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Abstract
Milling is among the most commonly used, flexible, and complex machining methods; and adequate selection of process
parameters, modeling, and optimization of milling is challenging. Due to complex morphology of cutting process, edge and
surface defects and elevated cutting forces and temperature are the main observations if non-adequate cutting parameters are
selected. Therefore, modeling surface roughness and cutting forces in the milling process are of prime importance. Due to the
ability of neuro-fuzzy networks to maintain appropriate modeling with investigation of uncertainties and the capacity of meta-
heuristic approaches to set the coefficients of these networks precisely, in the present study, the coupledmodels of adaptive neuro-
fuzzy inference system (ANFIS-type fuzzy neural networks) and interval type 2 fuzzy neural networks with evolutionary learning
algorithms including particle swarm optimization (PSO) and genetic algorithm (GA) were used to predict the mean values of
directional cutting forces as well as average surface roughness (Ra) in milling aluminum alloys (AA6061, AA2024, AA7075)
under various cutting conditions and insert coatings. The main innovation of the present study refers to implementation of
IT2FNN- PSO method in the machining operations. No similar research in this regards was found in the literature. According
to the results, it was found that the proposedmethods led to excellent and precise modeling results with high correlation rates with
experimental outputs. The use of IT2FNN-PSO led to better performance as compared to observationsmade in other two ANFIS-
based models aforementioned.
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Nomenclature
Ra Surface roughness
ANFIS Adaptive neuro-fuzzy inference system
RMSE Root mean square error
MSE Mean square error
RSM Response surface modeling
BP Backpropagation
IT2FNN Interval Type-2 fuzzy neural network
GA Genetic algorithm

PSO Particle swarm optimization
MD Membership function
ADALIN Adaptive linear neurons
ANN Artificial neural network
ADALINE Adaptive linear neurons
R Correlation coefficient
Vc Cutting speed
fz Feed per tooth
ap Depth of cut

1 Introduction

Milling is one of the most commonly used machining
operations in numerous manufacturing sectors which has
complex modes of chip formation and interactions
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between cutting tools and the work part. Therefore, the
cutting parameters must be selected adequately; other-
wise, several machining difficulties including chatter vi-
brations, fluctuated cutting force, and elevated cutting
temperature are expected which tend to deteriorate the
surface quality and prolong the machining time while
higher machining cost is expected.

Surface quality and cutting forces are among the
most important milling attributes. The average surface
roughness (Ra) and the mean values of directional cut-
ting forces are the major attributes of the surface integ-
rity and cutting forces when dealing with milling oper-
ation. It is advised to acquire good information and
understanding of factors governing these attributes
aforementioned. Benardos and Vosniakos [1] divided
modeling techniques applied to predict the surface
roughness into three major categories: experimental, an-
alytical/numerical, and artificial intelligence (AI)
models. Experimental and analytical models are based
on experimental information and conventional ap-
proaches such as the statistical regression known as
the RSM [1–4]. Artificial intelligence models use vari-
ous approaches such as artificial neural networks
(ANNs) [5–8], genetic algorithms (GA) [5, 9], fuzzy
logic [10], and hybrid systems [11–13].

Analytical/numerical-based approaches are mainly de-
pendent to machining kinematics, cutting tool properties,
and interaction effects between cutting parameters. Due
to complexity of many several cutting and non-cutting
factors in the machining process, the aforementioned
theory, in spite of its strong theoretical background, is
not an accurate model. In addition, several parameters
such as wear, cutting tool deflection, or thermal phe-
nomena are not well modeled yet. The experimental
approaches, are designed to generate experimentally
based data which are not however reliable if different
cutting parameters are used. In statistical regression
analyses, researchers’ insights play a major role and
no systemic formulation is available. In general, the
results cover a limited practical range that is regional,
and due to ignorance of some factors, there is also the
possibility of achieving unexpected results. Furthermore,
experimental study for broad range of cutting parame-
ters is time-consuming and costly [1, 14]. Knowing that
adequate mathematical equations and comprehensive
knowledge about direct and indirect effects of cutting
parameters on machining responses are not available,
therefore, the use of AI-based methods to develop
near-reality models has been the subject of interest for
industrial and academic sectors. AI-based approaches
have great capability of modeling sophisticated phenom-
ena and uncertainties. Artificial neural networks (ANN),
fuzzy logic systems, and network-based fuzzy inference

system are among the most popular AI methods which
have been widely used for modeling and optimization of
machining processes [14–25].

In the field of modeling and predicting Ra in milling
process, Karayel [15] has introduced and trained an
ANN model [16] to predict and control Ra in turning
with multi-layer feedforward, which led to an average
error of 0.023. Gupta et al. [17] introduced an ANN-
based GA model as a hybrid system. Many studies and
modeling in the field of AI-based models, including
radial basis function networks (RBFN), fuzzy hybrid
networks, and GA have been performed with acceptable
accuracy and reliability [18, 19]. Similarly, modeling
and analyzing of shear forces in milling operation have
been an interesting topic in recent decades. In fact, the
machining force measurement and analysis are important
steps in the monitoring process in order to take accept-
able decisions and proper reactions by means of im-
proving and optimizing the quantity and quality of pro-
duction. In addition, an appropriate estimate can predict
the processes involved in machining operations such as
tool wear and other items satisfactorily. Kumar et al.
[20] and Noordin et al. [21] have shown that RSM is
an acceptable approach for predicting cutting forces
through experimental data. The GA is also among the
approved methods for modeling and predicting cutting
forces [22, 23]. Various research studies were conducted
about the use of neural and fuzzy-neural fields with
Takagi-Sugeno rule base and also ANFIS networks with
various types of learning algorithms such as BP
[24–26].

