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Abstract
In automotive body assembly systems, an optimum assembly sequence planning (ASP) not only increases production
efficiency and product quality, but also decreases cost and process cycle time. Typically, ASP evaluation approaches are
focused on design for assembly criteria, and very few studies have considered the impact of ASP on dimensional accuracy.
The major challenges involving quality-driven ASP evaluation can be enumerated into three categories: (1) batch of
compliant non-ideal parts to consider real part defects; (2) variation propagation modeling in multi-station assembly (MSA)
system in the presence of stochastic manufacturing errors both at product and process levels; and, (3) the development of
dimensional quality criteria for quantitative ASP comparisons. This paper proposes a methodology based on the modeling
of dimensional errors propagation in MSA with a batch of compliant non-ideal parts to improve product dimensional quality
through optimizing ASP and assembly line configuration. It entails three main steps: (i) assembly sequence generation by
k-ary assembly operation method for a predetermined assembly line configuration; (ii) variation propagation simulation
taking into account a batch of non-ideal parts, station-to-station repositioning errors, and spring-back phenomenon in MSA
system; and, (iii) robust optimization of ASP based on developed quality criteria which contains two quantitative indices. The
potential benefits of the proposed methodology are successfully demonstrated on automotive front-rail assembly process.

Keywords Assembly line configuration · Assembly sequence planning · Batch of compliant non-ideal parts ·
Dimensional quality · Multi-station assembly

Nomenclature
A Set of ordered parts
C ki-piece mixed graph
E Set of unordered parts
Fi Transfer function
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fki
Part deviation generator function

Im KPC tolerance interval [LSL,USL]
i Station index
j Stochastic sample of KCCs
ki Assembled part(s) at station ith

KH Kernel smoothing function
KL Proportionality constant
L Taguchi’s loss function
m KPC index
M Mixed graph
n ASP index
NASP Number of ASP options
NKPC Number of KPCs
NMC Number of Monte-Carlo iterations
NS Number of stations
ΔP (i) Non-ideal part
Qj (i, r) Displacement field for FE simulations
r FE simulation index
S (i) Assembly station input
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T KPC target vector
U (i) State vector of displacement field
V Set of total parts
X Stochastic KPC variation
Xj (i) State vector for KPC variation
Γ ASP option
Ψ Conformity rate
Υ Target index
Ω Quality criteria
σ Standard deviation
μ Mean value
λ KPCs variation vector
Δ Deviation operator
FLP (i) Fixture location point
JLP (i) Joining location point
PDF Probability density function
VRM Variation response methodology

1 Introduction

Assembly process planning (APP) is a delicate process in
automotive industry and border between product design
and manufacturing. It contains assembly sequence planning
(ASP) and assembly tool and fixture planning. An ASP
is expressed in terms of a series of assembly operation
for constituent parts of final product from one station to
another station in the MSA systems which is influenced
by assembly line configuration, equipment, and fixtures. In
addition, ASP drastically affects dimensional quality, cycle
time, cost, and the assembly process efficiency [1, 2].

An automotive body-in-white (BIW) is made up to 150 to
250 deformable parts assembled in a hierarchical MSA sys-
tem [3]. The parts (subassemblies) are held by 1700–2100
locators and joined with different fastening techniques at
more than 100 stations based on a preplanned sequence [4].
In such a complex system, process-planning engineers are
interested in understanding how a BIW is assembled out of
the given sheet metal parts to meet several objectives gener-
ally expressed through various performance indicators. Sig-
nificant efforts have been made over the past decades with
respect to ASP, which can be classified into two streams:

• Generation of feasible assembly sequences
• Evaluation or optimization of ASP

Generating assembly sequences is a difficult combina-
torial problem. Most existing methodologies are based on
the graph or tree search theory along with constraint analy-
sis. That way, all feasible assembly sequences must satisfy
both product geometrical and manufacturing process con-
straints [5]. Bourjault first proposed an answering-question
algorithm for automatic assembly sequence generation by
presenting a product with a liaisons graph [6]. The method
was developed later by De Fazio and Whitney through a

symbolic knowledge of assembly and using net graph to
represent the assembly sequences [7]. De Mello and Sander-
son introduced the cut-set-based ASP method and used
AND/OR graph to represent the assembly sequences [8,
9]. Mantripragada and Whitney presented a product with a
directed graph, called Datum Flow Chains (DFC), wherein
part-to-part joining precedence relationships constrained by
assembly process are represented as a directed line [10].
Zhang et al. described a procedure to derive all feasi-
ble assembly sequences automatically for automotive body
assembly [11]. Xing et al. employed an adjacency matrix
and utilized three different mathematical patterns of sub-
assemblies (serial, parallel, and loop) to generate all feasible
assembly sequences [12]. Wang and Ceglarek [13] expands
current approaches in sequence generation applicable for
binary assembly process (k = 2) to a k-ary assembly process
(k > 2) by including: (i) non-binary state between two parts,
i.e., multiple joints between two parts or subassemblies, is
taken into consideration, and (ii) simultaneous assembly of
Y > 3 parts or subassemblies.

