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Abstract
Laser-based surface texturing provides highly controlled interference fit between two parts. In this work, artificial intelligence-
based models were used to predict the surface properties of laser processed stainless steel 316 samples. Artificial neural network
(ANN) and adaptive neuro-fuzzy inference system (ANFIS) were used to predict the characteristics of laser surface texturing. The
models based on feedforward neural network (FFNN) were developed to examine the effect of the laser process parameters for
surface texturing on 316L cylindrical pins. The accuracy of the models was measured by calculating the root mean square error
and mean absolute error. The reliability of the ANFIS and FFNN models for the output prediction of the laser surface texturing
(LST) system were investigated by using the data measured from experiments based on a 3^3 factorial design, with main
processing parameters set as laser power, pulse repetition frequency, and percentage of laser spot overlap. The relative assessment
of the models was performed by comparing percentage error prediction. Finally, the impact of input data was examined using
predicted response surface plots. Results showed that ANFIS prediction was 48%more accurate compared with that provided by
the FFNN model.
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1 Introduction

Joining plays a significant role in manufacturing such as in
automotive engineering for the assembly of parts and devices
[1]. Mechanical joints for bonding parts in assembly lines can
be joined via many different gluing options [2]. Press-fit or
interference fit is commonly used such as in clinching joints,
hinge joints, and for bonding shafts and bearings. Interference
fits joints bond two components together by friction, often
with a single quick stroke [3]. The creation of patterned sur-
face microstructures on interference fit joints can be achieved
in many ways, for example, abrasive blasting, reactive-ion

etching, and ultrasonicmachining [2]. However, laser technol-
ogy offers more control and precision over the produced ge-
ometry [3]. Laser surface texturing (LST) has been used for
three decades in manufacturing industry for improvement and
control of tribological characteristics of materials. However,
the use of this process for press-fit joints has recently been
developed [2]. LSTon interference joint surfaces is a complex,
stochastic process and a number of variables play a significant
role in the process. Therefore, the development of an appro-
priate model which can approximate the effects of the most
important features on the resulting geometry is of significant
importance.

Several studies have been reported on the application of
supervised machine learning methods for predicting the out-
put of the laser process [4, 5]. Artificial neural network (ANN)
and fuzzy logic have been applied successfully previously for
prediction of some laser processes [4, 6]. Approximation
methods which are related to artificial intelligence are second-
ary tools which use data generated through experiments for
the estimation manufacturing process outputs [4]. Aminian
et al. investigated the performance of ANN and applied
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adaptive neuro-fuzzy system (ANFIS) on the laser machining
and welding processes [5]. In their work, these authors noted
that ANFIS was a better predictor compared with response
surface methodology (RSM) and ANN. Biswas et al. used
feedforward neural network (FFNN) for estimation of charac-
terization of microdrilling on titanium nitride-alumina com-
posite [6]. It was observed that an ANN node structure of 5-
11-3 with 11 neurons in the hidden layer provided the least
model error. Sohrabpoor et al. used ANFIS to predict laser
powder deposition process outputs such as catchment efficien-
cy and height [7]. Additionally, ANFIS was employed in se-
lective laser sintering to correlate relationship between input
parameters such as laser power and scan speed, and output
factors including tensile strength and elongation [8]. The au-
thors have also reported previously the use of ANFIS for laser
processing and demonstrated the high capability and reliabil-
ity of this model [9–12]. Pandremenos et al. used a mixture of
neural network and design structure matrices for the link be-
tween clustering efficiency and interactions of products com-
ponents [13]. They found that their especial algorithm is more
efficient with the empirical one [13]. Karagiannis et al. applied
feedforward back-propagation for approximation of yield sur-
face magnitude in milling process [14]. They concluded that
the model had an acceptable performance for correlation of
inputs and results [14]. Also, some other studies have been
carried out for the practicality of ANFIS and FFNN in the
manufacturing process [15–18].

The experimental values are used to train a feedforward
back-propagation artificial neural network for the prediction
of the yield surface roughness magnitude.

