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Abstract
In the present study, prediction and optimization of the surface roughness and cutting forces in slot milling of aluminum alloy
7075-T6 were pursued by taking advantage of regression analysis, support vector regression (SVR), artificial neural network
(ANN), andmulti-objective genetic algorithm. The effects of process parameters, including cutting speed, feed per tooth, depth of
cut, and tool type, on the responses were investigated by the analysis of variance (ANOVA). Grid search and cross-validation
methods were used for hyperparameter tuning and to find the best ANN and SVR models. The training algorithm of developed
NNs was one of the hyperparameters which was chosen from Levenberg-Marquardt and RMSprop algorithms. The performance
of regression, SVR, and ANN models were compared with each other corresponding to each machining response studied. The
ANN models were integrated with the non-dominated sorting genetic algorithm (NSGA-II) to find the optimum solutions by
means of minimizing the surface roughness and cutting forces. In addition, the desirability function approach was utilized to
select proper solutions from the statistical tools.
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Nomenclature
ANN Artificial neural network
SVM Support vector machine
SVR Support vector regression
GA Genetic algorithm
NSGA Non-dominated sorting

genetic algorithm
ANOVA Analysis of variance
AA Aluminum alloy
BP Backpropagation
MOEA Multi-objective evolutionary

algorithm
CV Cross-validation
MSE Mean squared error

MAPE Mean absolute percentage error
MAE Mean absolute error
r Correlation coefficient
LMA Levenberg-Marquardt algorithm
RBF Radial basis function
Fx Infeed force (N)
Fy Cross feed force (N)
Fz Thrust force (N)
Ra Surface roughness (μm)
Vc Cutting speed (m/min)
fz Feed per tooth (mm/tooth)
ap Depth of cut (mm)
Tool Tool type
Tool.1 & Tool.2 Dummy variables
ε Epsilon, predefined parameter in SVR
C Regularization parameter in SVR
γ , r Kernel hyperparameters in SVR
μ , μ update
factor

LMA hyperparameter

α Global learning rate in
RMSprop algorithm
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1 Introduction

Machining is considered as a complex mode of manufacturing
process, involving several input variables. Although careful
selection of input variables is a critical step to achieve desired
machining products, this is not a simple decision due to com-
plexity of the process and lack of suitable formulas to establish
relationships between input and output variables. In addition,
proper selection of input variables, such as cutting parameters,
is crucial because of its strong influence on machining econ-
omy, work part quality as well as production time. Therefore,
prediction of the outcome of a metal removal process is a
crucial stage of process planning.

There are three major categories for modeling the machin-
ing processes, including numerical, analytical, and empirical
models. Empirical models can take into account almost all
machining parameters and, hence, are more practical.
However, numerous experiments are needed in order to em-
ploy empirical models, such as machine learning methods [1].

End milling process has a wide range of applications in
numerous industrial sectors. In addition, modeling of milling
process is more complicated than the other traditional machin-
ing operations, such as turning. Periodic interactions between
the milling cutting tool and the work part tend to appear as
cyclic cutting forces, complicating the process modeling [28].
Moreover, end milling operation is one of the final steps in
manufacturing inmost cases. Controlling this operation, there-
fore, is significant in terms of the surface integrity [24]. With
regard to these facts, prediction and optimization of surface
roughness and cutting forces in end milling through empirical
modeling and metaheuristic optimization are the focus of at-
tention in this work.

Several research have been conducted to model and opti-
mize the surface roughness in milling operations in the past
few years [12, 13, 15, 20]. Karkalos et al. [15] used response
surface methodology (RSM) and artificial neural network
(ANN) models to investigate surface roughness in milling of
titanium alloy by using depth of cut, cutting speed, and feed
rate. Cutting parameters were also optimized through RSM
and it became clear that higher depth of cut and cutting speed
and lower feed rate reduce surface roughness. Authors con-
cluded that ANN model is more precise. Mahesh et al. [20]
examined the effect of radial rake angle, feed rate, radial and
axial depth of cut, and spindle speed on surface roughness in
end milling of AA 6063 by combining RSM for prediction
and GA for optimization. It was observed that radial rake
angle has significant effect on the output variables and the
combination of techniques performs rather well. Using poten-
tial support vector machine (PSVM) and RSM, Kadirgama
et al. [12] studied the impact of radial and axial depth of cut,
cutting speed and feed rate on surface roughness in end mill-
ing of AA 6061-T6. It was concluded that better modeling
results were observed when PSVM was used. Furthermore,

radial depth of cut has the least effect on surface roughness
variation. Kant and Sangwang [13] took advantage of the
combination of ANN and GA to predict and optimize the
surface roughness in face milling by controlling the variation
of cutting speed, feed rate, depth of cut, and flank wear. It was
exhibited that under similar experimental conditions, ANN is
superior to regression and fuzzy logic models.

The majority of the reported works in the literature have
considered cutting forces besides the other output parameters,
such as surface roughness [8, 19, 21]. Cutting force, surface
roughness, and power consumption in milling of aluminum
metal matrix composite were predicted by using RSM and
optimized through multi-objective optimization approaches
by Malghan et al. [21]. It became apparent that spindle speed
has the most prominent impact on all the responses, followed
by feed rate and depth of cut. Karabulut [14] studied the effect
of workpiece material, cutting speed, depth of cut and feed
rate on surface roughness, and the resultant cutting force in
milling of AA 7039 and Al2O3 reinforced composite.
Moreover, the Taguchi method was used for optimization pur-
poses, and it was shown that ANN was superior to the regres-
sionmodel in response prediction. The results of ANOVA also
denoted that the most effective input variables for surface
roughness and cutting force are the work material and feed
rate respectively. Farahnakian et al. [7] developed a PSO
based neural network (PSONN) to model surface roughness
and the resultant cutting force separately in milling a polymer
nanocomposites. Feed rate had the most dominating influence
on the output parameters, followed by spindle speed. It was
demonstrated that PSONN had better performance and faster
convergence than conventional neural networks.