Optimization of assembly sequence in MSA system has
been a challenging task so far, because only few parts in
a mechanical assembly can lead to numerous assembly
sequences. Moreover, this is a many-sided problem that
relies on both, quality and non-quality criteria [14]. Hence,
among the feasible assembly sequence set, there are only
some options which optimize the MSA system with respect
to certain criteria. In this stream, various methods have
been proposed in the literature to evaluate or optimize
ASPs. Almost all of them are generally limited to non-
quality aspects such as design for assembly (DFA) criteria.
The most popular DFA objectives include minimizing the
number of re-orientations, tool change, and assembly type
change. Other factors such as cost optimization, assembly
cycle time, and tool traveling path have not been taken into
account in most cases [15].

Although extensive research has been carried out on
ASP with DFA criteria, however, the quality element espe-
cially related to dimensional quality has been investigated
by few studies. Wang and Ceglarek described a quality-
based methodology for BIW assembly planning, consid-
ering geometrical integrity [16]. The generated sequences
were assessed through a beam-based quality model for
variation propagation [17, 18]. In addition, Chen et al. devel-
oped a case-based reasoning methodology which could
automatically generate the optimal assembly sequences and
joint types for the best final product quality [19]. They
performed variation analysis based on the homogeneous
transformation matrixes. Hu and Stecke showed the exis-
tence of the trade-offs between geometrical quality and
system performance for various assembly line configura-
tions [20] through productivity formula and the applica-
tion of method of influence coefficient (MIC) which was
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introduced by Liu and Hu [21]. An assembly sequence opti-
mization approach was presented by Lai et al. using genetic
algorithm (GA) and liaison graph. The Jacobian matrix was
employed by authors to model the relation between Key
Control Characteristic (KCC) and Key Product Character-
istic (KPC) [22]. Similarly Xing and Wang investigated
ASP through a more effective and efficient optimization
method by combining GA and particle swarm optimiza-
tion algorithm [23]. Mounaud et al. studied the influence
of assembly sequence on geometric deviations (manufactur-
ing and assembly process defects) through MIC [24]. Based
on a linear methodology called statistical variation analy-
sis and finite element analysis (SVA-FEA), Franciosa et al.
demonstrated the effect of several assembly scenarios and
fastened joints on product quality in the preliminary design-
ing phase [25]. Ni et al. developed an ASP optimization
method that simultaneously minimizes the length of riv-
eting path and the dimensional errors caused by riveting
deviations [26]. The optimal result showed an improvement
in both operational efficiency and dimensional accuracy.
Ghandi and Masehian presented the scatter search algorithm
to produce high-quality solutions by optimizing both the
number of assembly direction changes and the maximum
applied stress exerted for performing assembly operations
[27]. Masoumi and Jandaghi Shahi approached optimiz-
ing assembly sequence and fixture layout simultaneously in
order to minimize in-plane KPC variations in MSA systems.
They used GA along with the self-adaptive penalty function
to find feasible and optimal solution [28].

The conducted quality-driven studies have assessed ASP
under the assumption that individual parts are manufactured
accurately at their nominal dimensions or their shapes
do not change during the assembly process. Whereas in
the real-world of assembled products such as BIW, final
dimensional quality is affected by both part fabrication
errors (non-ideal parts) as well as their deformability
throughout the MSA system. Therefore, the main purpose
of the present paper is robust optimization of ASP based
on product dimensional quality through the development of

quantitative criteria which is less sensitive to part deviations,
and also an analytical tool that is capable of simulating
variation propagation in MSA system with consideration
to a batch of compliant and non-ideal parts in the form of
stochastic simulations. Table 1 positions the current work in
relation to the extant literature.

This paper is organized as follows: Section 2 describes
the problem formulation and dimensional quality indices.
Section 3 discusses and establishes the proposed methodol-
ogy. Lastly, an industrial case study and paper conclusions
are presented in Sections 4 and 5, respectively.

2 Problem description

The BIW assembly process can be designed in various
assembly sequences and line configurations which produce
different dimensional quality, cycle time, reliability, and
cost. To measure the efficiency of assembly process, it is
essential to develop an analytical tool which is capable of
modeling or simulating the process according to a given
evaluation criteria. The key idea proposed in this paper is
to develop an indicator that allows quantifying the effect of
ASP on dimensional variation propagation in MSA system
for given deviation associated with a batch of compliant
non-ideal parts.

The dimensional accuracy of BIW assembly (subassem-
bly) is evaluated through its KPCs defined by part fea-
tures (holes, slots), edge features, etc. The KPCs must
be controlled within lower and upper specification limits
(as allocated by product designer) in order to ensure that
design requirements meet product functions. KCCs refer
to stochastic and deterministic assembly process variables.
For instance, stochastic variables represent manufacturing
errors (i.e., batch of non-ideal parts or tooling variations);
whereas, deterministic variables express assembly sequence
and assembly line configuration. Moreover, design con-
straints (DCs) in terms of allowed range (as allocated by
process designer) are defined for each KCC.

