triangular modulations. The approxima-
tion of the time delay term with sinusoidal law is
discussed, and results show that the approximation can
be used when RVA is small, and the approximation of
time delay term with triangular law is also established. In
order to verify the validity of the reconstructed semi-
discretization method (RSDM), the milling dynamics
with single degree of freedom is used to compare the
calculation efficiency, and the results show the proposed
method have a higher calculation efficiency compared
with the well-accepted semi-discretization method
(SDM). Finally, the chatter types under constant spindle
speed and sinusoidal and triangular wave modulations
are analyzed based on the reconstructed semi-
discretization method (RSDM), and chatter type, period-
1, is observed in milling process with sinusoidal and
triangular wave modulations.

a) Time vibration signals at point H b) Poincare section at point H 

c) Time vibration signals at point I d) Poincare section at point I   

e) Time vibration signals at point J f) Poincare section at point J 

g) Time vibration signals at point K h) Poincare section at point J 

Fig. 14 Three chatter types of the
variable spindle speed based on
triangular wave. a Time vibration
signals at point H. b Poincare
section at point H. c Time
vibration signals at point I. d
Poincare section at point I. e Time
vibration signals at point J. f
Poincare section at point J. g Time
vibration signals at point K. h
Poincare section at point J
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