Nowadays, the applications of aluminum alloys,
which exhibit strong features including high weight-to-
strength ratio, high thermal and electrical conductivity,
as well as acceptable machinability, are growing within
numerous manufacturing sectors. It is therefore recom-
mended to expand the use of the proposed approach to
highly used aluminum alloys.

Barua et al. [27] used an RSM-based approach to
find the influence of cutting speed, depth of cut, as well
as feed rate on Ra in machining Al 6061-T4. Under
specific cutting conditions used, a reliability of 90%
was found. Daniel et al. [28] developed a multi-
objective prediction model by using ANN for milling
aluminum hybrid metal matrix that yielded which led
to better performance as compared to regression models.
Karkalos et al. [29] stated that the performance of ANN
network is more acceptable than RSM regression when
used in milling Ti-6Al-4V. Sharkawy et al. [13] used
ANFIS and genetically evolved fuzzy inference system
(G-FIS) methods to predict Ra in the milling of Al
6061. It was shown that despite the advantages of these
methods over experimental methods, still soft computing
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methods need to be improved. Despite the appropriate
performance of the developed AI methods, there is still
a need to improve the modeling performance of this
approach. The presence of uncertainties, noise, and
complex factors affecting the process of milling of alu-
minum alloys necessitates the use of more complex and
reliable approaches.

According to aforementioned lack of knowledge ob-
served in the open literature, the coupled model of
ANFIS networks with PSO and GA meta-heuristic learn-
ing algorithms, and the IT2FNN with a PSO learning al-
gorithm were used in this work to predict the mean cut-
ting forces as well as average surface roughness (Ra) re-
corded in slot milling of AA 6061-T6, AA 7075-T6, as
well as AA 2023-T351 when using various levels of cut-
ting parameters. These networks have more ability to ad-
just fuzzy neural networks' coefficients by their meta-
heuristic learning methods. IT2FNN has the most ability
of investigation of uncertainties due to its type-2 member-
ship functions.To that end, the artificial networks contain-
ing experimental inputs and two machining attributes as
output were formed with ANFIS-GA, ANFIS-PSO, and
IT2FNN-PSO methods. The main innovation of the pres-
ent study refers to the implementation of hybrid type-2
neuro-fuzzy networks and PSO evolutionary learning
method. No similar study in this regards was found in
the literature.

2 Modeling approach

Three types of fuzzy neural networks with meta-heuristic
learning algorithms called ANFIS-GA, ANFIS-PSO, and
Interval type-2 fuzzy neural network with PSO (IT2FNN-
PSO) have been applied on a specific portion of experi-
mental inputs as training data. The rest of the inputs and
outputs data were used as testing data. Afterward, the
performance of proposed networks as a predictor or esti-
mator was mediated by comparison of networks outputs
and experimental data.

In the current study, the AI methods were developed
on the basis of the multi-input network. The relationship
between inputs and outputs is not necessarily linear, and
the reason behind using these networks is their ability
to estimate different nonlinear machining factors. The
overview of the modeling scheme is presented in Fig.
1. The main proposed equation is as follows:

Yk ¼ f k x1; x2;…; x4ð Þ; k ¼ 1;…; 4 ð1Þ

where x represents the inputs, Yk represents the k-th number of
outputs, and fk represents the estimated function. N represents
the number of inputs as decision variable. In the current study,
the inputs x1 to x4 are depth of cut (ap), feed per tooth (Fz),
cutting speed (Vc), and coatingmaterial respectively.Moreover,
the Y1 represents Ra while Y2 to Y4 are mean cutting forces in
three directions.

2.1 A. Adaptive neuro-fuzzy inference system (ANFIS)

An ANFIS system is developed on the basis of combination of
fuzzy system and a neural system that takes advantage of hu-
man knowledge and experience through fuzzy systems and
rules that are in the form of if…then…with the ability of neural
systems to create and train the networks. The design steps of
ANNs model and neuro-fuzzy networks are shown in Figs. 2
and 3. More information in this regard can be found in [30].

In the proposed ANFIS structure and in order to simplify
the structure, it is assumed that, the presented system has
following two rules:

Rule 1 : If ap is A11

� �
and Fz is A21ð Þ and Vc is A31ð Þ and C is A41ð Þ

then Y 1 ¼ p1ap þ q1Fz þ z1Vc þ h1C þ r1

ð2Þ

Rule 2 : If ap is A12

� �
and Fz is A22ð Þ and Vc is A32ð Þ and C is A42ð Þ

then Y 2 ¼ p2ap þ q2Fz þ z2Vc þ h2C þ r2

ð3Þ

pi, qi, zi, hi and ri are linear parameters of the modeling
(consequents) part, which are updated during network
training.

As shown in Fig. 4, an ANFIS structure consists of five
layers:

Layer 1: This layer is known as fuzzifier. For each
input in this layer, membership functions are consid-
ered. In other words, the output of each square is:

O1
i ¼ μAki

xð Þ; i ¼ 1; 2; k∈ ap; Fz;Vc;C
� � ð4Þ

where μAki
represents the MFs of each input, and Aki repre-

sents the linguistic variables associated with each of these

(ap)

(Vc)

(Coating)

YY

(Fz)

Fig. 1 Block diagram of schematic of proposed artificial Neuro-Fuzzy
networks
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nodes. In most ANFIS structures, the following GaussianMFs
are used as μA1i

and μA2i
:

μAi
¼ exp

n
−

x−ci
ai

� �2
" #bi

ð5Þ

x is input and [ai, bi, ci] are the default parameters for each
proposed MF.