Cutting tool geometry and coating properties play impor-
tant roles in the machining performance and final quality of
the machined part. For instance, several studies reported that
insert nose radius and coating material have a substantial in-
fluence on surface roughness and cutting forces in milling
operations [17, 18, 23]. However, few studies have employed
cutting tool properties as process parameters to optimize ma-
chining conditions, particularly in milling. For instance, Pinar
et al. [25] optimized the surface roughness in pocket milling in
two different cooling conditions by using the Taguchi method
and considering the effect of cutting speed, feed rate, radial/
axial depth of cut, and nose radius of an uncoated cemented
carbide cutting tool. Using the Taguchi and regressionmodels,
Kivak [16] conducted a research to study the effects of PVD
TiAlN- and CVD TiCN/Al2O3-coated carbide inserts, along
with cutting speed and feed rate, on surface roughness and
tool wear under dry milling conditions. In another work,
Niknam et al. [22] utilized desirability function technique to
optimize surface roughness and exit burr size by including
depth of cut, cutting speed, feed per tooth, and different kinds
of end milling inserts and workpiece materials. With regard to
these studies, various tools with different insert coating and

Int J Adv Manuf Technol (2019) 105: –951 965952



nose radius were employed to predict and optimize the output
parameters in this work.

Less attention has been paid to the use of support vector
machine (SVM) in prediction of machining outputs. Çaydas
and Ekici [2] showed that support vector regression (SVR)
outperformed ANN in predicting surface roughness in turning
operation. Moreover, Gupta et al. [9] compared the perfor-
mance of regression model and AI techniques, such as SVM
and ANN, in separate optimization of the surface roughness,
tool wear, and the required power by GA algorithm. They
exhibited the merit of SVM in prediction of turning parame-
ters. In another case [29], SVM was coupled with multi-
objective GA to optimize processing time and electrode wear
in micro-electrical discharge machining (EDM), which pro-
duced satisfying results.

In the present work, the cutting speed, depth of cut, feed
rate, and type of cutting tool are chosen as the input variables
to predict and optimize the surface roughness and cutting
forces in slot milling of AA 7075-T6. According to the liter-
ature review, some authors [2, 9] have reported that SVM
outperformed the ANN model in prediction of turning re-
sponses, but a study comparing ANN and SVM performance
in predicting the surface roughness and/or cutting forces in
milling operations has not been conducted, to the authors’
knowledge. In addition, the application of a dummy variable
to represent nominal machining parameters, such as type of
cutting tool or workpiece material, has not been appropriately
investigated in prediction and optimization of responses.
Thus, the main aims of the present paper can be categorized
to three major tasks (1) The performance of ANN, SVM, and
regression models in predicting the surface roughness and
cutting forces in milling are compared. (2) Non-dominated
sorting genetic algorithm-II (NSGA-II), coupled with desir-
ability function approach, is selected to minimize the re-
sponses simultaneously with regard to its great performance
as well as its limited use in the milling optimization. (3)
Utilization of dummy variables is presented to incorporate
tool type, as a non-numeric machining parameter, into predic-
tion and optimization of the responses. The rest of the paper is
organized as follows. The experimental setup and design of
the experiment is presented in Section 2. A brief overview of
ANN, SVM, NSGA-II, and desirability function are stated in
Section 3. Section 4 highlights the development of prediction
models, comparison of predictive models, and optimization of
responses. Conclusions are presented in Section 5.

2 Experimental procedure

A multi-level full factorial experimental design with 54 trials
was used to examine the effect of cutting speed (Vc), depth of
cut (ap), feed per tooth (fz), and cutting tool type (Tool) on
surface roughness and cutting forces in milling of AA 7075-

T6. The experimental factors and their levels are shown in
Table 1. An end milling cutting tool with three teeth (Z = 3),
tool diameter (D) 19.05 mm and Helix angle 30° with various
carbide inserts, having different nose radius and coatings
(Table 1), was used to perform slot milling operation under
dry conditions. Coatings were selected based on their suitabil-
ity for the cutting conditions and work-piece material. The
rectangular blocks of AA 7075-T6 were used in milling.
This material finds its applications mostly in aviation, aero-
space, automotive, and arms industries.

Single-pass slot milling tests were performed on a three-
axis CNC machine tool (HURON - K2X10, power 50 kW,
speed 28,000 rpm, torque 50 Nm). A three-axis table dyna-
mometer (Kistler 9255-B) with a sampling frequency of
1000 Hz was employed to obtain three orthogonal force com-
ponents in Cartesian coordinates. After finishing the opera-
tion, the most widely used roughness parameter, Ra, was mea-
sured by using surface profilometer Mitutoyo SJ 400.

To avoid possible deviations in the test results because of
tool wear, new insert was utilized after each milling operation.
In addition, the average values of two experiments’ records
were considered as milling responses for modeling and opti-
mization of the operation. A brief summary of observed re-
sponses data is exhibited in Table 2. Moreover, the following
simplifying assumptions and checks are made to develop the
experimental setup and to reduce the effect of work material
adhesion to the cutting tool which is a major concern in AA
machining.

– The vibrations in the machine and cutting tools were
evaluated through preliminary tests. The stability of the
cutting process, as a result, was verified and the milling
operation was assumed chatter free.

– By using rigid tools and work-piece fixtures, the deflec-
tions of cutting tool and work-piece were neglected.

3 Modeling approach

Figure 1 exhibits the research procedure followed in this
study. Having conducted the milling of AA, regression anal-
ysis, support vector regression, and neural network are
employed to predict each response separately. The results of
analysis of variance are used to choose input variables for
SVR modeling. Moreover, varied modeling techniques, such
as hyperparameter tuning, are applied to make the best possi-
ble predictive models out of the limited data. In the next step,
various created models for each response are compared with
each other in order to find the most suitable model among
regression analysis, SVR, and ANN. The selected models
for each response are then coupled with NSGA-II so that the
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optimum cutting conditions for simultaneous minimization of
surface roughness and cutting forces are acquired. Since many
optimum solutions are obtained by NSGA-II, desirability
function approach is used to find suitable solutions out of
the Pareto Front.

3.1 Artificial neural network

The structure of ANN is inspired by the biological neural
network to mimic the brain performance to solve complex
problems. The artificial neurons are connected to each other
to construct the ANN. The input vector of each neuron is
multiplied by the weight vector, added to a bias term to com-
prise the input of an activation function. The output of the
activation function is the output of a neuron. The equation of
the process, shown in Fig. 2, is as follows:

yk ¼ φ ∑
m

j¼1
wkjx j þ bk

 !
ð1Þ

where yk and bk are respectively the output and bias term of the
k-th neuron and φ is the activation function. In addition, xj and
wkj , j = 1,2, … ,m are the j-th input of the neuron and its
synaptic weight respectively.