Table 1 Summary of literature review and the current work position

ASP evaluation criteria

Part modeling Dimensional quality Design for assembly

Rigid Ideal parts Chen et al. [19]; Lai et al. [22];
Xing and Wang [23]; Masoumi
and Jandaghi Shahi [28];

Different non-quality criteria are
used to evaluate ASP in different
optimization methods Wang et al.
[2]; Rashid et al. [15];

Compliant Ideal parts Wang and Ceglarek [16, 17];
Rong et al. [18]; Hu and Stecke
[20]; Mounaud et al. [24]; Fran-
ciosa et al. [25];

Ghandi and Masehian [27]; Ni
et al. [26];

Batch of non-ideal parts Proposed in this paper –
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Fig. 1 Multiple-PCFR cycles in
MSA considering three
non-ideal parts
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subassembly at the next station

Add the next part 
(subassembly)
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2.1 MSA system for compliant non-ideal parts

An assembly process consists of sequential operations
where dimensional defects at each station affect down-
stream stations. Inherent variations in MSA are heavily
affected by inevitable manufacturing errors such as part
geometrical defects (GD&T), fixture, and tool deviations
[29, 30]. Moreover, station-to-station interactions intro-
duced by repositioning of parts (subassemblies) and also
releasing of fixtures are recognized among the most impor-
tant factors which can affect final product quality [31].

A real single-station in BIW assembly process includes
four operations: placing, clamping, fastening, and releasing,
which are known as single-PCFR cycle [32]. In an assembly
station, parts (subassemblies) are placed first on fixture, and
then, are clamped. Next, they are fastened by a joining tech-
nique. Finally, the subassembly is released from the fixtures,
leading to the occurrence of spring-back phenomenon. In
order to complete the assembly process, the subassembly
is transferred to the downstream station. Hence, several
single-PCFR cycles are usually required to assemble the
product, referred to as multiple-PCFR cycles (Fig. 1).

Station -th

(PCM)

Parts ( )

Subassembly

( )

FLP ( )

Station -th

(PCFR)

JLP ( ) FLP ( )

Subassembly

( )

Subassembly

( )
Final

Product
…

Fig. 2 Representation of MSA system with NS stations and station inputs
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Fig. 3 A 4-2-1 fixture layout for
compliant part
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A typical MSA system with NS stations is depicted in
Fig. 2. Assembled operation at each station is modeled
by performing a single-PCFR cycle. Therefore, at the ith
station (∀i = 1, ... , NS − 1), the PCFR cycle is required
to assemble individual parts. At the measurement station
(i = NS), the final assembly is only placed and clamped
by checking fixture; then, KPCs variations are measured
by coordinate measuring machine (CMM) or 3D scanner
[33, 34].

In the compliant part assembly process, an N-2-1 locating
scheme N > 3 is generally used to perform physical
support for a part (subassembly) at each station. A fixture
layout (N=4) including two pins (L1, L2), three NC-blocks
(L3, L4, L5), and one clamp (L6) is illustrated in Fig. 3.
Therefore, fixture location points (FLP), joining location
points (JLP), and assembled parts should be defined for all
stations. Accordingly, any station in the assembly line can
be presented by a ternary set in Eq. 1. For measurement
station, only FLP (NS) as a checking fixture is required, and
no part is added to the prior subassembly.

S (i) = [FLP (i) , JLP (i) , ΔP (i)] (1)

FLP and JLP are extracted directly from CAD data, and
shape variations of compliant parts (non-ideal parts) are
generated practically by Morphing Mesh Producers (MMP)
[35]

2.2 Variation responsemethodology

Batch of non-ideal parts is defined as parts with the same
shape pattern or mode errors which presumably represents
the production population. In compliant parts assembly
process, one leading challenge is identification of the
relationship mapping between non-ideal parts (as input

KCCs) and dimensional variations (as output KPCs). For
this purpose, a FEM-based method is generally utilized in
order to simulate of the PCFR cycle during the assembly
process. Two common approaches in this area are MIC and
Variation Response Methodology (VRM). The traditional
MIC considers the ideal parts and ignores the non-linear
effects, such as contact and interaction between parts [36].
Hence, it does not fit perfectly with the real assembly
process. On the other hand, VRM is only developed to
simulate the single-station assembly process considering
non-ideal parts and their contacts [37–40]. Hence, to fill
the research gaps, in the proposed methodology, VRM
is upgraded for variation propagation modeling in MSA
through the simulation of station-to-station repositioning
errors and spring-back phenomenon. Equation 2 indicates
stochastic variation of KPCs can be obtained by developed
variation response methodology for given an ASP option
and assembly station inputs.

Xm = VRM (Γn,S (i)) ∀ i = 1, ... , NS (2)

2.3 Stochastic dimensional quality criteria

Part deviations (KCCs) in batch of non-ideal parts are
inherently stochastic; hence, KPC variations should be
presented through the probability distributions. The quality
criteria (Ω) in this paper are defined by combining two
indicators which are called quality conformity rate (Ψ )
and quality target index (Υ ). These indicators are able to
examine MSA system performance in terms of dimensional
quality due to variety of ASPs and line configurations.