Layer 2: Or rule layer that is the output of each node
represents the firing power of the node on the inputs.
The operator of this layer can be a minus ormultiplication
(production) one, which in most cases a product operator
is considered. For instance, the outputs of the second
layer nodes are as follows:

O2
i ¼ wi ¼ μA1i

ap
� �

:μA2i
Fzð Þ:μA3i

Vcð Þ:μA4i
Cð Þ; i ¼ 1; 2 ð6Þ

Layer 3:Or the normalized layer. Every node in this layer
has a fixed value with the symbol N. The output of each
layer is the ratio of input or input firing to the total firing
of the rules, and is expressed as:

O3
i ¼ wi ¼ wi

∑iwi
; i ¼ 1; 2 ð7Þ

Layer 4: Also known as defuzzification layer. Every node
in this layer is adaptive. The output value for each rule is
determined based on previous layers and inputs as
follows:

O4
i ¼ wiY i ¼ wi piap þ qi Fz þ ziVc þ sþ ri

� �
; i ¼ 1; 2 ð8Þ

Which wi is the normalized firings of the third layer and pi,
qi, zi, hi,and ri are the parameters of consequents part (model-
ing results).

Layer 5: Or total output layer. This layer consists of the
summation of all output values of the previous layer that
are displayed as follows:

O5
i ¼ ∑

i
wiY i ¼ ∑iwiY i

∑iwi
; i ¼ 1; 2 ð9Þ

In this article, the ANFIS networks have been used to con-
struct two proposed networks. The clustering method called
subtractive clustering has been used to create the initial struc-
ture of these networks without network training. In this meth-
od, all data points were considered as a center of a cluster with
an arbitrary influence radius. The computational programs and
codes developed in Matlab toolbox may determine which
points are more appropriate as the center of the cluster.

2.2 B. Interval type-2 fuzzy and fuzzy neural network

Zadeh [31] used the concept of type-2 fuzzy sets to extend the
approach of the first type of fuzzy system. In this type of
system, the type-2 fuzzy membership is considered to be
fuzzy, and it leads to define two MFs for type-2 fuzzy sets,
which are called primary and secondary memberships and are
subsets of the interval [0, 1]. After introducing type-2 fuzzy
systems, the next steps to create fuzzy systems and handle the
uncertainty of these sets were taken by Karnik and Mendel
[32]. Therefore, the KM reduction algorithms were introduced
[32, 33]. Nowadays, due to the precision of prediction results,
wide applications of KM reduction algorithms have been in-
troduced in various domains and processes [16, 34].

Determining the set 
of required fuzzy 

rules

Defining membership 
functions for each  

input
Fuzzifying of Inputs

Combining of  fuzzified 
inputs according to the 

considered rules

Finding the consequence of each rule by 
using the consequence membership 

functions and the output of the 
membership function in each rule 

(Implication)

Combination of the rule's 
consequences for inputs and the 
formation of output distribution 

(aggregation )

Defuzzification of the output 
distribution and creating the 

crisp output

Fig. 3 Steps of neuro-fuzzy
networks

Collecing required 
Data 

Creating 
Network

Configuring the network Setting weights and biases

Training and adjusting 
the network

Validating the proposed 
network

Using  the network

Fig. 2 Design steps of ANNs
model
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Interval type-2 fuzzy logic systems All neuro-fuzzy systems
have a fuzzifier, a rule base, a fuzzy inference engine, and a
defuzzifier, and the only difference between type-2 and type-1
fuzzy steps, has a type reducer before the defuzzifier part in
type-2 fuzzy systems to convert the type-2 fuzzy variables into
type-1. Considering a Takagi-Sugeno-Kang (TSK) fuzzy log-
ic system with four inputs similar to conducted research in-
cluding ap, Fz, Vc, and C leads to the following formulations:

ap∈X 1; Fz∈X 2;Vc∈X 2;C∈X 4 ð10Þ

In addition, four outputs consist of Ra and cutting mean
forces in three dimensions are as follows:
Ra∈Y 1; Fx∈Y 2; Fy∈Yn; Fz∈Y 1 ð11Þ

where X1, …X4 and Y1, …, Y4 represent the sets of MFs for
each input or output.

An IT2-TSK FLS, like T1FLS, has the if-then fuzzy rules
to express the relationships between inputs and outputs, and it
is determined in the procedure presented in Fig. 5. Due to
type-2 fuzzy structure, since after fuzzifying of the inputs,
each input has an interval in the form of [a, b] on its MFs;
each output of rules’ firing has a range with a lower and upper
limit. Therefore, it is necessary to obtain a range for each rule
within rules’ firing calculation. Type reduction step is applied
according to the type reduction algorithms known in advance
such as KM algorithm [32, 33].

Interval Type-2 Fuzzy Neural Network The IT2FNN intro-
duced in this article is an adaptive neuro-fuzzy network with
six layers (Fig. 6). It is noteworthy that due to the complexity
of the network with four inputs, it is assumed that there are

two inputs required for the milling process. The first and sixth
layers represent the inputs and outputs of the system (inputs
are ap, Fz, Vc, and C and outputs are Ra and cutting forces),
respectively. The second layer consists of the adaptive nodes
of the MFs of the upper and lower values of each member in
that related MF. The third layer represents the specified rules,
and outputs of this layer determine lower-upper firing degrees
of each rule. The fourth layer represents the consequence of
each rule, and it is formed by the effects of output firings from
the previous step on the adaptive outputs. The fifth layer is
related to type-reduction of previous layer’s outputs using the
Karnik-Mendel algorithm [32, 33].The sixth layer, which is
the last one, produces final crisp outputs.