Feedforward neural network is one of the most popular
networks for function approximation, which entails one or
more hidden layers besides input and output layers, as it can
be seen in Fig. 5. The function of hidden layers is to discover
the salient features of the input data, but the input layer does
not process information. Input signal is propagated through
neurons in the network on a layer-by-layer basis while the
synaptic weights are fixed. The output layer presents the
amounts of response variables.

Backpropagation (BP) algorithms are usually used to train
feedforward neural networks. In BP algorithms, an error sig-
nal is propagated backward to successively adjust connection
weights and biases through minimizing a cost function. The
cost function is defined as:

C ¼ 1

2
∑
j∈K

e2j ¼
1

2
∑
j∈K

d j−y j
� �2

ð2Þ

where C is the cost function and the set K includes all neurons
in the output layer. ej, dj , and yj are respectively error term,
desired response, and output of the j-th neuron in the output
layer.

There are various criteria to stop a BP algorithm. If the
algorithm iterates for a predefined epoch number, training
can be halted. Early stopping method, which takes validation
set error into account, is another rule to stop the training
algorithm.

The Levenberg-Marquardt and RMSProp algorithms
were chosen for neural network training in this study.
The Levenberg-Marquardt algorithm (LMA) is a good
choice to train small- and medium-sized networks. The
LMA is based on the gradient descent and Gauss-
Newton algorithms so that the convergence and the speed
of the algorithm are assured. This is because the gradient
descent algorithm converges so slowly to the optimum
solution; however, the Gauss-Newton algorithm performs
fast near a local or global minimum. In LMA, the
Jacobian matrix (J) is used to approximate the Hessian
matrix of the cost function and to rewrite the gradient
vector (g) of the cost function w.r.t. the network parame-
ters. Thus, weights are updated through the equation:

wnþ1 ¼ wn− JTn J n þ μI
� �−1

JTn en ð3Þ

where e is the error vector, w is weight vector, and n is the
number of iterations. Term μ is a positive scalar parameter,
and I is the identity matrix. The parameter μ plays a key role in
LMA.When the cost function increases, μ is multiplied by an
update factor so that LMA acts like the gradient descent algo-
rithm. On the other hand, whenever there is a decrement in the
cost function, μ is divided by the update factor to simulate the
Gauss-Newton method [10].

Table 1 Experimental parameters
and their levels Notation Factors Level

1 2 3

Vc Cutting speed (m/min) 300 750 1200

fz Feed per tooth (mm/tooth) 0.01 0.055 0.1

ap Depth of cut (mm) 1 2 –

Tool Cutting tool: Coating TiCN TiAlN TiCN+Al2O3 + TiN

Insert nose radius (mm) 0.5 0.83 0.5

Table 2 A brief summary of responses value

Response Minimum Mean Maximum

Ra (μm) 0.096 0.350 0.939

Fx (N) 15.5 79.2 185.0

Fy (N) 26.5 101.6 232.0

Fz (N) 7.0 26.6 62.5
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In the gradient descent, the learning rate has a significant
effect on the speed and performance of the algorithm.
However, it is difficult to properly select the learning rate.
Moreover, it is not possible to use diverse learning rates for
different network parameters in the gradient descent. To deal with
these difficulties, algorithms with adaptive learning rates were
introduced, in which the learning rate is adapted to the training
data’s properties and the network parameters. RMSprop is one of
themost effective training algorithmswith adaptive learning rate.
The learning rate in RMSprop algorithm is modified by taking
advantage of all the gradients of the cost function w.r.t the

network parameters in the entire learning process. Thus, the run-
ning average of gradients is presented as:

E g2
� �

n ¼ ρE g2
� �

n−1 þ 1−ρð Þg2n ð4Þ

where gn is the gradient of cost function w.r.t. the network pa-
rameters in the n-th iteration of the algorithm and ρ is decay rate.
Likewise, the update rule of RMSprop is expressed as:

wnþ1 ¼ wn−
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E g2½ �n þ ϵ
p gn ð5Þ
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In this update rule, α is a global learning rate, and ϵ is a
smoothing term to avoid zero value in the denominator [26].

3.2 Support vector machine

SVM, which was first invented for classification purposes [3],
was soon extended for regression problems. In support vector
regression (SVR), the estimated model is only sensitive to a
subset of the training data that produces an error beyond a
predetermined threshold ε. Given a statistically independent and
identically distributed (iid) data set (xi, di), x ∈Rz, d ∈R, i= 1, 2,
…, N ,which x and d indicate the z-dimensional input and the
desired output data respectively, a linear model is considered as:

y ¼ wTxþ b ð6Þ
where weight vector w and bias b are unknown. To solve the
model and estimate unknown parameters, a loss function called
ε-insensitive loss function is introduced as:

Lε di; yið Þ ¼ di−yij j−ε for di−yij j≥ε
0 O:W :

	
ð7Þ

In this function, d and y denote the desired response and the
estimated response respectively. Deviation more than ε , how-
ever, cannot be avoided in many cases. Thus, nonnegative

slack variables ξi and ξ°i are proposed to tackle this issue,
described as below:

ξi ¼ di−yi−ε if di > yi þ ε ð8Þ
ξ°i ¼ yi−di−ε if di < yi−ε ð9Þ

It is obvious that the value of slack variables is zero if |di −
yi| ≤ ε. Figure 3 depicts all the notations used in SVR.

The problem in SVR is to find the minimum amount of
error while all the data points fall in the desired space. Hence,
the objective function is to minimize the function:

1

2
wk k2 þ C ∑

N

i¼1
ξi þ ξ°i
� � ð10Þ

Smaller w contributes to the flatness of the estimated re-
gression equation and prevents overfitting and model com-
plexity. Regularization parameter C determines the trade-off
between the flatness of the regression function and the allow-
able absolute deviation greater than ε. Proper selection of this
parameter is critical because the high value of C makes the
model overfitted, but small values aggravate the model error.
The constraints of the optimization problem are:

di−yi≤εþ ξi
yi−di≤εþ ξ°i

ξi; ξ
°
i ≥0

8<
: ð11Þ

If the input data do not have a linear relationship to the
response, the input space is transformed into a higher dimen-
sional m feature space by utilizing a set of nonlinear functions

φ j

n o
m
j¼1 so that the linear regression model can be applied.