Since several KPCs are considered to evaluate dimen-
sional quality of final product, it is necessary to keep
them simultaneously within their different tolerance inter-
vals (Im). Therefore, the first indicator, as shown in Fig. 4,
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Fig. 4 KPC variation distribution and the quality indicators concept

is determined through the multivariate integration of the
KPC probability density function over the given tolerance
domains, as presented in Eq. 3.

ΨΓn = ∫
I1

· · · ∫
Im

PDF(X1 · · ·Xm) dX1 · · · dXm

∀ m = 1, ... , NKPC

(3)

Here ΨΓn ∈ [0, 1], shows the probability of success for
a given ASP option, which is capable of meeting the
design requirements. In other words, the conformity rate
represents the percentage of KPC variations falling within
the allowable limits. For a given batch of non-ideal parts,
e.g., ΨΓn = 0.5 means that the related ASP option (Γn)
has 50% chances to control all KPC variations within their
tolerance intervals.

The second indicator is derived from Taguchi’s loss
function [41]. The loss associated with a stochastic value
of KPC variation is a powerful measure for showing loss
caused by deviation from the KPC target. The quality target
index is formulated in Eq. 4 by summation of loss density
integration for each KPC over its allowable tolerance
interval. As illustrated in Fig. 4, while KPC dimension
deviates or moves further away from its target value, an
increasing loss will be incurred. Hence, to reduce the loss,
quality target index must be decreased through aligning
the mean of variation distribution with the target, and by
variation reduction, i.e., making probability curve narrower.

ΥΓn =
NKPC∑

m=1

∫

Im

PDF(Xm) .Lm (Xm) (4)

Therefore, the objective of ASP optimization is to
maximize quality conformity rate and minimize quality
target index simultaneously taking into consideration
presence of stochastic manufacturing errors both at product
and process levels, and formulated in Eq. 5.

Γoptimal = Min
{
ΩΓn = ΥΓn/ΨΓn

}

∀ n = 1, ... , NASP

s.t. → KCCs ⊆ DCs
(5)

3 The proposedmethodology

This methodology focuses on properly selecting ASP
and assembly line configuration in order to maximize
dimensional accuracy of final product. As shown in Fig. 5,
the methodology consists of three main steps: (i) Generation
of assembly sequence and line configuration; (ii) Simulation
of multi-PCFR cycles with capability to model batch of non-
ideal compliant parts, station-to-station repositioning error,
and spring-back phenomenon; and, (iii) Stochastic robust
optimization of ASP based on the both quality indicators.

3.1 Assembly sequence generation

MSA systems can be designed in several assembly
line configurations depending product architecture which
includes number of parts and subassemblies of a given
product, cycle time, permitted number of stations which
determine length of assembly line and floor space, and
maximum number of assembly operations at each single
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Fig. 5 The overall workflow of the proposed methodology

station. An initial suboptimal line configuration can be
determined by equipment selection and task assignment
methods [42]. Then, in the next step, all feasible sequences
can be generated.

By taking a predetermined assembly line configuration,
feasible ASP generation consists of two steps: representing
mechanical assembly and identifying part or joint orders;
in this respect, both geometric and process constraints
should be taken into consideration. Assembly representation

includes CAD model, the relations between connected
parts, or functional-precedence constraints between the
connections. Frequently assembly representations use graph
based data structure with capabilities to integrate with graph
search algorithms or iterative procedures for identification
feasible sequences. This paper utilizes the methodology of
k-ary assembly to represent and generate part assembly
sequences for a MSA line configuration [13].

Figure 6 shows a MSA system with{
k1, k2, . . . , kNS−1

}
-ary operation which is able to assem-

bly ki-parts (subassemblies) (ki ≥ 3) as inputs at ith station.
Compared with the currently used liaisons graph (or datum
flow chain) representation which shows part-to-part assem-
bly relations, the k-ary representation (k-piece graph or
k-piece mixed graph) shows that not only binary (2-hand
assembly) but also non-binary states between two parts,
i.e., (i) multiple joints between two parts or subassemblies;
and, (ii) assembly of more than two parts at any station are
taken into consideration. Thus, all feasible subassemblies
for a predetermined assembly line configuration can be
identified, and all of the sequences for a k-ary assembly
process can be generated [13]. The sequence generation
method includes four steps for any predetermined assembly
line configuration:

• Step (1): Represent part (joint) relations (DFC) for
assembly (Fig. 7a) through a mixed graph M =
(V , E, A), in which V , E, and A represent a set of part,
set of unordered pairs of distinct parts, and a set of
ordered pairs of parts, respectively (Fig. 7b).