The proposed system is assumed to have four inputs and
two outputs (multi inputs-multi outputs). The general defini-
tion of proposed rules in the ITFNN system for the aluminum
milling process is as follows:

The procedure and functions or network layers are de-
scribed as follows:

Rule i : If ap is ~A
i

1;k

� �
and Fz is ~A

i

2;k

� �
and Vc is ~A

i

3;k

� �
and

C is ~A
i

4;k

� �
then Y k is ~y

k

i ¼ ~C
i

1;kap þ ~C
i

2;k Fz þ ~C
i

3;kVc þ ~C
i

4;kC þ ~C
i

0;k

ð12Þ

where k = 1,…,4 and Yk represents the k-th output and i rep-
resents the index of i-th rule. ~Ai

j;k (j = 1,…,4) are interval type-

2 consequent sets related to each input. ~yki is k-th output of i-th
rule in the form of type-1 fuzzy set. ~Ci

j;k are consequent inter-

val type-1 fuzzy sets (more explanation will be expressed in
the following).

Fig. 4 Proposed ANFIS structure
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Layer1: inputs

x ¼ x1;…; x4ð Þ ¼ ap; Fz;Vc;C
� � ð13Þ

Layer 2: the layer of applying MFs on inputsfμk;i xið Þ ¼ μk;i xið Þ;μk;i xið Þ� 	
i ¼ 1; 2; 3; 4; ð14Þ

The Gaussian MF with constant variance and uncertain
mean in [m ,m ] is considered for inputs (Fig. 7). Each
MF’s output contains an upper and a lower amount and is
known as μk;i xið Þ and μk;i xið Þ, respectively. The following
lines present the concepts of MF:

fμk;i xið Þ ¼ μk;i xið Þ;μk;i xið Þ� 	
¼ igaussmeantype2 xi; σk;i;m1

k;i;m
2
k;i

h i
 �
; k

¼ 1;…;M ; i ¼ 1;…; 4; ð15Þ

k represents k-th proposed rule, and i represents the i-th
input. The Gaussian function is defined as follows:

μk;i xið Þ ¼
μ1 xi; σk;i;m1

k;i

h i
 �
; xi < m1

k;i

1; m1
k;i < xi < m2

k;i

μ1 xi; σk;i;m1
k;i

h i
 �
; xi > m2

k;i

8>><>>:
ð16Þ

μk;i xið Þ ¼
μ1 xi; σk;i;m1

k;i

h i
 �
; xi≤

m1
k;i þ m2

k;i

2

μ1 xi; σk;i;m1
k;i

h i
 �
; xi >

m1
k;i þ m2

k;i

2

8>><>>:
ð17Þ

where:

μ1 xi; σk;i;m1
k;i

h i
 �
¼ e

−1
2

xi−m
1
k;i

σk;i


 �2

;μ2 xi; σk;i;m2
k;i

h i
 �
¼ e

−1
2

xi−m
2
k;i

σk;i


 �2

; ð18Þ

Thus, in this layer, the intervals associated with different
MFs are determined in each output.

Layer 3: or rules’ firing layer. The product in this layer is
assumed as the proposed operator.

f k ¼ n
i∏



μk;i

�
; f k ¼ n

i ∏


μk;i

�
ð19Þ

Layer 4: the adaptive inputs and firing layer of the con-
sequences. The equations of this layer are as follows:

ykl ¼ ∑
n

i¼1
ck;ixi þ ck;0− ∑

n

i¼1
sk;ijxij−sk;0 ð20Þ

ykr ¼ ∑
n

i¼1
ck;ixi þ ck;0 þ ∑

n

i¼1
sk;ijxij þ sk;0 ð21Þ

In principle, Eq. 21 is formulated to form interval conse-
quences and output in this layer is determined as follows:

yk ¼ Ck;1ap þ Ck;2Fz þ Ck;3Vc þ Ck;4C ð22Þ

where

Ck;i∈ ck;i−sk;i; ck;i−sk;i
� 	 ð23Þ

In the Eq. 23 ck, i represents the center of Ck, i and sk, i
represents the deviation of Ck, i.The basis of this layer is based
on ADALINE, which is considered in NNs [36].

Layer 5: or type reduction layer

yl ¼
∑M

k¼1 f
k
l :y

k
l

∑M
k¼1 f

k
l

¼ ∑L
k¼1 f

k :ykl þ ∑M
k¼Lþ1 f

k :ykl

∑L
k¼1 f

k þ ∑M
k¼Lþ1 f

k ;
ð24Þ

yr ¼
∑M

k¼1 f
k
r :y

k
lr

∑M
k¼1 f

k
r

¼ ∑R
k¼1 f

k :ykr þ ∑M
k¼Rþ1 f

k :ykr

∑R
k¼1 f

k þ ∑M
k¼Rþ1 f

k ;
ð25Þ

Fuzzifier

Inference

Rules

Type-reducer

Difuzzifier

Crisp
Inputs

Feed per tooth
Cu�ng speed
Depth of cut

Insert coa�ng

IT2FSs IT2FSs

Crisp
Outputs

Type-

reduced Set

(Ttpe1)

Surface roughness
Cu�ng mean forces

Fig. 5 The block diagram of
type-2 fuzzy logic [35]
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The values of L and R can be obtained from the Karnik-
Mendel algorithm.