The feature vector that describes mapping from the z-
dimensional input vector xi into am-dimensional feature space
is expressed as:

ϕ xið Þ ¼ φ1 xið Þ;φ2 xið Þ;…;φm xið Þ½ �T m≫z ð12Þ

To make computations less expensive in this manner, some

kernels k xi; xð Þ ¼ ϕT
xið Þϕ xð Þ are employed to replace dot prod-

uct of feature vectors in solving the optimization problem.
According to Mercer’s theorem, the admissible kernels must
be symmetric and positive definite functions. Further,
Karush–Kuhn–Tucker (KKT) conditions are applied to solve
the nonlinear problem and find the estimates of w and b.
Finally, the solution of the regression problem is:

y ¼ ∑
N

i¼1
αi−α°

i

� �
k xi; xð Þ þ b ̂ ð13Þ

where α and α° are Lagrange multipliers and K(x, xi) is an
admissible kernel [10, 27]. Radial basis function (RBF) and
sigmoidal kernels are among the most common kernels used
with SVM. Besides kernel type and its parameters, C and ε
must be selected prior to SVR modeling.

Fig. 3 a Linear SVM regression
model. b ε-insensitive loss
function
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3.3 Non-dominated sorting genetic algorithm-II

Genetic algorithm is one of the most popular evolutionary
algorithms, which is developed on the basis of natural selec-
tion to search the feasible region. It is expected that GA con-
verges to near to global solution since it is a population-based
algorithm that randomly explores the search space. In the al-
gorithm, a population of feasible solutions, called individuals,
is initially created. The individuals contain the problem deci-
sion variables, called genes. Bymeans of random search in the
decision space, the individuals are evolved to become more
optimized.

Prior to initializing a population, the algorithm’s operators,
population size, stopping criterion, crossover, and mutation
probabilities should be chosen. During iterations, each indi-
vidual’s fitness value is evaluated and if the termination crite-
rion, e.g., a predefined number of iterations, is met, the algo-
rithm is stopped. Otherwise, selection, crossover, and muta-
tion operators are successively performed to create a new gen-
eration. In the selection operator, appropriate individuals with
better fitness value, called parents, are selected to create off-
spring. The parents exchange information in the crossover
operator to produce new offspring. Altering some characteris-
tics in the new individuals, the mutation operator maintains
diversity in the population [5] .

In multi-objective optimization problems, a number of
equally optimal solutions exist. These optimal solutions,
known as Pareto-optimal solutions, can be achieved in one
single simulation by multi-objective evolutionary algorithms
(MOEAs). NSGA-II is a computationally fast, elitist, non-
dominated sorting-based MOEA, proposed by Deb et al. [4].
They have shown the superiority of the proposed algorithm in
terms of the spread of solutions and convergence to the true
Pareto-optimal front. A fast non-dominated sorting procedure
is employed in NSGA-II. By using the domination concept,
the Pareto-optimal front and the other fronts can successively
be found in the objective space, and a rank is assigned to each
front’s solutions. Furthermore, the crowded-comparison oper-
ator is used wherever selecting an individual is necessary in
NSGA-II. According to this operator, the solution with a low-
er rank is always preferred. When both individuals belong to
the same front, the individual with the higher crowding dis-
tance, located in a less crowded region in the objective space,
is chosen. Crowding distance presents an estimation of the
density of solutions in a specific front. In each front, the
crowding distance of the i-th solution pertains to the m-th
objective is computed as:

di ¼ f m iþ 1ð Þ− f m i−1ð Þj j
f maxm − f minm

ð14Þ

For each solution, the absolute difference between two ad-
jacent solutions’ objective values is divided by the difference

between the minimum and maximum value of the objective
function. The sum of distance values for all the objectives de-
termines the crowding distance for each solution in a front.
Although the main loop in NSGA-II is similar to that in the
single-objective GA, there are some differences. Selection op-
erator in NSGA-II, for example, is based on crowded-
comparison operator. To ensure elitism in the algorithm, the
parent population Pt and the offspring population Qt are com-
bined in each iteration to form Rt. Crowded-comparison opera-
tor is then utilized to select appropriate individuals according to
the population size. This procedure is illustrated in Fig. 4. It is
notable that initializing the first population, crossover, and mu-
tation operators are the same as it is in the single-objective GA.

3.4 Desirability function

Derringer and Suich [6] developed an easy, practical method
for simultaneous optimization of several responses by

converting the estimated responses (y ̂ ) into an overall desir-
ability (D). In this method, desirability function (d) is calcu-
lated for each response in a way that desirable instances have
higher desirability function value, i.e., their d is closer to 1. In
Smaller-The-Best response type, desirability function for each
response is calculated as:

di ¼ yi−̂Ui

Li−Ui


 �r

; Li≤yi ̂≤Ui ð15Þ

Li andUi are respectively the lower and upper bound of the
i-th response. r determines the shape of the desirability func-
tion; for example, the shape of d is linear if r is equal to 1.
After calculation of the desirability functions, the overall de-
sirability is defined as:

D ¼ d1w1 � d2w2 �…� dnwnð Þ 1
∑wi ð16Þ

where n is the number of responses, and wi is the weight
assigned to the i-th response. The higher the weight of a re-
sponse is, the more important it is for the decision-maker.

tP

tQ

tR

Non-dominated 
sorting

1F

2F

3F

Rejected

1t+P

Crowding 
distance sorting

Fig. 4 NSGA-II procedure [4]
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Thus, simultaneous optimization of several responses changes
to finding the maximum value of the overall desirability (D).

4 Results and discussion

4.1 Analysis of variance

Analysis of variance (ANOVA) approach was used to deter-
mine statistically significant factors and their effects on the
response variables. The ANOVA table for Ra, Fx, Fy, and Fz
are respectively presented in Tables 3, 4, 5, and 6, and all the
analyses were conducted at the level of confidence 95%.
Contribution percent is calculated based on sequential sum
of squares, but adjusted sum of squares is used for P value
calculation. Minitab 18 statistical software was used to carry
out ANOVA.

