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Abstract
Smooth and effective feedrate profile is very important for high-speed and high-precision machining. In this paper, a two-
stage feedrate scheduling scheme (TFSS) is proposed to efficiently generate the smooth feedrate profile. The minimum
time trajectory planning (MTTP) is firstly employed to generate the initial feedrate profile considering constraints of both
the kinematics and the chord error. To improve the computational efficiency, the MTTP is transformed into a problem of
linear programming by applying direct transcription method. Then, all the sharp corners along the initial feedrate profile are
identified, especially those that are interacted by each other. The jerk-limited method of eliminating interaction (JMEI) at
sharp corners is applied to smooth the final feedrate profile. Finally, the improved feed correction polynomials are applied
to reduce the fluctuations owing to non-arc-length parameterization. To illustrate the validity and rationality of the proposed
scheme, two curves were employed to verify the proposed method. The simulation and experimental results demonstrate the
efficiency of the proposed scheme for the nonuniform rational basis spline (NURBS) tool paths.

Keywords Minimum time · Trajectory planning · Linear programming · NURBS interpolation · Feedrate planning

1 Introduction

In modern processing industry, the parametric curves are
extensively applied for workpieces of various fields, such
as aerospace, transportation, automobile, and so on. For this
reason, many parameter interpolation algorithms have been
proposed to generate reference positions as the input of
motor controllers. Direct approximation method with Tay-
lor’s expansion is widely employed in the interpolation pro-
cess. The first-order Taylor expansion is usually adequate.
If it is not adequate, the second-order approximation could
be adopted. In order to further improve the approximation
accuracy, the Adams-Bashforth method (ABM) and fourth-
order Runge-Kutta method are applied instead of Taylor’s
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expansion [1]. By introducing the concept of “feedback,”
the predictor-corrector method is presented to avoid directly
calculating the first- or second-order derivatives of the para-
metric curve [2]. Since some parametric curves are not
parameterized by arc length, some unexpected feedrate fluc-
tuations may appear during the interpolation. The interpola-
tion method of feed correction polynomial is proposed [3].
This method is further improved by introducing the adaptive
quadrature length method [4] and the multiple inverse length
function method [5].

However, no matter which interpolation method is used,
the appropriate feedrate is needed before interpolation.
Conservative constant feed can not make full use of the
performance of machine tools, which may lead to larger
chord error in places with larger curvature. So, the algo-
rithms which can adjust the feedrate adaptively have been
extensively researched. By considering the chord error,
curvature, and contour error, an integrated look-ahead
dynamics-based algorithm is proposed [6]. This method can
reduce the feedrate when the chord error exceeds the toler-
ance value or the curvature is too large. In addition, if the
contour error estimated through high-order transfer function
is greater than the error bound, the algorithm will re-plan
the feedrate profile. Sun et al. present a method of adap-
tive feedrate for improving precision of five-axis computer
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numerical control (CNC) machining [7]. This method takes
consideration of both the confined nonlinear geometric error
and the angular feedrate. Hence, tangential velocity at sen-
sitive regions can be adjusted based on geometric error
with bi-directional scan algorithm. Another online speed
profile generator is developed for industrial machine tools
based on neuro-fuzzy network [8]. In this literature, it is
assumed that the machining mission must be divided into
several parts due to the capacity of NC system. The fee-
drate is adjusted adaptively according to different feed limits
which are caused owing to changing the spindle speed for
processing each part.

Generally, a smooth feed profile is generated by restrain-
ing the jerk. However, most of jerk-limited methods with
adaptive feedrate require an initial command feedrate which
is empirical and conservative. The optimal feedrate profile
can not be generated. Therefore, optimization methods are
introduced to the trajectory planning by some researchers.
For example, two optimal time-jerk trajectory planning
methods are analyzed and validated for robotic manipula-
tors [9]. In the two algorithms, both the time and jerk square
are included in the objective function, so as to satisfy the
need of fast execution and the need of a smooth trajectory
simultaneously. Through modifying two weights of the jerk
square and time, optimal time-jerk trajectory could satisfy
kinds of requirements. Zhang et al. propose an algorithm
which can generate the smooth time-optimal trajectory for
cartesian computer numerical control (CNC) manufactur-
ing systems [10]. In this algorithm, smooth minimum time
feed profile is obtained by solving a nonlinear program
(NLP) with constraints of axial feeds, axial accelerations,
and axial jerks. Considering G01 paths, Lin et al. present
a trajectory planning model combining fitting error con-
straints and dynamic constraints [11]. In this literature, the
cubic B-spline fitting with confined error and speed plan-
ning method are combined together instead of traditional
sequential implementation.