Layer 6: Defuzzification layer

Y ¼ yl þ yr
2

ð26Þ

Using the formulations presented in Eqs. (15–26), the de-
veloped neuro-fuzzy network can be completed [37]. In the
next step, the training of the mentioned networks with the
meta-heuristic algorithms will be addressed. The ANFIS net-
work is trained with GA and PSO learning algorithms and the
IT2FNN is trained with the PSO algorithm.

2.3 C. Genetic algorithm (GA)

The GA optimization uses biological phenomena such as mu-
tation, inheritance, crossover, and selection to solve the opti-
mization problem in an evolutionary approach. The apparent
answers of an optimization problem that include the values of
all variables are placed in a set called chromosome. Each
chromosome introduces a possible answer to the problem.
This process starts with an initial population (the number of
random answers) and is created by initializing the chromo-
somes. Considering the cost function which is the difference
between the networks outputs and experimental values in this

problem, the problem-solving procedure starts by initializing
each gene in the chromosomes. Therefore, it has been planned
to reduce the amount of the cost function with assigning a
number in the interval [0, 1] through normalization of the
problem to each gene, the process of solving in the repetitive
loop, and determination of the amount of population of the
solving chromosomes and the number of iterations. It is note-
worthy that, the cost function in the proposed methods is the
difference between experimental outputs and predicted values
by introduced networks for each pair of input-output data.

Fig. 6 Proposed interval type-2
fuzzy neural network with two
milling inputs (ap and Fz), one
output and four rules for
simplicity

Fig. 7 Interval type-2 Gaussian membership function with an uncertain
mean [m ,m ] and standard deviation σ, y k and y k represent the upper
and lower quantity of MF
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2.4 D. Particle swarm optimization algorithm (PSO)

As similar to GA, the PSO algorithm is an evolutionary algo-
rithm. This algorithm consists of several particles that create a
swarm and explore the problem search space for an optimal
solution. The motion memory of each particle as well as the
motion memory of other particles determine the direction and
movement speed of that particle in the search space. The posi-
tion of each particle is corrected on the basis of current position,
particle speed, the position of the best response to the current
time related to the proposed particle (pbest), and the distance
between the particle position and the best global answer’s po-
sition (gbest). The cost function in this algorithm is an error
function. The problem is solved by repeating the solving loop,
searching through the search space, and investigating the proper
number of particles and effective parameters on the speed.

2.5 E. Training ANFIS and IT2FNN using optimization
algorithms

The prediction accuracy of the networks introduced in the
previous sections is an important factor and should be guar-
anteed by optimization algorithms. The introduced PSO and
GA learning algorithms are applied for ANFIS, and the pro-
posed PSO algorithm is used for IT2FNN. For the ANFIS
network, as described in Eq. (5), there are three parameters
including [ ai, bi, ci] for each MF in the antecedence section.
Therefore, their number is the same as all inputs’MFs number.
In the consequence section, pi, qi and ri representing the coef-
ficients for inputs, are each rule’s variables. There are the same
as the rules’ number of these variables for training. All the
introduced variables are categorized in a vector variable called
chromosome and given to the GA and PSO algorithms.

Fig. 8 The computational
prediction procedure of proposed
algorithms

Fig. 9 Mckey-Glass time series
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The parameters of the antecedence and consequence sec-
tions are also trained in the IT2FNN. In the antecedence sec-
tion, variables m1

k;i, m
2
k;i and σk, i that are the means and var-

iance respectively, are given to the algorithm as learning var-
iables. In the consequence section, ck, i, sk, i, ck, 0, and sk, 0 are

considered variables for learning. After sorting these values as
a swarm, they are applied to the PSO algorithm, and optimi-
zation is run with an appropriate number of iterations and
speed parameters. The process of these learning algorithms
is shown in Fig. 8.

Table 1 Input details of proposed milling experiments

Test. No. ap (mm) Fz (mm/z) Vc (m/min) Coating

1 1 0.01 300 Ticn
2 1 0.01 750 Ticn
3 1 0.01 1200 Ticn
4 1 0.055 300 Ticn
5 1 0.055 750 Ticn
6 1 0.055 1200 Ticn
7 1 0.1 300 Ticn
8 1 0.1 750 Ticn
9 1 0.1 1200 Ticn
10 2 0.01 300 Ticn
11 2 0.01 750 Ticn
12 2 0.01 1200 Ticn
13 2 0.055 300 Ticn
14 2 0.055 750 Ticn
15 2 0.055 1200 Ticn
16 2 0.1 300 Ticn
17 2 0.1 750 Ticn
18 2 0.1 1200 Ticn
1 1 0.01 300 TiAln
2 1 0.01 750 TiAln
3 1 0.01 1200 TiAln
4 1 0.055 300 TiAln
5 1 0.055 750 TiAln
6 1 0.055 1200 TiAln
7 1 0.1 300 TiAln
8 1 0.1 750 TiAln
9 1 0.1 1200 TiAln
10 2 0.01 300 TiAln
11 2 0.01 750 TiAln
12 2 0.01 1200 TiAln
13 2 0.055 300 TiAln
14 2 0.055 750 TiAln
15 2 0.055 1200 TiAln
16 2 0.1 300 TiAln
17 2 0.1 750 TiAln
18 2 0.1 1200 TiAln
1 1 0.01 300 TiCn+Al203 + Tin
2 1 0.01 750 TiCn+Al203 + Tin
3 1 0.01 1200 TiCn+Al203 + Tin
4 1 0.055 300 TiCn+Al203 + Tin
5 1 0.055 750 TiCn+Al203 + Tin
6 1 0.055 1200 TiCn+Al203 + Tin
7 1 0.1 300 TiCn+Al203 + Tin
8 1 0.1 750 TiCn+Al203 + Tin
9 1 0.1 1200 TiCn+Al203 + Tin
10 2 0.01 300 TiCn+Al203 + Tin
11 2 0.01 750 TiCn+Al203 + Tin
12 2 0.01 1200 TiCn+Al203 + Tin
13 2 0.055 300 TiCn+Al203 + Tin
14 2 0.055 750 TiCn+Al203 + Tin
15 2 0.055 1200 TiCn+Al203 + Tin
16 2 0.1 300 TiCn+Al203 + Tin
17 2 0.1 750 TiCn+Al203 + Tin
18 2 0.1 1200 TiCn+Al203 + Tin
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2.6 F. Performance criteria