Based on Table 3, it is obvious that various levels of cutting
speed, feed per tooth, and tool type have significantly different
mean values for surface roughness. The interactions between
tool type and feed rate as well as cutting speed is also signif-
icant. Feed rate has the highest portion in explaining surface
roughness variation with 45.81% contribution, followed by its
interaction with tool type (20.54%), tool type (14.66%), and
the interaction between tool type and cutting speed (4.96%).

From Table 4, feed per tooth, depth of cut, the interactions
between feed rate and cutting speed, depth of cut and cutting
speed, and feed rate and depth of cut are statistically signifi-
cant predictors for Fx. The most important independent vari-
ables to explain infeed force deviation are feed per tooth with
70.06% contribution, depth of cut (19.60%), and the interac-
tion between these two factors (5.74%).

By Investigating Table 5 to study the influence of indepen-
dent variables on cross feed force, it is found that all the main
effects and their interactions are statistically significant at the
0.05 significance level except for cutting speed and its

interaction with tool type. Feed rate, depth of cut, and tool
type are the most important variables to explain Fy with
49.08, 34.49, and 8.03 contribution percent.

According to Table 6, all the main effects and the interac-
tions between feed per tooth and other factors are statically
significant for thrust force. In addition, tool type is the most
influential variable to explain the variation of dependent var-
iable with 49.35% contribution, followed by feed rate
(23.13%), depth of cut (15.38%), and their interaction
(4.95%).

Based on the ANOVA results, all the factors included in the
experiments have significant effect on the responses; more-
over, factors besides interactions should be considered in fur-
ther modeling because of interactions’ high contribution
percent.

4.2 Predicting responses using regression analysis

To get a thorough understanding and achieve better results, it
is essential to include categorical variables, such as tool type,
in regression analysis, and other kinds of models.
Accordingly, dummy variables were used to take tool type
into account for modeling and optimization in this study.
Hence, tool type 3 was considered as the baseline, and two
new variables were defined as below to encode the other tool
types.

Tool:1 ¼ 1 If tool No:1 is used for the experiment
0 If tool No:1 is not used for the experiment

	
ð17Þ

Tool:2 ¼ 1 If tool No:2 is used for the experiment
0 If tool No:2 is not used for the experiment

	
ð18Þ

Moreover, the best subset selection approach was utilized
to create the best possible regression model for each response.

Table 3 ANOVA for surface
roughness (Ra) Source DF Seq SS Adj SS Adj MS F value

α = 0.05
P value Contribution (%)

Cutting speed (Vc) 2 0.01483 0.052104 0.026052 3.91 0.032 0.63

Feed per tooth (fz) 2 1.07979 0.646668 0.323334 48.58 0.000 45.81

Depth of cut (ap) 1 0.03001 0.000702 0.000702 0.11 0.748 1.27

Tool type (Tool) 2 0.34557 0.055301 0.027651 4.15 0.026 14.66

Vc*fz 4 0.06538 0.065376 0.016344 2.46 0.069 2.77

Vc*ap 2 0.00612 0.006121 0.003061 0.46 0.636 0.26

Vc*Tool 4 0.11688 0.116885 0.029221 4.39 0.007 4.96

fz*ap 2 0.02187 0.021870 0.010935 1.64 0.211 0.93

fz*Tool 4 0.48421 0.484211 0.121053 18.19 0.000 20.54

ap*Tool 2 0.00597 0.005974 0.002987 0.45 0.643 0.25

Error 28 0.18635 0.186351 0.006655 7.91

Total 53 2.35698 100.00
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In this method, least-square regression models with different
combinations of predictors are compared with each other.
Specifically, all the possible models with k predictors, out of
the overall P independent variables, are fitted, and their R-
squared are then weighed to select the best model with exactly
k independent variables. The procedure is done for k =
0,1,2,..,P predictors; therefore, the selected P + 1 regression
models should be compared with each other to discover the
most suitable one [11]. Since the selected models have diverse
number of predictors, the adjusted R-squared was used to de-
termine the best model.

It needs to be mentioned that linear terms of the
main effects were fixed in the modeling, while the best
combination of interaction and quadratic terms were
chosen by the best subset selection method. Further,
numeric variables were centered to avoid multi-collin-
earity. R software environment was employed to find

the most appropriate regression models for Ra, Fx, Fy,
and Fz, which are respectively as follows:

Ra ¼ 0:329−0:000160� Vcþ 3:00� fzþ 0:0471� apþ 0:0302� Tool:1
−0:152� Tool:2þ 46:0� f z2 þ 3:71� fz� Tool:1þ 0:000270
� Vc� Tool:2þ 0:000200� Vc� Tool:1−0:00211� Vc� fz
−1:74� fz� Tool:2þ 1:09� fz� ap

R2 ¼ 84:61% R2 adjð Þ ¼ 80:10%

ð19Þ
Fx ¼ 70:6−0:0138� Vcþ 1176� fzþ 45:8� ap−5:89� Tool:1−0:417

� Tool:2þ 0:0000575� Vc2 þ 2208� f z2 þ 674� fz� ap
R2 ¼ 97:76% R2 adjð Þ ¼ 97:36%

ð20Þ
Fy ¼ 117−0:0113� Vcþ 1130� fzþ 70:4� ap−24:9� Tool:1−37:6

� Tool:2þ 0:0000384� Vc2 þ 612� fz� ap−238� fz� Tool:2
−17:1� ap� Tool:2

R2 ¼ 97:87% R2 adjð Þ ¼ 97:44%

ð21Þ

Table 4 ANOVA for infeed force
(Fx) Source DF Seq SS Adj SS Adj MS F value

α = 0.05
P value Contribution (%)