Laser surface texturing of stainless-steel for interference fit
is a novel technique developed by the co-authors. Interference
fit is no more compliant pins that focused on joining tech-
nique; rather it has become an enabling technique for innova-
tions in high-tech industries, such as safety-critical fueling
applications. In the developed LST technique, the control of
diameter increase is crucial to achieve different levels of fas-
tening between the joining parts, and this control also deter-
mines the insertion and pull out forces. Therefore, in order to
provide design flexibility, increasing strength and reliability of
LST for interference fits, it is desirable to fully model the laser
processing input parameters and use artificial intelligence
techniques to predict the results.

In this study, investigations were performed for the first
time and for the selection of best approach for the estima-
tion of the characteristics of LST on 316L cylindrical pins
for the interference fit joint. Although there are many
factors which are related to the strength of the bonding,
the most important parameters of diameter increase (DI),
insertion force (IF), and removal force (RF) were studied.
To achieve this goal, the actual data sets were extracted
from the response surface methodology equations [3]. For
the LST process, FFNN and ANFIS were applied

separately. The validity of the developed models was
measured based on percentage error prediction (PEP).
The effect of input parameters on each process outputs
is analysed.

The interference fit has innovative applications in
security-critical components in automobile and aerospace
industry where a secure joint with high level of security,
and reliability is required. Therefore, in order to determine
the laser-processing parameters tailored for specific needs
in terms of material, tightness level, applied and removal
force, and reliability, artificial intelligence approaches can
be further examined and investigated. The development of
reliable and accurate artificial intelligent solutions is re-
quired that can predict most influencing processing pa-
rameters and provide solution to approximate the resulting
properties as demonstrated previously using unsupervised
and supervised learning methods.

Based on the literate review, no study has been carried
out to demonstrate the difference between ANFIS and
FFNN on LST. This comparison can be useful not only
in modelling terms but also on practical perspective, and
manufacturing industries can refer to this evaluation for
the prediction of results which ensure quality of product,
to reduce the manufacturing cost and to increase the qual-
ity of cold joints.

2 Methodology

2.1 Development of FFNN model

Neural network (NN) is a logical structure, in which multiple
processing elements communicate with each other through the
interconnections between the processors. The knowledge is
presented by the interconnection weight, which is adjusted
during the learning stage [13]. Backpropagation (BP) learning
algorithm uses a gradient search technique to minimise the
mean square between the actual output pattern of the network
and the desired output pattern.

In FFNN, weights were fixed, and the activation function
was examined and selected based on mean absolute error
(MAE). More details were reported previously [4]. Like other
approximation methods, FFNN was implemented including
testing (20%) and training (80%), and MAE was utilised as
the criteria of error in FFNN. The equation used for calcula-
tion of MAE is:

MAE ¼ 1

T
∑T

i¼1jti−ai j ð1Þ

where T is the number of test data, ti is the tested value, and ai
is the predicted value from ANFIS.
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2.2 Description of ANFIS

ANFIS is a machine-learning method with a mixture of NN
and fuzzy logic for deriving the connections between the input
and response elements [16]. The ANFIS model for this study
was made of five layers each of which consists of some nodes.
Like NN, in ANFIS, nodes transform from each layer to the
next layer. The accuracy of trained data was examined by root
mean square error (RMSE), the formula for which is:

RMSE ¼
ffiffiffiffiffi
1

M

r
∑
M

z¼1
Sz−Y zð Þ2 ð2Þ

whereM is the training value, Sz is actual response value, and
Yz is the model response value in training.

2.3 Materials

The data used for validation of the designed models was ob-
tained from design of experiment (DoE) study on laser surface
texturing for interference fit technique. This study was per-
formed by the co-authors and reported previously [2, 19].
Briefly, cylindrical 316L stainless steel pins of 10 mm in di-
ameter and 60-mm length were laser textured. The laser pro-
cess as shown in Fig. 1 was carried out using a computerised
numerical control (CNC) CO2 laser, Rofin DC-015, with 1.5-
kW maximum average power. The focal position was set at a
distance of 1 mm below the sample surface to achieve 0.2-mm
diameter focal spot size over the sample surface. Hub flanges
of the same material were machined to 30-mm external diam-
eter and centre-drilled and reamed to give the final hole