• Step (2): Generate ki-piece mixed graph Cki
(M) for

assemblies with precedence constraints at station i from
M , where a source vertex implies a feasible k-ary
subassembly. The k-piece mixed graph is generated as
follows: vertex set consists of all induced connected k-
vertex subgraphs of M; besides, two vertices of Cki

(M)

are adjacent to Cki
(M) if subgraph intersection is a

connected (k-1)-vertex subgraph. The k-piece mixed
graph generalizes representation of the datum flow
chain to include all feasible k-ary assemblies. Figure 7
c–e show the iterative process of generating (k=2, 3,
4)-piece mixed graph of an automotive side frame
assembly with four parts.

• Step (3): Select one of the feasible subassemblies
among the vertices set in Cki

(M) for a given ki . All
vertices for a given ki represent all feasible sequences
of k-ary assemblies at station i. For instance, (v1v4),
(v1v2), (v1v3), and (v2v3) for k1=2 are shown in Fig. 8.

• Step (4): Repeat steps (1), (2), and (3) for downstream
station (i=i+1).

The precedence (geometrical) constraints of any ASP
are comprehended by adjacency matrix associated with
ki-piece mixed graph. In addition, it is assumed that
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Fig. 6 Representation of k-ary
operation at each station

Parts

Station Station 
Subassembly

( )

Parts

Subassembly

( )

all sequences are feasible considering process constraints
such as tools accessibility. ASP options for predetermined
assembly line configuration are presented through an
ordered list of assembly operations, which is a language-
based assembly sequence representation. For instance, an
assembly sequence consists of four serial stations in Fig. 7c
can be presented in the format of Eq. 6.

Γ = (
parts

︷ ︸︸ ︷
v1 v4 )

︸ ︷︷ ︸
Station (1)

− (
subassembly

︷ ︸︸ ︷
v1,4 ,

parts
︷︸︸︷
v2 )

︸ ︷︷ ︸
Station (2)

− (
subassembly
︷ ︸︸ ︷
v1,4,2 ,

parts
︷︸︸︷
v3 )

︸ ︷︷ ︸
Station (3)

− (
side frame︷ ︸︸ ︷
v1,4,2,3 )

︸ ︷︷ ︸
Station (4)

(6)

3.2 Variation propagationmodeling in MSA system

The compliant parts in BIW have inherent geometric varia-
tions caused by stamping, handling, or upstream assembly
processes. In this subsection, variation propagation simu-
lation for MSA, considering a batch of non-ideal parts, is
developed to examine final assembly quality produced by
a variety of ASPs and assembly line configurations. Non-
ideal parts extremely affect the dimensional accuracy of
product and can be described by stochastic KCCs. Part devi-
ation patterns are assumed independent, meaning that the
interactions between KCCs are not considered. In addi-
tion, stochastic distribution of each KCC is assumed to be
Gaussian. Deviations are generated using MMP and a set
of KCC parameters [36, 39, 40]. The mathematical rela-
tionship between stochastic KCCs and part deviations is
expressed in Eq. 7. Stochastic samples can be produced by

Monte-Carlo sampling or polynomial chaos [43]. This paper
implemented Monte-Carlo sampling approach.

ΔPj (i) = fki

(
KCCsj

)
∀j = 1, ..., NMC (7)

In MSA processes, KPC variation caused by part varia-
tion is accumulated gradually so that variation propagation
mechanism is formally introduced by the discrete state-
space representation [31] in Eq. 8.

Xj (i) = Xj (i − 1) + Uj (i) ∀ i = 1, ... , NS (8)

where Xj (0) is equal to part deviation exactly after
manufacturing process and Uj (i) is displacement field
associated with the ith PCFR cycle finite element simulation
and is obtained by “transfer function” in Eq. 9.

Uj (i) = Fj (S (i)) (9)

As presented in Figs. 1 and 5, four consecutive FE
runs are required for PCFR simulation and extraction of
displacement field vector. The FE simulations are executed
using VRM which is a MATLAB-based finite element
modeling software toolkit with capabilities of fast modeling
specific features required by assembly process. Three FE
simulations are related to the positioning (r=1), gap closing
between parts at each JLP (r=2), and releasing process
of fastening tool (r=3). The fourth simulation (r=4) is
relevant to the clamps releasing and the setting up of
a new fixture layout for the subassembly at the next
station. In this study, the placing and clamping phases
are performed simultaneously, and the effect of joining
sequence has not been considered. During the fastening

, , ,

, ,

, ,, ,

, ,

,

,,

,

,

( )/ ( ) ( ) ( )

(b) (c) (d) (e)(a)

Fig. 7 a Automotive side frame assembly with four parts (v1 − v4), and iterative process of generating k-piece mixed graph for side frame, b
Part-joint mixed-graph C1(M), c binary C2(M), d ternary C3(M), e quaternary C4(M) subassemblies [13]
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Fig. 8 Subassembly selection
for MSA based on k-piece
mixed graph [13]
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phase, the joining points on the parts should be coupled
(depending on fastening technique type) together using
multi-point constraints. For instance, the rigid elements

can be defined to constrain the nodes in spot welding
technique. To simulate the spring-back phenomenon,
residual stresses were applied to each part of final assembly
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within two steps: (i) fastening tools releasing; (ii) clamps
releasing. Thereafter, the subassembly was transferred to the
downstream station and was repositioned by the next fixture
layout; subsequently, they will be assembled to the other
parts (subassemblies). For the ith station, KPC variation is
derived by “transfer function” which is formulated based on
the displacement field for rth FE simulation in Eq. 10.