Cutting speed (Vc) 2 3019 46.12 23.06 1.68 0.205 2.09

Feed per tooth (fz) 2 101046 9233.56 4616.78 336.28 0.000 70.06

Depth of cut (ap) 1 28268 623.57 623.57 45.42 0.000 19.60

Tool type (Tool) 2 389 20.73 10.36 0.75 0.479 0.27

Vc*fz 4 2494 2493.55 623.39 45.41 0.000 1.73

Vc*ap 2 199 198.62 99.31 7.23 0.003 0.14

Vc*Tool 4 32 31.69 7.92 0.58 0.682 0.02

fz*ap 2 8282 8281.93 4140.96 301.63 0.000 5.74

fz*Tool 4 54 54.44 13.61 0.99 0.429 0.04

ap*Tool 2 66 65.56 32.78 2.39 0.110 0.05

Error 28 384 384.41 13.73 0.27

Total 53 144232 100.00

Table 5 ANOVA for cross feed
force (Fy) Source DF Seq SS Adj SS Adj MS F value

α = 0.05
P value Contribution (%)

Cutting speed (Vc) 2 1666 112.3 56.14 2.56 0.095 1.02

Feed per tooth (fz) 2 80420 7310.3 3655.13 166.85 0.000 49.08

Depth of cut (ap) 1 56519 3854.1 3854.10 175.93 0.000 34.49

Tool type (Tool) 2 13155 717.8 358.90 16.38 0.000 8.03

Vc*fz 4 2239 2238.6 559.65 25.55 0.000 1.37

Vc*ap 2 197 197.4 98.69 4.50 0.020 0.12

Vc*Tool 4 119 119.2 29.80 1.36 0.273 0.07

fz*ap 2 6832 6832.3 3416.17 155.94 0.000 4.17

fz*Tool 4 1151 1151.2 287.80 13.14 0.000 0.70

ap*Tool 2 952 952.1 476.03 21.73 0.000 0.58

Error 28 613 613.4 21.91 0.37

Total 53 163864 100.00
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Fz ¼ 22:5−0:00361� Vcþ 130� fz−10:2� ap−5:89� Tool:1þ 15:5
� Tool:2þ 0:00000720� Vc2−154� fz
� ap−113� fz� Tool:2þ 0:0411� Vc� fz

R2 ¼ 96:9% R2 adjð Þ ¼ 96:27%

ð22Þ

The results of the regression models support the findings of
ANOVA, for variables with higher contribution percent are
present in the selected models.

4.3 Predicting responses using SVR

Four different SVR models were developed to separately pre-
dict Ra, Fx, Fy, and Fz. The input variables for each SVR
model were selected based on the results of ANOVA, shown
in Tables 3, 4, 5, and 6. Indeed, the main effects and interac-
tions with more than 1 percent contribution percent were cho-
sen to participate in SVR modeling.

As mentioned earlier, regularization parameter C, epsilon
ε, and kernel type and its parameters should be defined previ-
ous to modeling since the result of SVR is strongly affected by
these parameters. Two different kernels, including sigmoid
and radial basis function (RBF), were examined in this study,
which are respectively defined as follows:

k x; xið Þ ¼ tanh γxTxi þ r
� � ð23Þ

k x; xið Þ ¼ exp −γ x−xik k2
� �

ð24Þ

γ and r in sigmoid kernel and γ in RBF kernel are
hyperparameters, which their values must be determined
besides C and ε before the learning process. In fact, ker-
nel type and its parameters as well as C and ε are
hyperparameters of SVR that their best values are selected
by grid search in this work. In grid search, having
assigned several reasonable values to each hyperparameter,
the performance of models with different hyperparameters’
values is compared with each other. To perform the grid
search for each response, the powers of 2 and integer
numbers were used to determine C, ε, and γ in both
kernels and r in the sigmoid kernel respectively, shown
in Table 7. Cross-validation method is usually utilized
with grid search; thus, the specific combination of
hyperparameters values that optimizes the cross-validation
performance metric is regarded as the suitable values for
model’s hyperparameters. Thus, hyperparameters values
that simultaneously minimized 10-fold cross-validation
mean squared error (MSE) and mean absolute percentage
error (MAPE) were selected for SVR modeling.
Desirability function was used to minimize cross-
validation MSE and MAPE simultaneously. In addition,
the available input variables were normalized to 0–1 range

Table 6 ANOVA for thrust force
(Fz) Source DF Seq SS Adj SS Adj MS F value

α = 0.05
P value Contribution (%)

Cutting speed (Vc) 2 120.58 29.150 14.575 4.64 0.018 1.36

Feed per tooth (fz) 2 2054.11 401.094 200.547 63.78 0.000 23.13

Depth of cut (ap) 1 1405.56 26.455 26.455 8.41 0.007 15.83

Tool type (Tool) 2 4382.19 595.140 297.570 94.64 0.000 49.35

Vc*fz 4 92.89 92.889 23.222 7.39 0.000 1.05

Vc*ap 2 14.84 14.843 7.421 2.36 0.113 0.17

Vc*Tool 4 20.64 20.639 5.160 1.64 0.192 0.23

fz*ap 2 439.81 439.815 219.907 69.94 0.000 4.95

fz*Tool 4 254.36 254.361 63.590 20.22 0.000 2.86

ap*Tool 2 7.68 7.676 3.838 1.22 0.310 0.09

Error 28 88.04 88.037 3.144 0.99

Total 53 8880.71 100.00

Table 7 Hyperparameters’ values
used in grid search Response SVR hyperparameters

C (both kernels) ε (both kernels) γ (both kernels) r (sigmoid kernel)

Ra {2−3, 2−2,…, 25, 27} {2−10, 2−9,…, 2−3, 2−2} {2−10, 2−9,…, 21, 22} {−5, −4,…, 4, 5 }

Fx {24, 25,…, 218, 219} {2−10, 2−9,…, 22, 23} {2−7, 2−6,…, 20, 21} {−5, −4,…, 4, 5 }

Fy {22, 23,…, 215, 216} {2−4, 2−3,…, 25, 26} {2−10, 2−9,…, 21, 22} {−5, −4,…, 4, 5 }

Fz {22, 23,…, 214, 215} {2−7, 2−6,…, 23, 24} {2−7, 2−6,…, 21, 22} {−5, −4,…, 4, 5 }
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prior to hyperparameter tuning. The scikit-learn library in
Python programming language was used for SVR
modeling.

