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Abstract
Machining such as trimming and drilling of aerospace composite structures is often required to meet the intended geometric
tolerances and functional requirements. Abrasive water jet (AWJ) is a primary candidate for high speed machining of
difficult-to-cut materials. The AWJ process performance is sensitive to the online faults and non-optimal process parameters,
necessitating efficient techniques for online process control. In this study, acoustic emission (AE) signals are used to monitor
AWJ machining of stacked titanium-CFRP. Owing to the non-stationary nature of the AE signals, this work is focused on the
precision-driven predictive approach in simultaneous time-frequency domain. The AE signals were analyzed using wavelet
packet transform (WPT), and an algorithm was proposed to identify and characterize these signals. Thirty-five different
mother wavelets and decomposition levels up to 10 were used. The wavelet parameters (mother wavelet and decomposition)
were deemed optimal when the identified signal characteristics could strongly correlate with the process parameters and
kerf wall quality (surface roughness). Coiflets and Symlets were identified as the optimal wavelets with energy-entropy
coefficient as the qualifying characteristic of the wavelet packet resulting in R2 > 90%. A comparative study was conducted
to qualify the proposed algorithm against standard time domain analysis measures. The maximum R2 and CV (RMSD)—
coefficient of variation of root mean square deviation for time domain was observed as 88.6% and 12.5% respectively
as opposed to R2 = 97.12% and CV (RMSD) = 6% for the proposed WPT algorithm. Overall, an efficient algorithm was
proposed in monitoring the process quality and controlling the process parameters based on the identified signal signatures.

Keywords Abrasive water jet · Titanium · CFRP · Stacks · Wavelet analysis · Process monitoring

Nomenclature

P Hydraulic pressure
u Jet traverse speed
f (t) AE signal
ψ Wavelet function
a Scaling factor
g Translation factor
h Low-pass filter
g High-pass filter
Fs Sampling frequency
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j Decomposition level
TCm Ti/CFRP configuration, mth AE channel
CTm CFRP/Ti configuration, mth AE channel

(m = 1 or 2)

1 Introduction

Hybrid metal-composite material systems and structures are
making strides in aerospace and automotive industry. Tita-
nium (Ti6Al4V) and CFRP are among the primary candi-
dates due to high-specific strength, modulus and toughness;
less mismatch in coefficient of thermal expansion (CTE);
and low electric potential preventing galvanic corrosion [1,
2]. Often times, secondary machining of stacked Ti6Al4V
and CFRP is required either for drilling assembly holes
or achieving dimensional tolerances. Machining of stacked
Ti6Al4V and CFRP is challenging as both the materials not
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only possess high strength but also belong to an entirely dif-
ferent class of materials. Titanium is reactive at high temper-
ature and readily forms brittle oxide. Conventional machin-
ing results in residual stresses and exit burr formation [3].
Conventional machining of composites is dependent on the
fiber orientation and often result in fraying, delamination,
fiber pullouts, uncut and rebound fibers, and carcinogenic
dust formation [4]. These machining induced damages and
defects affect the surface and structural integrity of the
machined component. Besides, significant tool wear and
elevated cutting temperature results in high production
times with conventional machine tools. When Ti and CFRP
are stacked together, the machining induced defects for both
Ti and CFRP are compounded which limits the usage of
higher machining speeds [5–8]. Among several other non-
conventional machining methods, abrasive water jet (AWJ)
is a high-speed alternative to conventional machining [9].
The process is environment friendly and devoid of thermal
distortion. However, since the interacting tool is a slurry,
its distortion and reduction in energy with the penetration
depth is reflected on the kerf characteristics. The resulting
kerf witnesses the variation in cross-sectional geometry and
striations at high speeds [9, 10]. Besides, initial kerf curving
due to abrasive frosting, embedment of abrasive particles
[11], exit delamination in CFRP are resulted at non-optimal
machining conditions [12–14]. The problem is challenging
in stacked metal composite due to difference in material
removal mechanisms and possible distortion in the jet struc-
ture at the interface [15–18]. Owing to the sensitive nature
of this stacked Ti6Al4V-CFRP configuration, process mon-
itoring seems to be a natural extrapolation to assist and
enhance the machinability of such metal-composite hybrid
structures.