diameter of 10.05 ± 0.003 mm. Table 1 shows the input pa-
rameters including laser power (LP), pulse repetition frequen-
cy (PRF), and overlap (OL) between each laser scan and their
levels which were used for experimental sample preparation.
Laser power is the most important input parameter which
determines the amount of thermal energy delivered to the
sample being laser treated. The laser power was varied from
300 to 400 W and 500 W. In pulsed laser surface processing,
the pulse repetition frequency determines the heat build-up
between the pulses. The time interval between the laser pulses
should be shorter than the thermal diffusivity of the material in
order to build up amount of heat required for melting of the
upper layer surface. Therefore, PRF was set at 100 Hz,
200 Hz, and 300 Hz, and the pulse width was set at 1.6 ms
to examine the effect of PRF on the resulting surface proper-
ties of the laser processed samples. For interference fit appli-
cation, precise control over micro-texture longitudinal and
circumferential dimensions is required. To control the laser
texture geometry, the laser scan overlap over the sample sur-
face must be accurately controlled as multiple scanning of the
same area will result in different surface texture. Three differ-
ent overlap scenarios were studied including negative, posi-
tive, and zero overlaps to examine the effect on microstruc-
ture. The overlap was controlled by controlling the rotational
and translational speeds of the sample such that the laser spots
were overlapped to the same extent in the circumferential and
longitudinal directions. Detailed mathematical relationships
used to calculate overlap percentage for all three scenarios
according to sample geometry, laser processing parameter
(PRF), and rotational and longitudinal speeds have been re-
ported previously [19].

For the current study, diameter increase (DI), insertion force
(IF), and removal force (RF) were selected as output parameters
from the previous study [2]. Details on methods used to obtain
these results have been reported [2]. Briefly details on selection
of these parameters for the current study and methodologies
used to measure these parameters previously are as follows.
The creation of microstructures on the surface of the laser proc-
essed stainless steel pins resulted in increased diameter. The
change in the microstructure from austenite to large volume

Fig. 1 Schematic of scanning
process on an interference fit
sample with CO2 laser

Table 1 Laser surface texturing set DoE process factors and their levels

Process factors Units Symbols Levels

− 1 0 1

Laser power W LP 300 400 500

Pulse reputation frequency Hz PRF 100 200 300

Overlap % OV − 20 0 20
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martensite phase also contributed to increased pin diameters [1,
2]. The diameter of the pin is directly related to the amount of
interference. The control over diameter increase provides con-
trol over the tightness of the fit. Therefore, DI was selected as
output parameter in this study. Diameters of the laser processed
pins were measured by 0.05-mm resolution Vernier. Each mea-
surement was taken 10 times, and average values were obtain-
ed. The ratio of insertion and pull out forces determines the
efficiency of the interference fit. The reduction in insertion
force makes the process economical and the removal force
determines the tightness of the interference. Being the crucial
factors determining the interference fit, IF and RFwere selected
as output parameters in the current study. The insertion and
pull-out forces were measured using a Zwick Z-50 testing ma-
chine with the Zwick TestXpert simulation software. The in-
sertion and pull-out tests were performed at speed of 5 mm/min
(for further details, see [2]).

3 Results and discussion

The approximation methods including FFNN and ANFIS
were used to approximate the output of the laser surface tex-
turing of stainless-steel pins for interference fit application. In
FFNN and ANFIS models, in order to increase the reliability
and validity of the data, each run repeated three times, and
average of them is reported.

3.1 Development of FFNN model

As the measured values of the three selected output parameters
were largely different, the models were splitted into 4 networks
to achieve maximum efficiency separately for each parameter.

3.1.1 K-fold cross-validation

In order to avoid overfitting and having lower bias, 4-fold
cross-validation approach applied. Cross-validation is a re-
sampling procedure used to evaluate machine learningmodels
on a limited data sample [20]. In k-folds cross-validation, we
split our data into k different subsets (or folds). We use k-1
subsets to train our data and leave the last subset (or the last
fold) as test data. We then average the model against each of
the folds and then finalise our model. After that, we test it
against the test set. The procedure has a single parameter
called k that refers to the number of groups that a given data
sample is to be split into. As such, the procedure is often called
k-fold cross-validation. When a specific value for k is chosen,
it may be used in place of k in the reference to the model,
which in this case, data is splitted to 4 folds (Fig. 2). For the
cross-validation process, first we picked 4 separate learning
experiments which included one testing test and remaining for
training sets. This process is repeated 4 times, and finally we
got the average test results from those experiments.

