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Abstract
Large-scale molecular dynamics simulations are employed in investigating the nano-cutting process. A cutting tool with 1-μm
nose radius and 20-nm edge radius is applied in nano-cutting of silicon with cutting distance attaining 400 nm. The mentioned
cutting parameters are relatively larger than those used in the former research studies which would help to obtain the results with
relatively high confidence coefficient. The results show that when the UCT is smaller or similar to the stagnation height, the
extrusion accompanied with the side flow dominates the material removal mechanism. The generated side flow will deteriorate
the generated surface roughness. When cutting at {111}<11-2> direction, bct5-Si phase forms and a part of them is left in the
machined subsurface. When cutting at {100}<001> direction, the formed bct5-Si and S-II phases transform to the a-Si phase,
when the cutting tool passes through.
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1 Introduction

Nano-cutting is a method to manufacture components by
using a diamond cutting tool based on an ultra-precision ma-
chine tool [1–3]. The generated surface roughness could attain
nanometric scale by applying appropriate cutting parameters
and cutting tools [4]. However, the diamond cutting tool is not
infinitely sharp, which causes the formation of side flow and
recovery (SF&R) during and after the action of the cutting tool
edge [5]. These two factors will influence the surface rough-
ness and make it deviate from its theoretical value [6–10].

A useful method, molecular dynamics (MD) simulation
[11, 12], has been applied to investigated the influences of
the SF&R on surface generation [5]. However, considering
the computational efficiency, the parameters used in MD sim-
ulation are relatively smaller than those used in practice, such
as the cutting distance used in MD is less than 100 nm [5, 13].
The cutting tool edge used is less than 10 nm [5, 14], and the
tool nose radius used is less than 50 nm [5, 15]. This, to a
certain extent, would influence the confidence coefficient of
the simulation results.

Therefore, in this study, 20-nm tool edge and 1-μm tool
nose radius have been applied to make the simulation param-
eters approximate the value used in practice. Besides that, the
cutting distance in the simulation attains 400 nm, which is
relatively larger than that in the former research studies.
Therefore, based on the used simulation parameters, the sur-
face generation and the material removal mechanism in nano-
cutting of single crystal silicon could be revealed with a rela-
tively high confidence coefficient.

2 Methods

Figure 1 is the large-scale MD simulation model. In the cut-
ting process, the diamond tool is defined as a rigid body. Blue
color is assigned to the interaction region between diamond
tool and workpiece, as shown in Figs. 1 and 2. In order to
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improve the computational efficiency of the MD simulation
model, 1-μm tool nose radius Rn and 20-nm edge radius rβ are
used. The values of these two parameters used in this model
approximate to those of the cutting tool applied in experiment.
The rake and clearance angle used are respectively 0° and 15°.
The feed rate f and cutting speed vc are 126.4 nm/r and
100 m/s. The number of atoms in the workpiece is about
30,000,000, and the size of it is 400 nm × 20 nm × 130 nm.
Similar to the former research [5], the former cutting trace is
simulated by the cutoff part of the workpiece. Its radius is
1 μm.

In the cutting model, the temperature of the thermostat
layer is 293 K and is kept in constant during the cutting pro-
cess. The Newtonian layer obeys Newton’s law. The cutting

distance attains 400 nm, which is relatively longer than that
used in the former research studies. The interaction potential
and the simulation software used are similar to the former
research [5]. The computation time is about 30 days for each
program. The software OVITO [16] is also used in analyzing
the simulation results.

3 Results and discussion

3.1 Stagnation region and material removal
mechanism

Figure 2 is the stagnation region (SR) recognized by the for-
mer proposed method [5] at the cutting direction of
{100}<001> and {111}<11-2>. When slicing the SR at II-II,
III-III, and IV-IV, the SR are shown in Fig. 3b–d and Fig. 4b–
d. The materials of the workpiece separate at the tip of the SR.
A part of them forms the removed chip and the rest of them
forms the machined surface. In Fig. 2, the SR tip is marked
with dotted lines. The average vertical distance from the line
of the SR tip to the tool edge line AB is the stagnation height
(SH).

Thermostat atoms layer

Newtonian atoms

x
y

zo

Rn

rβ

Fig. 1 Nano-cutting model

Cutting direction

Diamond tool Tip of 
Stagnation region

I

I

II

II

A
B

C

III

III

IV

IV

UCT
10 nm

(a)

Cutting direction

Diamond tool Tip of 
Stagnation region

I

I

II

II

III

III

IV

IV

UCT
10 nm

(b)
A

B

C

Cutting direction

Diamond tool

I

I

II

II

III

III

IV

IV

UCT
10 nm

(c)
A

B

C

Tip of 
Stagnation region

Cutting direction

Diamond tool

I

I

II

II

III

III

IV

IV

UCT
10 nm

(d)
A

B

C

Tip of 
Stagnation region

Fig. 2 SR on the cutting tool
edges, at cutting direction of
{100}<001> with cutting
distance of a 36 nm and b 400 nm
and at cutting direction of
{111}<11-2> with cutting
distance of d 36 nm and c 400 nm
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As shown in Fig. 2, the SR, including its tip, are located
at the interaction region ABC. The vertical distance from
line AB to line AC is the uncut chip thickness (UCT).
Therefore, from point A to B, the UCT increases gradually
from zero to about 8 nm. When the UCT is smaller or
similar to the SH, which happens near the intersection
point between the line of the SR tip and the line AC, the
material is not removed in the traditional shearing mecha-
nism. To further analyze the material removal mechanism
in this condition, Figs. 3a and 4a are sliced at the intersec-
tion point. The results show that the cutting tool slides on
the surface of the workpiece. The upper layer of the work-
piece is extruded to form the chip which moves along with
the cutting tool. During the cutting process, the extruded
chip flows to the side which causes the formation of the SF
region. Therefore, along the tool edge, when the UCT is
smaller or similar to the SH, the extrusion accompanied
with SF dominates the material removal mechanism.