To further reduce the planning time, linear programming
is applied to solve the optimization problem of feedrate. In
order to obtain an optimal motion trajectory for a robotic
manipulator, a robust planning algorithm based on linear
programming is addressed, since the manipulator dynam-
ics and torque parameters are uncertain [12]. Considering
the feedrate bound, axis acceleration bounds, and axis track-
ing errors, Guo et al. transform feedrate planning into an
optimal control problem [13]. In order to solve the opti-
mal problem with linear programming, some constraints are
simplified and jerk bounds are not considered. For integrat-
ing jerk constraints into an optimization problem, Liu et al.
firstly obtain an upper bound of feedrate for spline curve
tool paths [14]. Secondly, the jerk constraints are approx-
imated as linear ones based on the upper bound. Finally,
the linear programming method can be adopted to solve the

optimization problem. Ye et al. extend the feedrate planning
method based on optimization to the Frenet-Serret frame by
re-parameterizing parametric tool paths [15]. Afterwards, a
time optimal method for parametric trajectory generation is
proposed based on linear programming algorithm.

However, most of optimal trajectory planning methods
are mainly concerned about feedrate planning. There is
few mention about the interpolation method which is
very important for generating servo controlling commands.
Although a method of interpolation point generation for
robotic manipulators is developed [16], it is time consuming
since high-order derivative of parameter is required.

In this paper, a two-stage feedrate scheduling scheme
(TFSS) is proposed to obtain smooth profile. The first stage
constructs a problem of minimum time trajectory planning
(MTTP) in order to fully utilize the performance of the
machine tool. Then, the MTTP problem is transformed
into a linear programming problem for further improving
the computation efficiency. According to the solution of
MTTP, the second stage re-plan the feedrate based on a
bell-shape profile. The final feedrate is suitable for real-
time interpolation. In the second stage, in order to deal with
the overlapping phenomenon, known as “ripple effect” [1]
at the sharp corners, the jerk-limited method of eliminating
interaction (JMEI) is proposed. Since the feedrate is re-
planned by the JMEI in the time domain, the results of JMEI
can be directly used for interpolation of feed correction
polynomial. Finally, the reference positions calculated by
the interpolation method are sent to servo controllers. The
flowchart of the TFSS and feed correction polynomial is
shown as Fig. 1, where Si+1 and Si denote displacements in
the (i + 1)th and the ith interpolation period, respectively,
Vi is a planned feedrate in the ith period, T is the
interpolation period and mi+1 is curve parameter yielded by
feed correction polynomial in the (i + 1)th period.

The left portions of this paper are organized as follows.
In Section 2, MTTP for a cartesian 3-axis system is
formulated, imposing the constraints of the resultant
feedrate, the axial accelerations, and the chord error. Then,
this MTTP problem is discretized with direct transcription
method and reformulated as a linear programming problem.
These are illustrated in Section 3. The method of smooth
feedrate generation, namely JMEI, is proposed in Section 4.
Machining results of simulation and experiment for two
NURBS tool paths are shown in Section 5. Section 6
concludes the whole paper finally.

2MTTP problem

Let C = [x(m) y(m) z(m)], m ∈ [0, 1] be a curve path,
where m denotes the path parameter. The MTTP problem
aims to make the machine tool traverse the entire tool path
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Fig. 1 Flowchart of TFSS and feed correction polynomial

in the shortest time, so the objective of the MTTP problem
can be written as

min
v

T =
∫ tn

t0

1 dt (1)

where v = [vx vy vz] denotes velocity vector of the cut-
ter tip at any one point on the path. The velocity vector needs
to be planned to minimize the objective function. While the
velocity is planned, the acceleration of each axis is also
planned and let a = [ax ay az] be the axial acceleration
vector.

Define the derivative of an arbitrary variable w with
respect to parameter m as w′ and the derivative with respect
to time t as ẇ. For example, ẋ = dx

dt
represents derivative

of displacement along x axis w.r.t time t , and x′ = dx
dm

indicates derivative of displacement along the x axis w.r.t
parameter m. They have the following relationship:

ẋ = dx

dt
= dx

dm

dm

dt
= x′ṁ (2)

Obviously, the MTTP problem must be subject to the pre-
defined path and other constraints, such as the feedrate, axial
accelerations, and the chord error. According to differential
relations of displacement, velocity, and acceleration, the
following equation can be derived as

Ċ(t) = v, v̇(t) = a (3)

From Eqs. 2 and 3, the feedrate can be obtained from the
velocity vector

v(t) = ‖v‖ = ∥∥Ċ∥∥ = ∥∥C′∥∥ ṁ ≤ vF (4)

where vF denotes the command feedrate, and ‖ • ‖ is the
2-norm. In addition, the acceleration for each axis also is
limited because of the capacity of a machine tool, which is
described as{
amin ≤ a ≤ amax

a = v̇ = C′m̈ + C′′ṁ2 (5)