Fj =
{
Qj (i, r) for subassembly from station (i − 1)

ΔPj (i) + Qj (i, r) for kth part at station (i)

∀r = 1 to 4

(10)

At measurement station, the difference between the
actual value of KPC dimension and its nominal is obtained
by deviation operator. Hence, the variation of mth KPC
is presented by Euclidean distance between nominal and
actual coordinate of KPC in the global coordinate system,
as shown in Eq. 11.

Xj
m =

√(
Δx

j
m

)2 +
(
Δy

j
m

)2 +
(
Δz

j
m

)2

∀ m = 1, ... , NKPC

(11)

3.3 Probability density and loss functions

MSA systems are generally a non-linear and complex
process, hence probability density function can not be

fitted out through the parametric model such as normal
distribution, in addition, number of KPCs is often more
than one. Hence, as shown in Fig. 4, multivariate Kernel
Density Estimation (KDE) is used as a non-parametric
PDF estimator method [44]. Let λ1, ..., λj , ..., λNMC be a
sample of mth variate KPC variation vectors drawn from a
general distribution, based on KDE method, the PDF can be
obtained by Eq. 12.

PDF(λ) = 1

NMC

NMC∑

j=1

KH (λ − λj ) (12)

Here λ = (X1 ...,Xm)T and λj = (Xj

1, ...,Xj
m) T . The

kernel smoothing function choosing (KH ) is not crucial to
the accuracy of PDF estimators. In general, any positive
functions with symmetry about the origin and finite second
moment can be used as a kernel [44]. In this study, the
Gaussian basis with zero mean and unit variance is assumed
as kernel function. In contrast, the choice of bandwidth
matrix is important which exhibits a strong effect on the
performance of PDF. This free parameter is a diagonal
and positive-definite matrix, and the optimal value can
be expressed based on Silverman’s rule of thumb that
minimizes the mean integrated squared error [44].

The quadratic loss function assigns a loss proportional
to the square of the difference between KPC variation and

Fig. 9 The automotive front-rail
parts (A, B, C, D), KPCs, and
JLPs

B
A

C

D

KPC

KPC

KPC

KPC
KPC

KPC

KPC

JLPs
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Table 2 The part thickness, fixture elements, and KPCs coordinates (unit: mm)

Part ID (thickness) FLPs coordinates (x,y,z) KPCm (x,y,z)

4-way pin 2-way pin NC-block Clamp

A (1.1) (–510, 510, 110) (–515, 520, 340) (–575, 520, 137) (–513, 510, 167) (–475 ,515, 200)1

(–447, 510, 137) (513, 500, 245)

(–593, 516, 309)

(–433, 505, 309)

B (1) (56, 478, 370) (–515, 520, 340) (–631, 509, 275) (–275, 500, 340) (–555, 515, 340)2

(–589, 520, 400) (–650, 520, 430) (–192, 493, 362)3

(6, 462, 230) (0, 475, 330)

(24, 480, 415)

C (1) (56, 397, 370) (–520, 464, 340) (–630, 509, 275) (–70, 450, 340) (–650, 470, 360)4

(–588, 520, 400) (–660, 470, 335) (72, 434, 300)5

(5, 462, 230)

(23, 480, 415)

D (1.1) (–510, 465, 110) (–515, 464, 340) (–442, 505,185) (515, 460, 190) (–525, 464, 272)6

(–585, 515, 180) (–525, 492, 82)7

(–460, 455, 405)

(–545, 450, 405)

its target. The general form of the loss function used in this
study is expressed in Eq. 13.

L(λ) = KL(λ − T )2 (13)

Coefficient KL is an arbitrary constant which is related
to product replacing or repairing cost, etc. [41]. Taguchi
divided loss functions into three types which are called
nominal, smaller, and larger -the-better characteristics. The
classification is depending on KPC variation target value.
In this study, KPCs variations are always positive according
to Eq. 11, thus a smaller-the-better output response is used
where it is desired to minimize the result, with the ideal
target being zero (T = 0).

4 Case study and results

In this section, the proposed methodology is applied to an
automotive front-rail assembly process. As shown in Fig. 9,
the front-rail consists of four sheet metal parts which are
welded to each other by the resistance spot welding (RSW)
technique. The parts thickness, fixture elements such as
locators and clamps (FLPs), RSW weld location (JLPs), and
key product characteristics (KPCs) coordinates are listed in
Tables 2 and 3. Material characteristics such as Young’s
module and Poisson’s ratio are assumed 210 GPa and 0.30
in FE model, respectively.