Several authors have applied wavelet transform in
signal classification and process control for non-stationary
signals [19–22]. Efforts have been made in correlating
processing conditions and resulting surface quality using
signal signatures through wavelet analysis. Zahouani et.
al [23] used 2D continuous wavelet transform to identify
the manufacturing signature on the surfaces generated by
different stages of finishing. Plaza et al. [24] studied
the WPT analysis of force signals in CNC turning and
identified WPT parameters for online control and real-time
quality monitoring. Recently, Pahuja et al. [25] studied
the force signals in conventional milling of unidirectional
composites and correlated relative wavelet entropy with the
surface quality and defects. In AWJ process monitoring,
a few efforts have been made. Momber, Mohan, and
Kovacevic [26, 27] and Hreha and Hloch et al. [28, 29]
used FFT (fast fourier transform) and PSD (power spectral
density) to determine the material removal behavior and
surface quality. Lissek et al. [30] used burst analysis and a
negative relationship between speed and burst count was

observed. Sutowski et. [31] observed high PSD with low
jet energy and low exposure conditions in machining
Al 5051. Pahuja et al. [17] analyzed AE signals in
time and frequency domain to characterize the process
parameters and penetration depth of stacked Ti and CFRP.
The time-domain analyses were limited by the location
dependency of the sensors. Time-frequency spectrogram
was used but was limited by the simultaneous resolution
in time and frequency domain. Other challenges were high
signal attenuation in CFRP and low signal to noise in
the aggressive AWJ environment caused by the turbulent
conditions at the metal-composite interface [18]. By the
nature of the erosion mechanism, AWJ is a non-stationary
process and to capture the dynamic behavior, better
resolution in time and frequency domain is required [17,
26]. Wavelet transform provides evolving resolution in time
and frequency with higher temporal resolution at high
frequency. This enables capturing the transient behavior in
any non-stationary process.

Owing to the difference in machining behavior of metal-
composite stacks, the jet energy is reduced and jet coherency
distorted when penetrating this stacked alliance. This results
in the variation in kerf quality and necessitates an effective
approach to monitor the surface roughness for both Ti and
CFRP in the stacked configuration. To the best of authors’
knowledge, no effort has been made in AE analysis using
wavelet packet transform (WPT) in AWJ machining for
multi-material configurations. In this study, an algorithm
was proposed based on WPT to characterize the AE
signals in Ti/CFRP and CFRP/Ti material configurations.
Optimal wavelet parameters (decomposition level and
mother wavelet) and signal features were identified based
on their correlation with process parameters and surface
quality. The outcome of this study would result in precise
monitoring of surface quality and controlling of process
parameters based on the AWJ process signature in AE
signals, as identified by the proposed algorithm. The novelty
and efficiency of the proposed approach was affirmed by
the comparative assessment with the time domain analysis
techniques.

2Wavelet packet analysis

Wavelet transform is an efficient tool in signal processing
to analyze signal content simultaneously in time and fre-
quency domain. A wavelet ψa,b(t) is a family of functions
such that the starting function (mother wavelet) decomposes
the signal resulting in downsampled coefficients. The suc-
cessive decomposition generates time-frequency coefficient
map. At each decomposition level, daughter wavelets are
generated obtained through scaling and translation of the
mother wavelet (as given by Eq. 1.) These wavelet functions
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Fig. 1 Schematic illustration of
wavelet packet decomposition

are analogous to the complex sinusoid in Fourier transform
except that they exhibit some important properties, different
from those complex sinusoidal functions. The wavelet func-
tions oscillate about zero mean are not always smooth and
can be asymmetric, while complex sinusoids are infinite in
time, smooth, and predictable.

ψa,b(t) = 1√
a
ψ

(
t − b

a

)
(1)

where b and a are translation and scale factors respectively
such that a ∈ R

+ where R is a real number. For continuous
mathematically, continuous wavelet transform (CWT) is

defined as the inner product of a given signal with the
wavelet basis (as given by Eq. 2).

Wψf (a, b) = 〈f (t), ψa,b(t)〉
Wψf (a, b) = 1√

a

∫ ∞

−∞
f (t)ψ

(
t − b

a

)
(2)

While CWT provides a fine and efficient time-frequency
resolution, it carries redundant information in every step and
is computationally intensive. To overcome the limitations of
CWT, the discretized scales can be used. One form is dyadic
discretization where the scales vary in the steps of 2j (j =
1, 2, 3 · · · ) Using the wavelets to allow multi-resolution
analysis, two different tools have been developed—discrete

Fig. 2 Experimental set up and methodology
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wavelet transform (DWT) and WPT. Each decomposition
is carried out using the low- and high-pass functions, as
described in Eqs. 3 and 4.

Aj(k) =
∑
n

h(n − 2k)cj−1 (3)

Dj(k) =
∑
n

g(n − 2k)cj−1 (4)

where A and B are approximation and detailed wavelet
coefficients generated using low-pass (scaling) functions
(h) and wavelet (high-pass) functions (g). j is the decompo-
sition level (j = 1, 2, 3 · · · ), k = 1, 2, 3 · · · is the number
of coefficients and is the total number of samples in original
signal. Figure 1 schematically illustrates the decomposition
procedure in WPT up to decomposition level 3. Starting
with the original signal, the low-pass and high-pass filters
decompose the signal into two sub-bands of approxima-
tion (scaling coefficients) and detailed coefficients (wavelet
coefficients). The resulting approximation (A) sub-band has
the low-frequency components and detailed (D) has high-
frequency components. If the sampling frequency of the
original signal is Fs , the frequency content of the two pack-
ets (sub-band) is [0, Fs/4) and (Fs/4, Fs/2]. Similarly for
any j th decomposition level, 2j wavelet packets (frequency
sub-bands) are generated. These packets have the frequency
range as follows:

[
iFs

2j+1
,
(i + 1)Fs

2j+1

)

i = 0, 1, 2 · · · 2j − 1 (5)

Therefore, after each decomposition, the signal is down
sampled by two.