When the UCT is larger than the SH, the material removal
phenomena are shown in Figs. 3c, d and 4b–d. These figures
are sliced at the place where the line of the stagnation tip is
below the line AC. The results show that the displacement

vectors of the atoms change abruptly at a plane that expands
from the SR tip. This plane is the shearing plane formed in the
nano-cutting process. Therefore, in this condition, due to the
formation of SR, materials could be removed by shearing,
even when the UCT is relatively smaller than the cutting edge
radius.

Comparing Fig. 2 a and b with c and d, the line of the
stagnation tip at cutting direction of {111}<11-2> is near the
tool edge AB. Therefore, the SH for cutting direction of
{111}<11-2> is smaller than that of {100}<001> cutting di-
rection. It implies that more materials in front of the tool edge
could be removed by shearing.

3.2 Side flow and recovery

Figure 5 is sliced at x-direction and the SF&R regions are
displayed. The theoretical surface roughness PV and the
SF-influenced surface roughness PV′, which is larger than
PV, are also displayed. According to the above section, the
material flows to the side when the UCT is smaller or
similar to the SH. To clearly reveal the formation mecha-
nism of SF, the displacement vectors of the workpiece
atoms are shown in Fig. 6, which are sliced in V-V planes
(in Fig. 5) at {100}<001> and {111}<11-2> cutting direc-
tions with cutting distances of 36 nm and 360 nm. At the
initial cutting stage, when the cutting distance is 36 nm for
both cutting directions at Fig. 6a, c, the atoms start to flow
to the side at the place where the UCT is smaller or similar
to the SH.

In Fig. 6b, d, the cutting distance is 360 nm. A large
amount of materials has been extruded and flows to the
place where the UCT is about zero. The SF region forms
and further causes the increment of the surface roughness.
Therefore, with an increase of cutting distance, the amount
of the materials which are extruded and form the SF region
increases until they attain a stable state. As shown in Fig. 5,
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the recovery tends to decrease the SF-influenced surface
roughness PV′. And it is almost not affected by the cutting
distance.

3.3 Phase transformation

The phase of silicon is analyzed by coordination number
(CN). Different phases, such as amorphous phase (a-Si), dia-
mond crystal phase (Si-I), and bct5-Si and β-Sn phase (Si-II),
are recognized [17].

At the cutting direction of {100}<001>, the phase trans-
formation is shown in Fig. 7. When the UCT is zero, a lot
of materials are extruded and flow down to the machined
surface, as shown in Fig. 7a. It makes a thin layer of

amorphous silicon left on the machined surface. This layer
also forms the SF region, as shown in Fig. 5a. In Fig. 7b,
the UCT is about 1 nm. The silicon transforms from Si-I
phase to bct5-Si phase during the cutting process. But after
the tool edge cutting passes through, the transformed phase
recovers to the Si-I phase, only leaving a layer of a-Si
phase in the machined surface. And the thickness of the
a-Si layer has slight fluctuation along the cutting direction.
When the UCT is larger than 1 nm, the bct5-Si could not
recover to Si-I phase, leaving the amorphous phase to pen-
etrate into the subsurface, as shown in Fig. 7c. Si-II phase
which is surrounded by the bct5-Si phase also formed dur-
ing the cutting process. After the tool passes through, the
Si-II phase, as well as bct5-Si, transformed to a-Si phase.
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Under the cutting edge, the phase transforms at the plane
which has a 45° included angle. And after the tool passes
through, the phase-transformed plane has a 15° rotation, as
displayed in Fig. 7c.

At cutting direction of {111}<11-2>, as shown in Fig. 8,
similar to the results obtained at {100}<001> cutting direc-
tion, a lot of materials are extruded and flow down to the
machined surface forming the a-Si layer and SF region. But
there is some difference. Bct5-Si phase forms in the a-Si phase
due to the extrusion of the cutting tool, even the UCT is zero
(Fig. 8a). When increasing the UCT, bct5-Si phase forms and
is surrounded by a-Si phase, as shown in Fig. 8b, c. Therefore,
in nano-cutting of silicon at {111}<11-2> direction, bct5-Si
phase forms and is left in the machined subsurface. But when
cutting at {100}<001> direction, the formed bct5-Si and S-II
phases transform to the a-Si phase, when the cutting tool
passes through.

4 Conclusions

The large-scale MD simulation model, which has a cutting
tool with 1-μm nose radius and 20-nm edge radius and the
cutting distance attaining 400 nm, is applied to obtain the
simulation results with relatively high confidence coefficient.
When the UCT is smaller or similar to the stagnation height,
the extrusion accompanied with the side flow dominates the
material removal mechanism. The generated side flow will
deteriorate the generated surface roughness. When cutting at
{111}<11-2> direction, bct5-Si phase forms and a part of
them is left in the machined subsurface. When cutting at
{100}<001> direction, the formed bct5-Si and S-II phases
transform to the a-Si phase, when the cutting tool passes
through.
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