Meanwhile, in actual machining, two adjacent interpola-
tion points are not connected by an arc, but a short straight
line. The chord error represents the maximum distance
between the straight line and the arc, which is an impor-
tant part of machining error in a NC system. According to
the definition of the chord error [18], there is the following
relationship shown as

v2(t) ≤ 8δρ(t) − 4δ2

T 2
≈ 8δρ(t)

T 2
= 8δ

κ(t)T 2
(6)

where δ is the chord error bound, κ denotes the curvature,
and ρ is the radius of curvature. Let ch(t) denotes the chord
error, when the tangential velocity is v(t) , there is

ch(t) = κ(t)T 2v2(t)

8
≤ δ (7)

Since the centripetal acceleration of the cutter tip is
defined as ac(t) = κ(t)v2(t), from Eqs. 6 and 7, the
chord error constraint can be transformed to the centripetal
acceleration constraint. Hence, the centripetal acceleration
is restrained as follows:

ac(t) ≤ μ with μ = 8δ

T 2
(8)

In view of a parametric path, the curvature at parameter
value m can be described as

κ(m) =
∣∣C′(m) × C′′(m)

∣∣
∥∥C′(m)

∥∥3
(9)

By substituting Eqs. 4 and 9 into Eq. 8, the centripetal
acceleration constraint can be rewritten as the following
function of parameter m:

ac(m) =
∣∣C′(m) × C′′(m)

∣∣∥∥C′(m)
∥∥ ṁ2 ≤ μ (10)

Thus, the constraints of the feedrate, the axial accel-
eration, and the chord error are all transformed into the
functions of parameter velocity and parameter acceleration.
Therefore, MTTP with these three constraints is formu-
lated as an optimal control problem about parameter, while
multi-variable optimization problem is reduced to a problem
where only one parameter variable needs to be optimized.
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Imposing boundary conditions and system dynamic, the
time optimal control problem can be formulated as

min
m̈

T =
∫ tn

t0

1 dt

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dm
dt

= ṁ(t), dṁ
dt

= m̈(t)

m(t0) = 0, m(tn) = 1, ṁ(t0) = ṁ0, ṁ(tn) = ṁn

‖C′(m)‖2ṁ2 ≤ vF
2

amin ≤ C′m̈ + C′′ṁ2 ≤ amax|C′(m)×C′′(m)|
‖C′(m)‖ ṁ2 ≤ μ

(11)

where ṁ0 = v0‖C′(0)‖ , ṁn = vn‖C′(1)‖ are constraints of the

start point and the end point, respectively. In Eq. 11, system
dynamic is linear while process constraints are nonlinear.
Therefore, the formulation is actually a time optimal control
problem for a linear system with constraints of nonlinear
equality and inequality.

3 Solution of MTTP problem

Equation 11 is an optimal control of second-order dynamic
system with nonlinear constraints. In addition, the final time
is free. Parameter ṁ obviously becomes the state variable,
and constraints are nonlinear functions of parameter
velocity ṁ. Since constraints have strong nonlinearity, Eq.
11 is difficult to solve efficiently. To solve such a problem, it
is best to convert the free time into fixed time by introducing
a time scale factor. Then the free time optimal control
problem is transformed to the corresponding fixed time one.
As the parametric formula of the tool path is known, Eq.
11 can be mapped from the time domain t ∈ [t0, tn] to the
parameter domain m ∈ [0, 1], which can effectively weaken
nonlinearity.

3.1 Dynamic systemmodel reduction

Since ṁ = dm
dt

, the objective function of Eq. 11 can be
rewritten as

min J =
∫ 1

0

1

ṁ
dm (12)

Define new variables [19, 20]

α(m) = ṁ2, β(m) = m̈ (13)

Then, constraints of the feed, the axial accelerations, and
the centripetal acceleration can be rewritten as the linear
functions of (α, β)

⎧⎪⎨
⎪⎩

‖C′(m)‖2α ≤ vF
2

amin ≤ C′′α + C′β ≤ amax|C′(m)×C′′(m)|
‖C′(m)‖ α ≤ μ

(14)

The following differential relations can also be derived as

α′(m) = dṁ2

dm
= 2ṁ

dṁ

dm
= 2ṁ

dṁ

dt

dt

dm
= 2m̈ = 2β(m)

(15)

Taking parameter acceleration β as the optimized
variable, Eq. 11 can be reformulated as Eq. 16:

min
β

J =
∫ 1

0

1√
α

dm

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α′(m) = 2β(m), α(0) = α0, α(1) = α1∥∥C′(m)
∥∥2

α ≤ vF
2

amin ≤ C′′α + C′β ≤ amax|C′(m)×C′′(m)|
‖C′(m)‖ α ≤ μ

(16)

Equation 16 is actually the convex optimal control
problem of the first-order linear system [20], which has
much weaker nonlinearity and lower system order compared
with Eq. 11. Because Eq. 16 is convex, local optimal
solution for Eq. 16 is just the global one. Furthermore, the
optimal solution of Eq. 16 is unique and maximum among
all feasible solutions at any time [13, 21].