For developing the FFNN model, the initial step was train-
ing. Out of 27 datapoints available from the experiments per-
formed previously [2], 21 datasets were selected arbitrary for
training, and the remaining (6 datasets) were kept for testing
the FFNN model (i.e. fold #1). In order to select the FFNN
model which provides most accurate approximation, 9 train-
ing functions and 6 structures were tested. In hidden layers,
the number of neurons should be higher than inputs.
Therefore, the examination should be started from 4 neurons
were selected for the first hidden. MinimumMAE was select-
ed for each output. From Table 2, a network with 3-5-1 struc-
ture, for DI and IF, and 3-7-1 structure for RF are the modest
accurate model due to lowest values of MAE. Figures 3, 4,
and 5 present the comparison between the actual datasets and
predicted datasets from the FFNN and ANFIS models fold #4

Cross valida�on: 
Divided 27 data 
sets in 4 parts 
and use 3 parts 
for training and 
a part for tes�ng 

Fig. 2 Structure of cross
validation for 4 folds
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(i.e. fold with highest MAEs). As can be seen from these
figures, the optimised models predicted well with the actual
experimental recorded data (Table 3).

3.2 Development of ANFIS model

For the approximation of the results with ANFIS for the LST
process, like FFNN, testing and training datasets need to be
selected. Testing and training datasets from the FFNN model
were selected for ANFIS model. In this way, a direct compar-
ison between the models could be performed. To implement
cross-validation on modelling of DI, IF and RF, four data sets

were identified (based on Fig. 2). For choosing the best and
most accurate model, the structure of ANFIS was varied and
different structures such as 3-3-3-3 and 4-4-4-4 were exam-
ined. It was observed that a 2-2-2 model with 200 epochs and
Sugeno type of fuzzy-based rule had the lowest RMSE. Also,
8 membership functions (MF) in the ANFIS model were ex-
amined for finding the most appropriate model. It was found
that triangular type of MF for diameter increase and insertion
force and for removal, force trapezoid type of MF were the
most accurate MF. Figures 6, 7, and 8 present comparison of
the predicted values from the ANFIS and FFNN models with
the actual data. It can be observed from the figures that the
predicted data extremely well fitted with the measured data
recorded from the experiments.

3.3 Calculation of correlation coefficient percentage

Correlation coefficient is a vital aspect used in statistics to
calculate the strength and direction of the linear relationship
or the statistical relationship (correlation) between the two
population data sets [21]. This coefficient calculated based
on the relation of FFNN and ANFIS test data to measured
data in Figs. 4, 5, and 6 separately. This formula is defined as:

rx; y ¼
∑n

i¼1 xi−x
� �

yi−y
� �

∑n
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yi−y
� �2

r ð3Þ

where n is sample size (here is 7), xi and yi are measured data

points and predicted by ANFIS or FFNN, and x is 1
n ∑

n

i¼1
xi and

analogously for y. Table 4 shows the result of calculation of
correlation coefficient. As Table 4 shows, ANFIS predicted
significantly better compared with FFNN. Therefore, ANFIS
selected as a final model for investigation of effect of each
parameter on outputs.

Table 2 Obtained MAE for various FFNN topographies under various
training function

Outputs Structure Mean absolute error (MAE)

Fold #1 Fold #2 Fold #3 Fold #4 Average

DI 3-4-1 0.1214 0.1303 0.286 0.1709 0.1771

3-5-1 0.102 0.1254 0.1903 0.1363 0.1391

3-6-1 0.1768 0.1227 0.2207 0.2762 0.1991

3-7-1 0.1359 0.259 0.2031 0.1053 0.1758

3-8-1 0.245 0.2772 0.1729 0.1605 0.2139

3-9-1 0.1446 0.2636 0.2039 0.1336 0.1864

IF 3-4-1 9.5422 7.681 11.8953 10.9615 10.02

3-5-1 9.6862 6.4945 6.3013 14.3468 9.2072

3-6-1 12.2945 6.3225 9.5408 10.4056 9.6408

3-7-1 8.761 8.3664 12.3194 9.5307 9.7218

3-8-1 9.5366 10.9437 13.0343 10.094 10.9021

3-9-1 13.6917 9.2882 12.7691 10.2411 9.2475

RF 3-4-1 1.5413 1.4407 3.6875 3.3059 2.4935

3-5-1 4.2451 2.541 2.6988 3.2035 3.1721

3-6-1 2.5167 2.5392 2.7247 3.847 2.9069

3-7-1 1.4931 2.8258 2.2417 3.9129 2.6183

3-8-1 2.3913 2.325 3.28 3.0497 2.7615

3-9-1 2.8758 2.6281 2.2546 3.1993 2.73945

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

Measured through experiment Predicted through FFNN Predicted through ANFISFig. 3 Comparison of measured,
3–5-1 FFNN and ANFIS values
of testing data for DI for fold #4
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3.4 Comparison accuracies of developed models
ANFIS and ANN