Several evaluation criteria have been used to evaluate the per-
formance of developed models in terms of measuring predict-
ing accuracy. To obtain the difference between targets and
outputs, the MSE criterion is a popular one. The lower values
derived from this criterion prove the more suitable perfor-
mance of predicting. This criterion is expressed as follows:

MSE ¼ 1

N
∑N

i¼1 xi−yið Þ2 ð27Þ

Another criterion, which shows the standard deviation of
predicted errors from the target values, is the RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 xi−yið Þ2
r

ð28Þ

The relationship between outputs and goals is shown by R
which is defined by the following equation:

R ¼
∑N

i¼1 xi−x

 �

yi−y

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xi−x

 �2

∑N
i¼1 yi−y


 �2
r ð29Þ

That xi, yi, x, y; and N represent the observed values, the
predicted values, the average of the observed data, the average
of the predicted data, and the number of data, respectively.

2.7 G. Mackey-Glass time sseries

The Mackey-Glass time series is used in order to vali-
date the created networks and compare their perfor-
mances (Fig. 9). The proposed delay in this research
for predicting Mackey-Glass time series are: 6, 12, 18,
and 24, where

x tð Þ ¼ f x t−6ð Þ þ x t−12ð Þ þ x t−18ð Þ þ x t−24ð Þð Þ ð30Þ

2.8 H. Prediction modeling procedure

In order to validate the proposed networks, several experi-
ments have been performed on Aluminum alloys including
AA 6061, AA2024, and AA 7075.

3 Result and discussion

3.1 Experimental plan

The dry slot milling operations were performed on a 3-
axis CNC machine tool (power 50 kW, speed 28000
rpm; torque 50 Nm) using a coated end milling tool
(E90-A-D.75-W.75-M) with three teeth and the tool di-
ameter D 19.05 mm. The rectangular blocks of alumi-
num alloys with 3.5 × 3.5 × 1.2 cm in size were used
in milling tests. According to experimental parameters
listed in Table 1, in total, 162 tests were conducted.
In total, 18 milling tests were conducted with respect
to each coated insert, with total 54 tests per material.
Experimental works were repeated once, and the aver-
age values of responses were considered for results
analysis.

Table 2 Performance of the proposed networks to predict Mackey-
Glass time series

NetworK MSE RMSE R

ANFIS-GA 0.0015130 0.0388970 0.98592

ANFIS-PSO 0.0003328 0.0182440 0.99691

IT2FNN-PSO 1.1764e-05 0.0034299 0.99989

Fig. 10 Mackey-Glass time series
prediction with 824 input set and
its first 50 input sets for clarity
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The following experimental parameters were used:

& Feed per tooth (mm × z−1) [0.01, 0.055, 0.1]
& Cutting speed (m × min−1) [300, 750, 1200]
& Depth of cut (mm) 1
& Insert coating = [TiCN, TiAlN, TiCn+Al203 + Tin] 4
& Tested materials: [AA 2024-T351, AA6061-T6, AA

7075-T6]

The following considerations and assumptions were made
in the course of experimental works.

& A 3-axis dynamometer (Kistler-9255B) was used to re-
cord the signals. The sampling frequencies 24 kHz and
48 kHz were used.

& As noted earlier, average surface roughness (Ra) was re-
corded as the surface quality index.

3.2 A. The Mackey-Glass time series prediction

The Mackey-Glass time series was used to validate the proper
response of the assumed networks. The differential equation

Fig. 11 Comparison between target and output values. (a) Ra. (b) Mean force X. (c) Mean force Y. (d) Mean force Z for AA 6061

Fig. 12 Comparison between target and output values. a Ra. b Mean force X. c Mean force Y. d Mean force Z for AA 2024
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of the time series is as follows:

dx
dt

¼ 0:2x t−τð Þ
1þ x t−τð Þ10


 � −0:1x tð Þ ð31Þ

It is assumed that x(0) = 1.2 and τ = 17. This non-periodic
and non-convergent time series is very sensitive to initial con-
ditions. For the times less than zero, it is assumed that x(t) = 0.
Developedmodels report high performance for predicting out-
put data according to MSE, RMSE, and R criteria (Table 2).

The conditions and assumptions used in the models
are as follows:

ANFIS-GA: number of clusters = 20; max iteration =
1000; number of population = 40; crossover percentage
= 0.7; mutation percentage = 0.8; mutation rate = 0.1
ANFIS-PSO: number of clusters = 20; max iteration =
1000; number of population = 40;
IT2FNN-PSO: number of clusters = 20; max iteration =
1000; number of population = 40; membership function =
Gaussian membership function with uncertain mean

It is noteworthy that all the networks and learning
algorithm parameters have undeniable effects on model-
ing and prediction procedure. Determining the number of
their quantities as well as adjusting their related values
are among the most important steps of modeling process.
All the initial coefficient of quantities turns into their
desired ones during running the learning algorithms.
The conditions and assumptions as introduced earlier
have been obtained by repeating the proposed algorithm
which different conditions and the best structure for pre-
dicting train data among the repetitions was selected
(Fig. 10).