Although Eq. 16 can be efficiently solved by approaches
based on gradient, we still want to find a more efficient
method like linear programming [13]. Considering mini-
mum processing time may need maximum feed profile, the
optimal control Eq. 16 can be replaced with

max
β

J =
∫ 1

0

∥∥C′(m)
∥∥2

v2dm =
∫ 1

0

∥∥C′(m)
∥∥4

α(m)dm (17)

Note that constraints of Eq. 17 is omitted, because they
are the same as that of Eq. 16. Actually, solution of Eq. 17
is just that of Eq. 16, which can be proved by theorem 1.

Theorem 1 Equation 17 has the same and unique optimal
solution with Eq. 16.

Before proving the theorem, two assumptions must be
stated.

Assumption 1 The predefined path C(m) is bounded and
has a two-order continuous derivative.

Assumption 2 The predefined path C(m) doesn’t present
singularity.

Proof Consider that γ ∗(m) is the optimal solution of Eq. 16.
Since Eq. 17 has the same constraints with Eq. 16, γ ∗(m) is
also a feasible solution to Eq. 17. Let Rn be the space of all
the feasible solutions. Since the optimal solution is unique
and maximum among all feasible solutions, so as to an arbi-
trary γf (m)∈Rn, there is γ ∗(m)≥γf (m), m∈ [0, 1]. Then,
with regard to the objective function of Eq. 17, there is∫ 1

0

∥∥C′(m)
∥∥4

γ ∗(m)dm >

∫ 1

0

∥∥C′(m)
∥∥4

γf (m)dm (18)
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As a consequence, γ ∗(m) is also the optimal solution
of Eq. 17 , and the theorem is proved. Theorem 1 allows
to conclude that minimum time feedrate trajectory can
be generated by solving a simpler linear optimal control
problem. In the next section, through discretizing the state
and controlled variables, Eq. 17 can be rewritten as the
standard linear programming formulation.

3.2 Linear programming–based formulation

An effective method of numerical solution, namely direct
transcription method, which discretizes both the state and
controlled variables, may be proper for Eq. 17. Since the
system dynamic of Eq. 17 is a first-order linear system,
radial basis functions can be applied to parameterize the
state variable [22]. The state variable can be approximated
by

α(m) ≈ α̂(m) =
L∑

i=1

Ni(m)ξi (19)

where Ni(m) = exp
(−(m − m̄i)

2/2δ2
)

> 0 is the ith
radial basis function, and ξi is the ith weight coefficient.
The scope of each radial basis function can be restricted by
the function center m̄i and the width parameter δ. Subsisting
Eq.19 into Eq.15, the control variable can be derived as

β(m) = β̂(m) = 1

2

L∑
i=1

N ′
i (m)ξi (20)

where Ni
′(m) = − (m−m̄i )

δ2 exp
(
− (m−m̄i )

2

2δ2

)
.

Function centers of radial basis functions may or may not
coincide with grid points, and this paper assumes that they
are the same. The grid sequences can be described as

m = [m̄1, . . . , m̄L] (21)

where 0 < m̄1 < m̄2 < · · · < m̄L < 1. Because the
grid points are uniformly distributed, each interval between
two adjacent grids is equal to Δm = 1/(L + 1). All the
constraints including path constraints are estimated at grid
points. This method is known as point-wise discretization
which has been proved convergent [23]. Meanwhile, the
system dynamic is eliminated.

Take the weight coefficient vector ξ = [
ξ̄1, · · · , ξ̄L

]T
as optimized variables, the maximum objective function of
Eq. 17 can be deduced as

max J ≈
L∑

j=1

(∥∥C′(m̄j )
∥∥4

L∑
i=1

Ni(m̄j )ξiΔm

)

=
L∑

j=1

(
L∑

i=1

∥∥C′(m̄j )
∥∥4

ΔmNi(m̄j )ξi

)

= Fξ (22)

where⎧⎪⎨
⎪⎩

F = [
F1 F2 · · · FL

]
Fi =

L∑
j=1

∥∥C′(m̄j )
∥∥4

ΔmNi(m̄j )

The feedrate constraint can be approximated as Bξ ≤
vF

2I, where⎧⎨
⎩

B = [B1 · · · BL]T

Bj = d(m̄j )
[
N1(m̄j ) · · · NL(m̄j )

]
d(m̄j ) = ∥∥C′(m̄j )