To compare the prediction accuracies of the developed model,
the prediction error percentage (PEP) was measured and de-
fined as follows:

PEP ¼ 1

27
∑n

i¼1

│ai−yi│
ai

ð4Þ

where ai is the actual data and yi is the approximated data by
the developed FFNN and ANFIS models. Figs. 6, 7, and 8
show the PEP values from ANFIS and FFNN which were
calculated for DI, IF, and RF, respectively. It can be observed
that ANFIS predicted more accurately the results compared to
FFNN. These results are summarised in Table 3. Table 3
shows the overall comparison of PEP between the two
models. As can be seen from Table 3, ANFIS improved the
PEPmore than 45%. These results show that the ANFIS mod-
el was more reliable and resilient to noise compared with
FFNN. Hence, it can be suggested that ANFIS can predict
the LST process more accurately and could serve as a precise
machine learning method for the LST process (Table 5).

3.5 Analysis of responses: diameter increase, insertion
force, and removal force

As observed from the results, ANFIS proved to be a more
accurate model for prediction of DI, IF, and RF. Hence, the
developed ANFIS model was used for analyzing in more detail
the effects of laser surface–texturing process parameters on the
responses. The 3D plots of ANFIS prediction surfaces were
constructed, and the parameter effects were analysed, see Fig. 9.

From Fig. 9a, the highest values of DI were obtained when
the PRF was low. Due to an increased heating time (from
lower PRF), a larger amount of energy was input to the sur-
face, and consequently a larger melt pool was produced, in
turn, resulting in a higher DI. On the other hand, by increasing
the laser power from 300 to 400 W, sufficient melting should
occur. However, a further increase of the power from 400 to
500W could cause over-melting and a loss of the material due
to centrifugal forces, which could lead to a reduction in DI.

Based on the results shown in Fig. 9b, for positive values of
OV% the DI will be considerably lowered due to over-melting.
By comparing Fig. 9a and b, it seems that when the power and
OV% were minimum and negative, respectively, and over-
melting occurs, then a higher value of DI can be obtained, and
there is an optimum range of PRF between 140 and 220 Hz.
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Measured through experiment Predicted through FFNN Predicted through ANFIS
Fig. 4 Comparison of measured,
3–5-1 FFNN and ANFIS values
of testing data for DI for fold #4
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3–7-1 FFNN and ANFIS values
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Table 3 Obtained RMSE for
various ANFIS topographies
under various training function

Output Structure Root mean square error (RMSE)

Fold #1 Fold #2 Fold #3 Fold #4 Average

DI Triangular 0.12436 0.11419 0.10628 0.112 0.1142
Trapezoid 0.18483 0.4081 0.1834 0.1598 0.2325
Generalised bell 0.14131 0.3682 0.2551 0.2551 0.2549
Gaussian 0.14004 0.3845 0.2528 0.5851 0.3407
Pi shaped 0.1732 0.4866 0.2722 0.2972 0.2972
Di sigmoidal 0.25378 0.5035 0.2972 0.2597 0.3285

IF Triangular 6.9956 5.05 6.469 11.3502 7.4662
Trapezoid 25.2873 5.9037 7.469 13.2208 12.9702
Generalised bell 13.7131 5.7618 13.64 13.5973 11.6780
Gaussian 13.0184 12.1689 7.66 14.237 11.71
Pi shaped 25.2873 5.7916 7.466 13.745 13.72
Di sigmoidal 25.1845 5.7454 7.469 14.1162 13.1287