First, five assembly line configurations in three cate-
gories (Fig. 10 a–c) are considered to generate the feasible

Table 3 Joining location points
coordinates between the
front-rail parts (unit: mm)

JLPA,B JLPB,C JLPC,D JLPA,D

(–570, 520, 400) (–684, 512, 279) (–577, 467, 364) (–597, 508, 248)

(–455, 510, 400) (–399, 492, 277) (–576, 467, 311) (–432, 497, 248)

(–513, 515, 400) (–346, 489, 278) (–515, 467, 312) (–455, 510, 115)

(–590, 515, 340) (–259, 482, 277) (–515, 467, 365) (–570, 519, 110)

(–435, 505, 340) (–141, 474, 278) (–455, 461, 311) (–582, 515, 158)

(–423, 495, 274) (–17, 464, 249) (–453, 465, 365) (–588, 511, 203)

(–600, 505, 275) (86, 479, 420) (–615, 487, 292) (–446, 506, 158)

(–62, 488, 410) (–417, 475, 292) (–437, 501, 207)

(–202, 496, 405)

(–329, 504, 401)

(–471, 513, 399)

(–608, 521, 400)
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Station 1 Station 2 Station 3 Station 1 Station 2

Station 1

Station 2

Station 3

Line 1: ( = = = 2) Line 3: ( = 3 , = 2)

Station 1

Line 5: ( = 4)

Line 2: ( = = = 2)

Station 1 Station 2

Line 4: ( = 2 , = 3)

(a)

(b)

(c)
Fig. 10 Five predetermined assembly line configurations with k-ary operations in three categories. a Three-stations. b Two-stations. c
Single-station
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( )/ ( ) ( ) ( )

(a) (b) (c) (d)
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,

,

, ,

, ,

Fig. 11 a Part-joint mixed-graph C1(M) for automotive front-rail, and iterative process of generating k-piece mixed graph: b binary C2(M),
c ternary C3(M), d quaternary C4(M) subassemblies

Table 4 The ASP options for
each assembly line
configuration

Configuration Assembly sequence operations

Line 1 	1 = (vA vB) − (vA,B vC) − (vA,B,C vD) − (vA,B,C,D)

	2 = (vB vC) − (vB,C vA) − (vB,C,A vD) − (vB,C,A,D)

	3 = (vB vC) − (vB,C vD) − (vB,C,A vD) − (vB,C,D,A)

	4 = (vC vD) − (vC,D vB) − (vC,D,B vA) − (vC,D,B,A)

Line 2 	5 = (vA vB) − (vC vD) − (vA,B vC,D) − (vA,B,C,D)

Line 3 	6 = (vA vB vC) − (vA,B,C vD) − (vA,B,C,D)

	7 = (vB vC vD) − (vB,C,D vA) − (vB,C,D,A)

Line 4 	8 = (vB vC ) − (vB,C vA vD) − (vB,C,A,D)

Line 5 	9 = (vA vB vC vD ) − (vA,B,C,D)
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Table 5 Assembly station
inputs S (i) for 	1 Ternary set Part (subassembly) Fixture layout RSW points

S (1) (vA vB) FLPA, FLPB JLPA,B

S (2) (vA,B vC) FLPA,B , FLPC JLPB,C

S (3) (vA,B,C vD) FLPA,B,C , FLPD JLPC,D , JLPA,D

S (4) (vA,B,C,D) FLPA,B,C,D -

(a) (b)

(c) (d)

(mm)

1
0.9

0.8
0.7
0.6

0.5
0.4

0.3
0.2
0.1

1
0.9

0.8
0.7
0.6

0.5
0.4

0.3
0.2
0.1

(mm)

Fig. 12 a FEM mesh. b Non-ideal parts. c Setup fixtures and RSW gun. d Multi-PCFR cycles simulation

Table 6 MMP statistical
parameters (KCCs) assigned to
the pars (unit: mm)

Part ID Control points (x,y,z) Influence radius μKCC σKCC

A (–550, 520, 330) 310 0 0.3

(–525, 520, 130) 1 0.1

B (–60, 480, 345) 840 0 0.3

(–360, 500, 340) 1 0.1

(–660, 520, 310) 850 0 0.2

C (20, 400, 285) 0 0.3

(–280, 465, 385) 1 0.1

(–560, 460, 320) 0 0.2

D (–540, 465, 120) 320 0 0.3

(–460, 460, 285) 1 0.1
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Fig. 13 The KPC variation
distributions. a Optimum ASP
(
	7 = 3.70). b Worst ASP
(
	3 = 9.12)
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assembly sequences. Using k-piece graphs in Fig. 11 and
k-ary assembly sequence generation method, nine different
ASP options are produced and listed in Table 4.

The fixture layout and RSW points for each station are
determined based on both FLPs and JLPs coordinates in
Tables 2 and 3, respectively. For instance, assembly process
information associated with 	1 is depicted in Table 5.