∥∥2

Similarly, the centripetal acceleration constraint can also
be written as Hξ ≤ μI. Since two axes have the same form
of acceleration constraint, we take the x axis for example.
The approximation formula of x axis acceleration constraint
is given as

ax minI ≤ Axξ ≤ ax maxI (23)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ax = [
Ax1 Ax2 · · · AxL

]T

Axj =
⎡
⎢⎣

x′′(m̄j )N1(m̄j ) + 1
2x′(m̄i)N

′
1(m̄j )

...
x′′(m̄j )NL(m̄j ) + 1

2x′(m̄j )N
′
L(m̄j )

⎤
⎥⎦

T

In the same way, the constraint on y axis can be obtained as

ay minI ≤ Ayξ ≤ ay maxI (24)

Until now all constraints have been converted to linear
functions of ξ , and Eq. 17 is easily reformulated to the
standard form of linear programming

max
ξ

Fξ

s.t.

⎧⎪⎪⎨
⎪⎪⎩

ax minI ≤ Axξ ≤ ax maxI
ay minI ≤ Ayξ ≤ ay maxI
Bξ ≤ vF I
Hξ ≤ μI

(25)

where I ∈ R
L×1 is unit column vector, Ax ∈ R

L×L,
Ay ∈ R

L×L, B ∈ R
L×L and H ∈ R

L×L denote Jacobian
matrices with the sparse structure.

Solving Eq. 25 with linear programming, the optimal
coefficient vector ξo is obtained. Substituting ξo into Eq. 19,
the optimal parameter speed at any parameter can be esti-
mated. Therefore, the optimal feedrate profile is easily
gained according to Eq. 4. This feedrate profile needs to be
interpolated to generate reference positions for servo con-
trollers. But the feedrate profile is a function of parameter,
not the time. The interpolation methods developed for this
kind of feedrate either unstable or time consuming. More-
over, jerk constraints are not considered. Hence, the feedrate
gained by solving MTTP is taken as an initial feedrate, since
it is the maximum in the feasible region and has “bang-
bang” structures [13, 17, 21]. we re-plan the feedrate on time
domain considering jerk constraints in next section.
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4 Feedrate re-planning and NURBS
interpolation

In this section, the JMEI method is presented to re-plan the
feedrate, which can simultaneously consider the influence
of acceleration and jerk. Moreover, the “ripple effect” is
eliminated.

4.1 Feedrate profile of bell shape

If the feedrate profile has discontinuity during the pro-
cessing, dents and defects will appear on the surface of
workpieces. So the feedrate profile needs to be smoothed,
and bell-shape profile are proved to be efficient to limit
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Fig. 2 The feedrate, acceleration, and jerk of acceleration segment:
a three substages and b two substages

the acceleration and jerk within the abilities of the machine
tool. A complete bell-shape profile covers the acceleration
segment, the constant speed segment, and the decelera-
tion segment. Three segments consist of seven substages at
most. Here, the acceleration segment is taken as an exam-
ple, which is divided into three substages or two substages.
Three sub-stages are increasing acceleration stage, constant
acceleration stage, and decreasing acceleration stage, as
shown in Fig. 2a. V1 and V2 denote the starting speed and
terminal speed, respectively. Am is the maximum acceler-

ation and Jm is the maximum jerk. If |V1 − V2| ≤ Am
2

Jm
,

there is no constant acceleration substage, and the accel-
eration segment becomes what is shown in Fig. 2b. And
Am

′ = √|V1 − V2|Jm denotes the maximum acceleration
which can be achieved during the acceleration segments,
satisfying Am

′ ≤ Am.

4.2 Proposed feedrate scheduling algorithm

The proposed feedrate scheduling algorithm makes sure that
the acceleration and the jerk are limited within allowable
ranges, and meanwhile considers the maximum initial fee-
drate obtained from MTTP. Moreover, the “ripple effect”
shown in Fig. 3 also is handled, which represents the overlap
between adjacent sharp corners. A sharp corner represents a
local minimum point of speed on the feedrate profile. The
local minimum points of speed are the results of reducing
the speed greatly to satisfy kinds of constraints when the
MTTP is solved. Generally, the larger command feedrate is
given, the “ripple effect” more easily appears. The reason
can be stated as follows. On the one hand, the higher com-
mand feedrate leads to more sharp corners on the initial
feedrate profile. On the other hand, the distance of two
adjacent sharp corners along the tool path becomes smaller
when higher command feedrate is required. And the dis-
tance is not long enough to complete the feedrate planning
of the bell-shape profile. We divide the sharp corners into
three types according to the severity of “ripple effect”, that

#1

#2

#3

#4

#5
#6

Parameter
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Fig. 3 The overlapping phenomenon
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is, the severe overlap (such as corner 4, 5, and 6), the slight
overlap (such as corner 1 and 2 ), and no overlap (such as
corner 7 and 8).