3.3 B. Performance of proposed neuro-fuzzy models

3.3.1 Training performance of forecasting milling process

The proposed networks have four outputs that repre-
sent the predicted values of Ra and the mean values
of directional cutting forces. The calculated values that
represent the proposed algorithms for train data are

Fig. 13 Comparison between target and output values. a Ra. b Mean force X. c Mean force Y. d Mean force Z for AA7075

Fig. 14 Linear simple regression model of a ANFIS-GA, b ANFIS_PSO, and c IT2FNN-PSO for AA 6061 for Ra modeling
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shown in Figs 11, 12, and 13. The linear simple re-
gression models for predicted models of Ra and mean
values of directional cutting forces are shown in Figs.
14, 15, and 16. It should be noted that based on
Table 1, for each kind of Aluminum and each coating,
18 experiments have been carried out. Therefore, in
total, 54 experiments have been carried out on each
type of aluminum, which led to 162 tests in total.
For clarity, all tests related to each kind of Al alloys
are shown in separate figures. Among experimental
data, 45 tests were used for training purposes. The
horizontal axis of Figs 11, 12, 13, 14, 15, 16, 17,
and 18 represents the number of experimental tests
used for training.

Figures 11, 12, and 13 show the comparison between
experimental predicted values for each responses studied.
Similarly, in Figs. 14, 15, and 16 as a sample of the perfor-
mance of proposed algorithms, correlation coefficients of
three algorithms including ANFIS-GA, ANFIS-PSO, and
IT2FNN-PSO are provided for Ra. In the vertical axis, the

relationship between the targets and the outputs of the given
model is presented. The fitting line introduces the desired
relationship between both variables. The third algorithm,
i.e. , IT2FNN-PSO, gives the best performance.
Figures 11, 12, 13, 14, 15, and 16 were prepared on
the basis of train data. It means inputs and experimental
data as targets are provided to the algorithms and the
appropriate coefficients of algorithms just need to be
adjusted efficiently based on inputs-outputs pairs of da-
ta. Therefore, the correlation coefficient is the best cri-
terion to assess their relationship. The next step is to
evaluate testing inputs and prediction of Ra and cutting
forces and compare them to experimental results.

3.4 Testing performance of forecasting milling
process-

In order to evaluate the efficiency of proposed neuro-
fuzzy systems presented in Figs. 14, 15, and 16, 20% of
experimental results were used to test the efficiency and

Fig. 15 Linear simple regression model of a ANFIS-GA, b ANFIS_PSO, and c IT2FNN-PSO for AA 2024 for Ra modeling

Fig. 16 Linear simple regression model of a ANFIS-GA b ANFIS_PSO and c IT2FNN-PSO for AA 7075 for Ra modeling
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accuracy of the developed networks. The performance
of these systems in the testing process was evaluated
by numerous factors including MSE, RMSE, and R cri-
teria. Figures 17 and 18 present the training error and
linear regression models between of cutting force in z-
direction for AA7075. It can be exhibited that a high
correlation can be seen between modeling and experi-
mental values. The capability of the developed models
to predict milling outputs is shown in Table 3. In Fig
17, the mean error which is the result of the mean
difference between the experimental values and the out-
puts of the proposed algorithms is presented. Figure 18
refers to the correlation rate of experimental data and
tested targets. In the testing part, the experimental data
of Ra and mean forces are not used to predict the out-
puts. Finally, the outputs of proposed algorithms are
compared to their experimental values. All proposed
models are capable of predicting the proposedmilling outputs.
In general, using GA and PSO optimization algorithms led to
an improvement in modeling results due to their capability of
efficient optimization and adjusting the desired coefficient of
proposed quantities.In this case, the effect of using PSO is
more tangible.

Type-2 neuro-fuzzy systems, because of better han-
dling of uncertainties by their type-2 MFs which instead
of assigning a fuzzy number for the output of each
membership function, use an interval fuzzy set that in-
dicates holding more uncertainties rather than type-1
fuzzy sets, improves their ability of prediction, and it
is expected to achieve more accurate responses and low-
er values of performance criteria. The comparison be-
tween the training and test data of milling outputs for
all three alloys is presented in Table 3. As mentioned in
the introduction part, due to the complexity of the many
involved factors in the milling process, taking an ap-
proach which considers uncertainties and unknown phe-
nomena can easily improve modeling performance and
IT2FNN because of its capability of handling these fac-
tors which also provides better performance.

4 Conclusion

Milling operations play an important role in high preci-
sion machining and rapid production of numerous
manufacturing processes, products, and materials,

Fig. 17 Testing errors of forecasting mean force Z

Fig. 18 Linear simple regression model of mean cutting forces in z direction for AA 7075
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including aluminum alloys which exhibit high thermal
and electrical conductivity and low ductility. The sur-
face quality of the machined parts as well as mean
values of directional cutting forces are among the main
machinability attributes which need to be considered
and factors governing their variation must be clearly
defined.

In the course of this study, main machinability attributes
including surface roughness Ra and mean values of direction-
al cutting forces were studied for modeling and consequently
optimization purposes. An effective prediction of the machin-
ability attributes aforementioned using proposed strategies
may lead to less need to experimental measurement, adequate
process parameter selection, as well as lower machining costs.