ASP evaluation procedure for the front-rail subassembly
is continued with variation propagation simulation through-
out the MSA process. Hence, at the first step, the FE mod-
els are made of about 11,300 quadrilateral shell elements

(Fig. 12a), and four contact pairs are defined as the part-
to-part interfaces. MMP (fki

) is employed for non-ideal part
generation (Fig. 12b). Table 6 shows the KCC parameters
(control points and influence radius) and their statistical
values. The fixture elements are applied to the parts (sub-
assemblies) as boundary conditions based on the FLPs
layout (Fig. 12c). The initial gaps between non-ideal parts
are closed in the fastening phase by RSW gun with a radius
of 8 mm. For any spot weld, five rigid elements are used
to couple the nodes. The final assembly is measured at the
measurement station (Fig. 12d), and the KPC variations are

Table 7 Evaluation results of the ASP options based on the quality indicators

Assembly sequence options

Quality indicators 	1 	2 	3 	4 	5 	6 	7 	8 	9

ϒ 3.03 3.59 6.84 3.28 2.73 6.93 3.04 5.18 4.17

� 0.61 0.74 0.75 0.69 0.63 0.79 0.82 0.92 0.94


 4.97 4.85 9.12 4.75 4.33 8.77 3.70 5.63 4.44
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calculated by Eqs. 8–11. The simulation of multi-PCFR
cycle is iterated for each Monte-Carlo sample and 500 iter-
ations are used to generate part deviations. The probability
density functions of KPCs variations are obtained through
multivariate KDE method (Fig. 13). The allowable tolerance
interval (Im), KPC target (T ), and loss function coefficient
(KL) for the all KPCs are assumed [0, 2] mm, 0, and 1,
respectively. The quality conformity rate and target index
are calculated by Eqs. 3 and 4. Then the above steps have
been repeated to attain the quality indicators for nine ASP
options (	1–	9) which are listed in Table 7.

The results imply that different assembly sequences
and line configurations affect significantly on product
dimensional accuracy. It can be seen in Table 7 that Γ7

is the optimum ASP (ΩΓ7 = 3.70) based on the Eq. 5
in terms of falling the KPCs variations in the tolerance
range (ΨΓ7 = 0.82), and also proximity to the KPC target
(ΥΓ7 = 3.04), while Γ3 is the worst quality-driven scenario
(ΩΓ3 = 9.12) for assembling of automotive front-rail.
Although, the difference between the quality conformity
rates for Γ7 and Γ3 is not too much, but the target index for
the worst case has been more than doubled (ΥΓ3 = 6.84).
In addition, the quality conformity rate for Γ9 has the best
situation (ΨΓ7 = 0.94), however the KPCs variations take
a wider dispersion (ΥΓ9 = 4.17) than the optimum case.
Moreover, even though the quality target index for Γ6 equals
to 6.93 (the highest value), but it is capable to fall 79%
of all KPCs variations in the tolerance interval. Therefore,
it is understandable that both quality indicators should be
considered simultaneously.

The results show that by decreasing the number of
stations, the dimensional accuracy has been improved. For
instance, the optimum case has one station less than the
worst case. Generally, for any extra station which is added
to the assembly line, an additional repositioning error source
is introduced; hence, the error budget should be consider.
On the other hand, less assembly stations cause longer
cycle time due to more operations that must be done in
a single station. Moreover, in the assembly line with the
same number of stations, it can be concluded that the quality
indicators are heavily dependent on both part deviations
(non-ideal) and their mechanical stiffness. Consequently,
for a given batch of non-ideal parts, ASP and assembly
line configuration are two major contributors that must be
taken into account in order for quality-driven evaluation or
optimization of MSA system.

5 Conclusions

This paper presented a methodology for dimensional
quality-driven optimization of ASP considering batch of

compliant non-ideal parts. The key results are listed as
follows:

• Modeling of station-to-station repositioning errors and
spring-back phenomenon was used for upgrading
physics-driven assembly simulation for variation mod-
eling in MSA, in which an analytical tool was devel-
oped to evaluate ASP based on the dimensional quality
criteria.

• The case study showed different ASP and line configu-
ration can establish different ways of variation propaga-
tion. However, the proposed algorithm is very effective
in improving either the combined or individual criteria
by proper selection of ASP.

• Results from the case study also showed that the
design requirements could be met within a wide range
of quality conformity rate (61–94%) and target index
(2.73–6.93). Additionally, for each line configuration,
there exists some sequences which can produce the best
dimensional accuracy.

• Although increasing the number of stations can lead
to high assembly productivity and less cycle time,
however, quality indicators drop dramatically due to
increasing station-to-station repositioning errors.

• In the MSA system with the same ASP, the quality
indices are dependent on the non-ideal part (subassem-
bly) stiffness, number of stations, and their configu-
rations in MSA system. Therefore, it is necessary to
evaluate the ASP through the proposed methodology.

Future research will be devoted to the integration of this
methodology with other criteria, such as DFA metrics (cost,
cycle time, etc.) to achieve both quality and non-quality
criteria improvement. In addition, the effect of batch part
varieties, and MMP statistical parameters (KCCs) on the
objective function will be further explored by a sensitivity
analysis.
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