RF Triangular 7.788 4.701 4.701 4.8747 5.5391
Trapezoid 3.8171 2.6461 1.6461 2.2684 2.59322
Generalised bell 7.7969 4.831 4.8431 5.3683 4.9598
Gaussian 7.7831 4.7128 4.7128 4.2635 5.518
Pi shaped 7.8219 4.8796 4.8796 5.0876 5.6637
Di sigmoidal 7.8141 4.9152 4.9151 5.4665 5.7777
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Figure 9c and d show the response plots of IF values ob-
tained at various ranges of power, PRF, and OV%. Both of the
plots indicated that enhancing the amount of PRF will lead to
a sharp decrease in IF. In fact, when the PRF is increased, due
to the fast heating and cooling steps, the amount of residual
stresses can be increased that may cause the formation of a
brittle surface, lowering the resistance of the material under
the insertion force. On the other hand, when the PRF is low,
then the possibility of austenite-martensitic phase transforma-
tion occurrence will be increased, resulting in a surface hard-
ening of the material and a higher insertion force. Therefore,
by a suitable heat-treatment process during laser movement, a
higher bond strength, gripping, insertion, and removal force
can be provided. Figure 9d demonstrates that positive values
of OV% could sharply reduce the bond strength. This could be
due to the re-melting and overheating that could deteriorate
the formation of martensitic phase. Also, these phase transfor-
mations are known to be sensitive to the heating/cooling cycle
time and temperature.

Figure 9e and f demonstrate the variation of RF for tested
input PRF, power, and OV%. Almost, the same trend for the
IF was obtained for the RF in case of power and overlap. From
the bond strength point of view for having a suitable cold
joint, it can be concluded that at high laser powers which
brings a high thermal energy, a strong bond can be obtained
if the OV% is negative and the PRF value is lower than
220 Hz, where suitable conditions for martensitic phase for-
mation would be obtained.

4 Conclusion and future perspectives

This research dealt with the simulation and approximation of
diameter increase, insertion force, and removal force for laser
surface–textured 316L interference fit joints with two super-
vised learning approaches. For finding the effect of a mixture
of inputs on the responses, two models FFNN and ANFIS
were used. However, to determine the accuracy of the devel-
oped models, different error parameters were examined for a
variety of model structures. By testing and training of various
FFNN, 3-5-1 structure for DI and IF and 3-7-1 structure for
RF are selected. The selection of the structures was made on
the basis of the lowest value of MAE. ANFIS 2-2-2 structure
with Gaussian2 MF and backpropagation optimization, D sig-
moidal MF and hybrid, and Pi-shaped MF showed the lowest
RMSEs for DI, IF, and RF, respectively. The ANFIS model
produces lower values of PEP compared with FFNN. Hence,
it was selected as the most powerful simulation for approxi-
mation and analysis of the responses. The effect of each pro-
cessing parameters (based on interaction terms) was investi-
gated by using response surfaces which were plotted based on
the ANFIS model. With suitable laser processing parameters,
higher gripping insertion and removal forces can be provided
and at higher laser powers, where the OV% is negative, and
for PRF values lower than 220 Hz. The ANFIS has some
advantages over FFNN, including the ability to capture the
nonlinear structure of a process, adaptation capability, and
rapid learning capacity. ANFIS uses either backpropagation
or a combination of least squares estimation and
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Table 4 Correlation
coefficient for outputs Outputs FFNN (%) ANFIS (%)

DI 62.12 88.62

IF 72.5 89.7

RF 75.2 90.56

Table 5 Comparison between ANFIS and FFNN for all outputs

Modelling type DI IF RF Overall PEP

FFNN 0.097139 0.146085 0.152609 0.395833

ANFIS 0.063594 0.065152 0.068435 0.203181
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backpropagation for membership function parameter estima-
tion. ANFIS algorithm has a hybrid learning approaches in its
structure. Thus, ANFIS has the advantage to combine both
ANN and fuzzy knowledge. So ANFIS is more precise in term
of prediction. Due to the fact that the laser surface texturing
processing technologies are really high-cost process, the de-
veloping model can give a vision regarding the selection of
best process parameters without needing a high number of
experiments. Otherwise stated, to reach desirable performance
in each process, the developed model is beneficial to select
optimal parameters without conducting extensive experi-
ments, and it has a strong economic justification.

Since ANFIS has proven a good tool for approximation of
results, ANFIS model can be applied as objective function to
select optimal parameters of manufacturing process, in which

the process reaches to its desirable mechanical properties by
using the metaheuristic algorithms such as simulated anneal-
ing algorithm and bee colony.
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