Therefore, the JMEI searches the sharp corners, distin-
guishes the types of “ripple effect,” and re-plans the feedrate
near them. To realize these functions, the JMEI method is
composed of three main steps: the severe overlap detection,
the slight overlap detection, and no overlap replanning.

When the cutter encounters the corners with severe
overlap, it cannot even accelerate or decelerate from one
sharp corner to another adjacent one according to Fig. 2.
The sharp corners involved in severe overlap needs to
be combined together through reducing the speed at each
corner to the minimum value of all. Algorithm 1 is presented
to detect the severe overlap corners and to merge them.

After applying algorithm 1 to the initial feedrate, the
sharp corners involved in severe overlap are detected and
merged. For example, corners 4, 5, and 6 are merged into
one corner. Hence, the number of sharp corners drop to
M + 1. The new arc length array P′ is easily obtained
from P by simple addition operation. Let Vl

′ be the new
feedrate array at M + 1 sharp corners. And the correspond-
ing array of parameters is stored in ml

′. As a result, the
slight overlap corners and no overlap corners are left. The
slight overlap generally consists of two adjacent sharp cor-
ners. Take corners 1 and 2 for example, the cutter can accel-
erate to a certain peak feedrate from corner 1 and then decel-
erate to corner 2. But the peak feedrate of the cutter cannot
reach the boundary value. The peak feedrate attainable
needs to be searched. Algorithm 2 is proposed to find the
peak feedrate.
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After applying algorithm 2, slight overlap corners have
been transformed into no overlap. No overlap means the
cutter can reach the boundary value when motions between
two adjacent sharp corners. The proper boundary value
array Fm

′ has been determined by algorithm 2. Until now,
for the two adjacent j th and (j+1)th sharp corners, we have
known the acc/dec structures of motion, starting feedrate,
terminal feedrate, arc length, and boundary value between
them. When we re-plan the feedrate according to the method
in Section 4.1, the mathematical expression of Fig. 2 can be
obtained through solving equations [24, 25]. The re-planned
feedrate profile is a function of time, which is convenient to
adopt in real-time interpolation.

4.3 Interpolation with feed correction polynomial

Since some NURBS curves are not parameterized by arc
length, the mapping relationship between NURBS parame-
ter and the displacement of cutter tip along the curve is not
accurate, and feedrate fluctuations appear [26].

In order to avoid the fluctuations of feedrate, feed
correction polynomial is employed for interpolation [27].
In view of a non-arc-length parameterized NURBS curve,
the adaptive quadrature method [28] are used to split the
curve. As a result, a set of (mi, Si) pairs is obtained, where
mi is the parameter and Si is the arc length between 0 and
mi , i = 1, 2, · · · , N . Different with previous methods, we
go on calculating S̃j which is the arc length from 0 to m̃j ,
where

m̃j = mk + mk+1

2
j, k ∈ 1, 2, · · · , N − 1 (28)

Hence, we have another set of (m̃j , S̃j ) pairs, which will
be used to test the feed correction polynomial. Then, the arc
length is normalized with the following formula:

λi = Si − S0

SN − S0
(29)

These pairs of (mi, λi) are used to evaluate the coeffi-
cients of the 7-order polynomial. Suppose the polynomial
f (λ) is approximated as

f (λ) = τ0λ
7 +τ1λ

6 +τ2λ
5 +τ3λ

4 +τ4λ
3 +τ5λ

2 +τ6λ+τ7

(30)

The first and second derivatives with respect to S are
deduced as

⎧⎨
⎩

df
dS

= 7τ0λ
6+6τ1λ

5+5τ2λ
4+4τ3λ

3+3τ4λ
2+2τ5λ+τ6

SN−S0
d2f

dS2 = 42τ0λ
5+30τ1λ

4+20τ2λ
3+12τ3λ

2+6τ4λ+2τ5

(SN−S0)
2

(31)

Hence, the parameter value of a NURBS curve m could
be predicted with Eq. 30, and the matrix form is written as

m̂ =

⎡
⎢⎢⎢⎢⎢⎣

0
m̂1

m̂2
...
m̂N

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1
λ7

1 λ6
1 λ5

1 · · · 1
λ7

2 λ6
2 λ5

2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Θ

·

⎡
⎢⎢⎢⎢⎢⎣

τ0

τ1
...
τ6

τ7

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
τ

(32)

where m̂ denotes the predicted parameter value, Θ the
regression matrix, and τ the coefficient vector. Then, the
vector of prediction errors is expressed as

e = m − m̂ (33)

In order to gain the optimal τ , the quadratic cost function
is defined as

J = 1

2
eT e = 1

2
(m − Θτ)T (m − Θτ) (34)

As to the NURBS curve, the differentials of arc length
with respect to parameter are deduced as