According to Table 3, feed per tooth, depth of cut, tool type
dummy variables, cutting speed interaction with feed rate, and
the interactions of tool type with feed rate and cutting speed
were selected for surface roughness prediction. The sigmoid
kernel with γ=0.25 and r = − 3 as well as C = 64, and ε = 2−10

were picked to predict Ra. Moreover, the reported cross-
validation MSE and MAPE were 0.0080 and 23.92% respec-
tively. Based on Table 4, cutting speed, feed rate, depth of cut,
and the interactions of feed rate with cutting speed and depth
of cut were utilized to model infeed force. The RBF kernel
with γ = 0.25, C = 218 and ε = 2−10 resulted in the best model.
Cross-validation MSE and MAPE were 24.28 and 5.82% re-
spectively. From Table 5, cutting speed, feed per tooth, depth
of cut, tool type dummy variables, the interaction of feed rate
with cutting speed and depth of cut were employed to model
cross feed force. The best result was obtained by the sigmoid
kernel with γ = 0.125, C = 2048, r = − 1, and ε = 2 , producing
cross-validation MSE = 89.48 and MAPE = 7.46%. All the
main variables as well as all the interactions of feed rate were
picked for thrust force modeling according to Table 6. The
sigmoid kernel with γ = 0.125 and r = − 2 besides C = 8192
and ε = 2−7 led to the best model. The cross-validation MSE
and MAPE were respectively 5.64 and 7.35%.

In addition to the ANOVA results to choose the SVR input
variables, the same procedure was followed by using only the

main effects of each response. By comparing these two ap-
proaches, it was approved that selecting variables based on
contribution percent led to better results for all the responses.

4.4 Predicting responses using ANN

In this section, a procedure to find suitable feedforward neural
networks was followed individually for each response, lead-
ing to four different ANNmodels. The hyperparameters of the
network structure as well as training algorithm affect the per-
formance of ANN models; as a result, there are two different
sets of hyperparameters for ANN model selection. To tune
hyperparameters, grid search was used separately for each
response, and a model with a hyperparameter combination
resulting in lower 5-fold cross-validation MSE was regarded
as the best model.

The network structure hyperparameters include activation
function in each layer and number of layers and neurons. In
this study, ANN input layer consists of five neurons for cutting
speed, feed per tooth, depth of cut, and tool type dummy vari-
ables. The output layer has one neuron pertaining to a specific
response. To find the best number of layers and neurons, one
and two hidden layers networks were tested since using more
layers led to a high prediction error. Specifically, one hidden
layer networks with 4, 8, and 12 neurons as well as two hidden
layers networks with combinations of 3, 6, and 9 neurons were
investigated by grid search. A schematic of an ANN structure
used in this work is illustrated in Fig. 5. In addition, linear
activation function was employed for the output layers in all
the structures. The hidden layers’ activation functions were
selected by grid search among some non-linear activation func-
tions, including Sigmoid, Tanh, Elu, LeakyRelu, and Softplus.

Levenberg-Marquardt and RMSprop algorithms were used
to train networks. LMA is a famous optimization algorithm,
which is used in several machining research [2, 7, 14, 15].
RMSprop, on the other hand, is an effective, newer algorithm,
which has not been used for response prediction in the ma-
chining field, to the authors’ knowledge. As it was mentioned

Fig. 5 Schematic of a neural
network structure used in this
study

Table 8 Values of the training algorithms’ hyperparameters used in grid
search

Training algorithm Hyperparameters Hyperparameters values

Levenberg-Marquardt μ {0.01, 0.05, 0.1, 0.5, 1}

μ update factor {1.1, 1.2, 1.3}

RMSprop Learning rate α {0.005, 0.01, 0.05, 0.1}

Mini-batch size {1, 4, 16}
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in Section 3.1, μ besides its update factor is LMA
hyperparameters. The learning rate α is RMSprop
hyperparameter to be tuned, while the smoothing term ϵ was
set to be 1e-5, and the decay rate ρ had a fixed value of 0.9.
Moreover, it is possible to determine mini-batch size with
RMSprop. In this circumstance, a network’s weights and
biases are updated for every mini-batch size of the training
dataset, instead of the whole training dataset. The values of
the training algorithms’ hyperparameters used in the grid
search for all the responses are shown in Table 8.

Furthermore, the training algorithm will stop if one of the
criteria listed below is satisfied.

& Algorithm iterations reach to a constant epoch number of
1500.

& There is a considerable increase in training or validation
error.

It is noteworthy that the test fold in cross-validation
method was used to calculate validation error. After ter-
mination of the network training, weights and biases
leading to the lowest validation error during the learning
process were considered as parameters of the trained
network. To provide a comparison between various
values of hyperparameters, folds of cross-validation
method as well as the initial weights and biases for all
the network trainings were set the same. Additionally,
process and response data were normalized to 0-1 range
prior to hyperparameter tuning. The NeuPy library ver-
sion 0.6.5 was deployed for ANN modeling in Python
programming language. The hyperparameter values of
the best ANN models and their cross-validation error
resulted from the grid search, are gathered in Table 9.
Deeper networks with two hidden layers showed better
performance. Moreover, Levenberg-Marquardt could

Table 9 Hyperparameter values
and CVerrors of the selected
ANN models

Hyperparameters Responses

Ra Fx Fy Fz

Structure

Network structure 5-6-6-1 5-3-6-1 5-9-3-1 5-6-9-1

1st hidden layer activation function Softplus Sigmoid Softplus Tanh

2nd hidden layer activation function Sigmoid Sigmoid Elu LeakyRelu

Training

Algorithm RMSprop LMA LMA RMSprop

μ – 0.05 0.5 –

μ update factor – 1.1 1.2 –

Learning rate α 0.05 – – 0.01

Mini-batch size 1 – – 1

5-fold cross-validation MSE 0.0038 7.17 22.62 6.10

5-fold cross-validation MAPE 18.81% 2.90% 4.79% 7.91%

Table 10 5-fold cross-validation
to compare prediction models Response Prediction model Performance metrics

MAE MSE MAPE r

Surface roughness (Ra) Regression 0.096 0.0157 33.68% 0.828

SVR 0.074 0.0102 25.41% 0.883

ANN 0.046 0.0038 18.81% 0.958

Infeed force (Fx) Regression 7.62 85.91 16.40% 0.984

SVR 3.90 24.90 6.17% 0.994

ANN 1.80 7.17 2.90% 0.998

Cross feed force (Fy) Regression 8.12 101.56 11.17% 0.984

SVR 6.51 89.72 7.93% 0.985

ANN 3.52 22.62 4.79% 0.996

Thrust force (Fz) Regression 2.44 9.29 10.86% 0.973

SVR 2.30 8.56 10.00% 0.978

ANN 1.87 6.10 7.91% 0.978
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predict Fx and Fy more precisely, while RMSprop
outperformed LMA in the prediction of Ra and Fz.