Table 3 Comparison between outputs of proposed neuro-fuzzy

Algorithm RMSE R SE

Train Test Train Test Train Test

AA 6061 Ra ANFIS-GA 0.18084 0.067921 0.99852 0.97631 0.032705 0.004613

ANFIS-PSO 0.05304 0.062582 0.92392 0.98073 0.002813 0.0039165

IT2FNN-PSO 0.036807 0.046016 0.99708 0.98375 0.001354 0.0021175

Mean force X(N) ANFIS-GA 0.999802 1.302145 0.98747 0.84365 0.886210 2.193254

ANFIS-PSO 0.931310 1.740456 0.99979 0.81256 0.867330 3.028900

IT2FNN-PSO 0.276620 0.315632 0.99980 0.92215 0.076520 0.0812036

Mean force Y(N) ANFIS-GA 0.922650 1.253215 0.97756 0.86321 0.712035 2.231540

ANFIS-PSO 0.563021 0.484263 0.99272 0.92665 0.212368 0.156321

IT2FNN-PSO 0.197050 0.31592 0.99998 0.97536 0.038828 0.099803

Mean force Z(N) ANFIS-GA 0.982364 2.3825 0.87019 0.74584 0.980012 5.6861

ANFIS-PSO 0.977640 1.077200 0.99655 0.90921 0.955770 1.160400

IT2FNN-PSO 0.004213 0.001153 0.99780 0.99899 1.775e-05 1.32e-6

AA 2024 Ra ANFIS-GA 0.220450 0.312532 0.87288 0.80256 0.048599 0.065236

ANFIS-PSO 0.107730 0.210056 0.97037 0.90214 0.011606 0.017526

IT2FNN-PSO 0.032277 0.401456 0.99740 0.99851 0.001042 0.002345

Mean force X(N) ANFIS-GA 0.998501 1.236523 0.96339 0.74253 0.910412 3.632541

ANFIS-PSO 1.338800 0.743440 0.99966 0.92021 1.792500 0.552700

IT2FNN-PSO 0.053311 0.383390 0.99997 0.94036 0.021096 0.14699

Mean force Y(N) ANFIS-GA 1.103245 1.996420 0.96559 0.88125 1.328412 2.532154

ANFIS-PSO 0.482345 0.624123 0.98520 0.91102 0.312548 0.396548

IT2FNN-PSO 0.219330 0.068250 0.98210 0.99899 0.048103 0.004658

Mean force Z(N) ANFIS-GA 0.832452 1.511800 0.78398 0.71253 0.663248 2.285500

ANFIS-PSO 0.783130 0.897090 0.99767 0.97563 0.613290 0.804760

IT2FNN-PSO 0.697700 2.032900 0.99815 0.93587 0.386790 4.132500

AA 7075 Ra ANFIS-GA 0.206750 0.331770 0.206750 0.331770 0.92191 0.81253

ANFIS-PSO 0.117850 0.446420 0.117850 0.446420 0.97486 0.88745

IT2FNN-PSO 0.001351 0.25081 0.001351 0.25081 1 0.99452

Mean force X(N) ANFIS-GA 0.821452 2.012365 0.821452 2.012365 0.98861 0.81235

ANFIS-PSO 1.654500 1.869581 1.654500 1.869581 0.94949 0.88714

IT2FNN-PSO 0.057181 0.240800 0.057181 0.240800 0.99985 0.90365

Mean force Y(N) ANFIS-GA 0.252145 0.989821 0.252145 0.989821 0.97596 0.79852

ANFIS-PSO 0.306750 2.358500 0.306750 2.358500 0.97998 0.71253

IT2FNN-PSO 0.02503 0.70959 0.98999 0.90256 0.000626 0.95846

Mean force Z(N) ANFIS-GA 0.758698 1.120225 1.95050 0.82821 0.431526 4.83100

ANFIS-PSO 0.084256 0.364152 1.38340 0.97474 0.001254 1.91390

IT2FNN-PSO 0.029115 0.005409 0.14989 0.99360 0.000847 0.029884
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The main remarkable conclusions of this paper are the
following:

1. ANFIS-GA network was established and it was used to
predict Ra and mean values of directional cutting forces
using GA as the learning algorithm. The best performance
was achieved by using 200 neurons in the hidden layer, 20
clusters, 1000 iteration and 40 populations. The experi-
mental values of Ra results could be modeled adequately
and with respects to aluminum alloys tested, the correla-
tion coefficients of 0.97, 0.802, and 0.812 were found
between the modeling and experimental values of Ra.

2. ANFIS-PSO is the second model that was used in this
paper for similar purposes aforementioned. Similar input
parameters were used as the one in ANFIS-GA model.
Obviously, it can be founded the performance of this mod-
el is significant. For instance, the correlation coefficients
of predicted models of all three types of aluminum alloys
were 0.98, 0.90, and 0.89. The modeling results indicate
that the ANFIS-PSO outperforms ANFIS-GA modeling
results.

3. The last prediction model used in this work is IT2FNN
with PSO learning algorithm. Modeling results exhibited
that the best performance belongs to this model where the
correlation coefficients between predicted and experimen-
tal values of Ra are 0.980, 0.998, and 0.994 respectively
for AA 6061, AA2024, and AA7075. Better results were
observed as compared to type 2 neuro-fuzzy systems and
PSO learning algorithms. MFs of this model provide a
more convenient structure and better handling of uncer-
tainties was observed.

4.1 Outlook

This work can be integrated into practical processes in order to
conduct online precision and monitoring of machining pro-
cess by means of cost reduction, accuracy, and quality im-
provement in the work parts and machine tools. The use of
the presented approach may tend to reduce the number of
experimental tests and provide precision machining perfor-
mance, while less operating tests are demanded in terms of
off-line measurements of Ra values of the machined parts.
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