{
dS
dm

= √
x′(m)2 + y′(m)2 + z′(m)2

d2S

dm2 = − x′(m)x′′(m)+y′(m)y′′(m)+z′(m)z′′(m)

x′(m)2+y′(m)2+z′(m)2

(35)

Through imposing the boundary conditions at start and
end points, the continuity between connecting segments
can be ensured. Therefore, the derivatives at the boundary
obtained with Eq. 35 should be equal to what are evaluated
with Eq. 31. Let mb and me denote the parameters of
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Fig. 5 Simulation results of star curve with SDC, CTE, and TFSS. a Star curve. b Resultant feedrate profiles. c Axial feedrate profiles. d Axial
acceleration profiles. e Axial jerk profiles. f Chord error profiles
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Table 1 Performance comparison for SCD, CTE, and TFSS for the
star curve

Method SCD CTE TFSS

Planning time 0.2 s 0.5 s 0.6 s

Machining time 1.702 s 0.743 s 1.093 s

Mean contour error 20.1 μm 28.3 μm 22.9 μm

Maximum contour error 59.3 μm 74.2 μm 60.6 μm

boundary points. Then, the following expressions can be
obtained:
⎡
⎢⎢⎢⎢⎢⎢⎣

mb

(SN − S0)m
b
s

(SN − S0)
2mb

ss

me

(SN − S0)m
e
s

(SN − S0)
2me

ss

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ζ

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 2 0 0
1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0
42 30 20 12 6 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ

·

⎡
⎢⎢⎢⎢⎢⎣

τ0

τ1
...
τ6

τ7

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
τ

(36)

where⎧⎪⎨
⎪⎩

mb
s = dS

dm
|m=mb, mb

ss = d2S

dm2 |m=mb

me
s = dS

dm
|m=me, me

ss = d2S

dm2 |m=mb

(37)

The constrained optimization problem is constructed by
minimizing the cost function Eq. 34 and taking Eq. 36 as the
constraint. The method of multipliers is applied to solve the
problem, and the following linear equation system is gained:⎡
⎣ ΘT Θ Γ T

Γ 0

⎤
⎦ ×

[
τ

Λ

]
=

[
ΘT m
ζ

]
(38)

where Λ is the multiplier vector. The linear equation system
can be easily solved, and coefficients of the polynomial is
included in vector τ .
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Parallel
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Fig. 6 The experimental platform

One feed correction polynomial may not reflect the
relationship between the parameter and the arc length
accurately. If one polynomial can not fit all (mi, Si)

pairs, the multiple 7th-order polynomials are adopted to
improve the accuracy [4]. In this section, whether multiple
polynomials are adopted or not depends on the difference
between the predictive value ˆ̃mj and the test value m̃j . The
difference can be computed with

Nsub∑
j=1

|m̃j − ˆ̃mj |
Nsub

≤ ε (39)

where Nsub is the total numbers of (m̃j , S̃j ) pairs and ε

is the tolerance. If Eq. 39 is not satisfied, the (mi, Si)

pairs are divided into two sets of the same size, so is the
(m̃j , S̃j ) pairs. Then, the fitting and testing steps above
are implemented again. The subdivision terminates when
Eq. 39 is satisfied or (mi, Si) pairs are equal to the order of
polynomial.

Figure 4 shows the comparison of three interpolation
method: the first-order Taylor approximation, the improved
robust fast interpolator [5], and the proposed inter-
polation method. The maximum fluctuation ratio [29, 30] of
the three methods are 2.48%, 0.25%, and 2%, respectively.
From Fig. 4, the presented method get the minimal
fluctuations.

5 Simulation and experimental examples

Two curves are used to evaluate the performance of the
proposed method. One is a star pattern for simulation. The
simulation is performed by MATLAB installed on a PC. The
PC is equipped with 4G memory and AMD A8 processor.
The other is a fan pattern for experiment. The experiment is
implemented on a typical 3-axis CNC machine.
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5.1 Simulation results for star curve

The star curve is a single NURBS curve with five con-
trol points as shown in Fig. 5a. In this example, the bound
of feedrate is set to 500 mm/s and the tolerance of chord
error is set to 0.1 μm. The maximum accelera-
tion/deceleration of each axis is 2500 mm/s2, and the max-
imum jerk is 50000 mm/s3. The tracking error bound for
each axis is set to 0.05 mm. The contour error bound is set
to 0.05mm, too. For comparison, the feedrate is generated
with three methods: sharp corner detection (SCD) [6], con-
fined tracking error (CTE) [13], and the proposed scheme
(TFSS).