4.5 Comparison between prediction models

To find the best model for each response from selected
ANN, SVR, and regression models, four performance
metrics, including mean absolute error (MAE), MSE,
MAPE, and correlation coefficient (r) between the pre-
dicted and experimental values, were deployed.
Specifically, 5-fold cross-validation was implemented
for each selected model, and their performance was
compared with each other, shown in Table 10. Same
folds were used for cross-validation to make the com-
parison valid. It is obvious that SVR surpassed regres-
sion models, while ANN far outperformed both SVR
and regression models for all the responses.

After that final models were selected, models trained
by the entire experimental data were prepared to partic-
ipate in GA. The corresponding MAPE of these ANN
models were respectively 13.65, 1.04, 0.27, and 7.60
percent for Ra, Fx, Fy, and Fz.

4.6 Optimization using NSGA-II

Optimization problem, presented as below, aims to find the
best process parameters so that surface roughness and cutting
forces are simultaneously minimized.

Min Ra Vc; f z;ap;Toolð Þ; Fx Vc; f z;ap;Toolð Þ; Fy Vc; f z;ap;Toolð Þ; Fz Vc; f z;ap;Toolð Þ
� �

Subject to
300≤Vc≤1200
0:01≤ f z≤0:1
1≤ap≤2
1≤Tool≤3; integer

ð25Þ

Each individual in GA was set to have five real cod-
ed variables, including Vc, fz, ap and two tool-type dum-
my variables. The parameters of GA were determined
by trial and error in a way that lower responses were
obtained. Thus, algorithm parameters were set as 125
for population size, 0.6 for crossover probability, and
0.4 for mutation probability. Further, the algorithm was
stopped when 300 generations had been created. NSGA-
II was executed in Python programming language by
taking advantage of pygmo library.

Table 11 The best results pertaining to each response in the Pareto Front

The corresponding
response

Process parameters Responses

Vc
m
min

� �
f z

mm
Tooth

� �
ap (mm) Tool Ra

(μm)
Fx (N) Fy (N) Fz (N)

Ra 782.76 0.022 1.33 3 0.095 28.90 58.73 17.24

Fx 1200.0 0.010 1.46 1 0.326 11.69 41.91 6.840

Fy 447.36 0.010 1.00 1 0.153 19.63 20.49 17.80

Fz 1200.0 0.010 1.64 1 0.333 13.15 47.94 6.505

Table 12 The Pareto Front solutions obtained by desirability function approach

Weights Process parameters Responses

Ra Fx Fy Fz Vc
m
min

� �
f z

mm
Tooth

� �
ap (mm) Tool Ra

(μm)
Fx

(N)
Fy
(N)

Fz

(N)

1 1 1 1 561.0 0.010 1.19 1 0.132 17.51 28.71 14.24
4 1 1 1

4 2 2 1

1 2 2 2

1 4 1 1 651.0 0.010 1.17 1 0.142 16.02 32.14 13.72

1 1 4 1 447.4 0.010 1.00 1 0.153 19.63 20.49 17.80

1 1 1 4 522.2 0.010 1.40 1 0.131 23.08 34.26 11.58

2 2 2 1 516.6 0.010 1.13 1 0.136 18.28 25.32 15.72
1 2 2 1
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Tournament selection was preferred for selection operator, in
which a predefined number of individuals are randomly chosen
from the original generation. Then the crowded-comparison
operator is employed to select parents. Arithmetic crossover,
in which two offspring are created based on convex combina-
tions of two random selected parents, was used as crossover
operator. Gaussian mutation operator was chosen for mutation.
In Gaussian mutation, a vector containing numbers that are
randomly drawn from the standard normal distribution is added
to an offspring vector to create a mutated one. Several optimum
solutions were obtained by implementing NSGA-II. Results
that led to the minimum value for each response in the Pareto
Front are presented in Table 11. When Table 11 and Table 2 are
compared, it can be concluded that the procedure followed in
this work led to lower values for each individual response. The
amount of the improvement is 1.0% for Ra, 24.6% for Fx,
22.7% for Fy, and 7.1% for Fz.

Since no solution in Pareto Front is better than the other
solutions, the desirability function approach was deployed to
select and present some of the optimal solutions. Various
weights were assigned to responses to determine their relative
importance for decision-making, while the shape of desirability
function was linear. The optimum solutions acquired by desir-
ability function approach are demonstrated in Table 12. To
conclude, medium values of cutting speed, lower feed per tooth,
and depth of cut besides using the cutting tool with TiCN coat-
ing and nose radius of 0.5 mm led to the optimum results.

5 Conclusion

A comprehensive procedure, exhibited in Fig. 1, was followed
in this study to predict and optimize the surface roughness and
cutting forces in slot milling of AA 7075-T6. The findings are
summarized as follows:

1. Cutting speed, feed per tooth, depth of cut, and tool type
strongly affected responses. However, the effect of feed
rate was more profound, followed by tool type and depth
of cut.

2. Using dummy variables to include different tool types in
prediction models and optimization algorithm was suc-
cessful. Thus, it is recommended to deploy this technique
to incorporate the other categorical variables, such as ma-
terial type, into machining modeling.

3. Hyperparameter tuning is absolutely crucial to select
proper ANN and SVR models. Since ANN models own
many hyperparameters, tuning is time-consuming, but the
importance of this task cannot be overemphasized.

4. RMSprop could predict Ra and Fz more precisely in con-
trast with LMA. Therefore, training algorithms with adap-
tive learning rate may lead to better response prediction,

especially for complicated responses such as surface
roughness.

5. ANN outperformed both SVR and regression models in
predicting responses. Nonetheless, neural network
hyperparameter tuning is demanding, so SVR models
can be utilized when prediction accuracy is less important.

6. The integration of ANN and NSGA-II resulted in several
optimum solutions. The Pareto-optimal solutions were
combined with desirability function approach to help with
decision-making.
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