Figure 5b shows the feedrate profiles planned by the
three methods. Compared with the profile obtained by CTE,

SCD, and TFSS can both get smoother feedrate which is
favorable to improve processing quality. Figure 5c shows
the profiles of axial feedrates, and the axial acceleration
profiles are plotted in Fig. 5d. The accelerations of CTE
always reach bounds, while acceleration profiles of the other
two methods don’t. That is because CTE does not consider
jerk limits but tracking errors which are easily transformed
into linear constraints. Hence, the jerk profiles of CTE
exceed the boundary value as shown in Fig. 5e. The jerk
profiles of SCD and TFSS are bounded, since the jerk-
limited module is introduced. The profiles of chord errors
are evaluated according to Eq. 7, which are shown in Fig. 5f.
The chord error profile of CTE is still beyond the boundary
value because the chord error constraint is not considered.
The chord error profile of SCD far below the boundary
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Fig. 7 Experimental results of fan curve based on TFSS when the
maximum feedrate is set to 4800 mm/min and 6000 mm/min. a Fan
curve. b Resultant feedrate profiles. c Profiles of resultant acceleration,

resultant jerk, and chord error when the maximum feedrate is
4800 mm/min. d Profiles of resultant acceleration, resultant jerk, and
chord error when the maximum feedrate is 6000 mm/min
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value, since the conservative feed, is adopted. From these
figures, the TFSS scheme has the best performance.

Other comparison of performances are all listed in
Table 1. Both the planning time and machining time are
listed. The whole time spent on machining and planning by
the three methods are 1.902 s, 1.243 s, and 1.693 s. The
CTE method spends shortest time on machining. That is
because it has highest feed owing to the unlimited jerks.
The SCD method takes the least planning time owing
to no optimization progress. Therefore, the feed of SCD
is not optimized, which leads to the conservative feed
and long machining time. Comparing with the other two
methods, the TFSS takes both processing time and planning
time into account. Certainly, we can further decrease the
planning time by reducing the grid points. But too few grid
points may lead to incorrect results. Of course, adaptive
strategy can be used to obtain ideal grid number. In the
simulation, 252 grids are adopted for both the CTE and
TFSS. In addition, the contour errors of three methods are
also estimated according to Zhang et al. [17]. The contour
errors of SCD (without dynamics module) and TFSS are
very similar. They can all get the smaller contour error
than CTE.

5.2 Experimental results for fan curve

The experiment is implemented on a typical 3-axis
CNC machine, which was updated to meet the needs
of implementing new algorithms. The structure of the
experimental platform is illustrated in Fig. 6. The reference
positions for each axis is generated by a PC with a
MATLAB environment. Then, these positions are sent to
the motion controller equipped with PID algorithm through
a parallel communication card installed in a PCIE slot.
In this experiment, the maximum axial acceleration of the
platform is set to 800 mm/s2 and the maximum axial jerk
is set to 1000 mm/s3. The chord error tolerance is set to
1 μm. And the real-time machining is not considered, all the
reference positions are generated by MATLAB off-line. The
processed curve is a fan-shape pattern which has 45 control
points as shown in Fig. 7a.

In order to fully evaluate the effectiveness of the pro-
posed scheme, the command feedrate is set to 4800 mm/min
and 6000 mm/min in succession. The resultant feedrate pro-
files of two different command speeds are represented with
solid lines in Fig. 7b, where MTTP constraints are indicated
with dashed lines. The machining time for two command
feedrate is 5.554 s and 4.847 s, respectively. The lower
command feedrate takes 14.5% more time than a higher
one. Figure 7 c and d show resultant accelerations, resultant
jerks, and chord errors of two different command feedrates,
respectively. In the experiment, the dynamics of axes are not
identified. Hence, the chord error estimated is applied for

investigating the accuracy. The chord errors for two com-
mand feedrates are far lower than the required tolerance.
The maximum chord error for lower feedrate is reduced
10.3% than that for a higher one. They are 0.122 μm and
0.136 μm, respectively. So the feedrate should be cho-
sen based on the trade off between machining time and
precision.

6 Conclusion

In this paper, a complete scheme of smooth minimum
time trajectory planning is proposed, and the numerical
simulation and the experiment are employed to verify the
effectiveness and practicability of the proposed scheme.
Initially, the MTTP problem for curve machining is
discretized with the direct transcription method, and then
the discrete MTTP problem is transformed into linear
programming by employing a proper objective function.
The linear programming form of MTTP could greatly
improve the efficiency of solving MTTP. Moreover, jerk
constraints are not considered in MTTP, which further
reduce the computation cost. To smooth the feedrate
profile, the jerk-limited method of eliminating interaction
(JMEI) is applied to re-plan the feedrate. Since JMEI is
introduced, the planning problem in the parameter domain
is transferred to that in the time domain. A bridge between
optimal programming in the parameter domain and real-
time interpolation is built by this transferring process.
Therefore, the interpolation of a feed correction polynomial
can be used to minimize the fluctuations. Finally, results of
simulation and experiment demonstrate that the proposed
scheme can balance time consumed and precision.
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