3Methods andmaterials

In this study, stacked titanium-CFRP was machined in two
configurations. Thickness of titanium (Ti6Al4V) and CFRP
was 2.8 mm and 12.7 mm respectively. Flow International
WJP 1313 AWJ system was used for the machining
experiments. A ruby orifice and tungsten carbide nozzle
was used with bore diameters of 0.33 mm and 0.9 mm
respectively. Straight machining geometry was used and the
experimental set up is shown in Fig. 2. The process variables
were pressure (P) and traverse speed (u). Three pressure
levels—200, 275, and 350 MPa and continuous traverse
feed between 1 and 10 mm/s was used. The selection
of parameters and their levels was based on the practical
utility and the screening tests for partial depth penetration
of the jet [18]. The design of experiments is given in and
Table 1 respectively. Overall, 32 experimental conditions

Table 1 Experimental design in AWJ machining of Ti-CFRP and
CFRP-Ti stacks [32]

Nomenclature Pressure Speed Stacking

(MPa) (mm/s) sequence

TC1 350 10 Ti/CFRP

TC2 350 7.5 Ti/CFRP

TC3 350 5 Ti/CFRP

TC4 350 4 Ti/CFRP

TC5 350 3 Ti/CFRP

TC6 350 2 Ti/CFRP

TC7 350 1 Ti/CFRP

TC8 275 10 Ti/CFRP

TC9 275 7.5 Ti/CFRP

TC10 275 5 Ti/CFRP

TC11 275 2 Ti/CFRP

TC12 275 1 Ti/CFRP

TC13 200 1 Ti/CFRP

TC14 200 5 Ti/CFRP

TC15 200 2 Ti/CFRP

TC16 200 7.5 Ti/CFRP

CT1 350 10 CFRP/Ti

CT2 350 7.5 CFRP/Ti

CT3 350 5 CFRP/Ti

CT4 350 4 CFRP/Ti

CT5 350 3 CFRP/Ti

CT6 350 2 CFRP/Ti

CT7 350 1 CFRP/Ti

CT8 275 10 CFRP/Ti

CT9 275 7.5 CFRP/Ti

CT10 275 5 CFRP/Ti

CT11 275 2 CFRP/Ti

CT12 275 1 CFRP/Ti

CT13 200 1 CFRP/Ti

CT14 200 5 CFRP/Ti

CT15 200 2 CFRP/Ti

CT16 200 7.5 CFRP/Ti

were used, 16 for each stacking configuration (Ti/CFRP
and CFRP/Ti). As shown in Fig. 2, two wideband acoustic
sensors (sampling frequency 1 MHz) were used with “AE-
2”and “AE-1” channels at the top and bottom layer of the
stack. The surface roughness of the machined kerf surface
was recorded using Keyence VR3100 3D measurement
system. 2D roughness profiles were further obtained from
the 3D map using evaluation length, cutoff length (λc),
and low-pass Gaussian filter (λs) 5.6 mm, 0.8 mm, and
25 μm respectively. The experimental methods and results
are discussed in detail in the previous work [32].
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Table 2 Mother wavelets used
in this study Wavelet family Order

Orthogonal

Daubechies db2, db3, db4, db5, db6, db7, db8, db9, db10

Coiflet coif1, coif2, coif3, coif4, coif5

Symlet sym2, sym3, sym4, sym5, sym6, sym7, sym8

Biorthogonal bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8,

bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8

3.1 Analysis methodology

The AE signals were analyzed using WPT. In order to
extract any meaningful features from the signals, the
selection of mother wavelet plays a critical role. The
similarity in the profile anatomy with the mother wavelet
can filter the best distinguishable feature(s). About 35
mother wavelets have been selected to analyze (as shown in
Table 2). Figure 3 shows the physical shape of the mother
wavelets of different orders and class used in this study. The
first step in the analysis is the WPT of the given signal.
For a given level of decomposition, the wavelet packets
were calculated and arranged in increasing frequency order.
Energy of each wavelet packet at that decomposition level
is given by f 6 in Table 3 where yk is the kth coefficient.

The total duration of the acquired signal was 30 s which
has two zones: zone–a is when only top layer is machined

Fig. 3 Shape of mother wavelet a Daubechies, b Coiflet, c Symlet, and
d Biorthogonal

and zone-b is when the stacked combination is machined.
For WPT, a signal of 1.0-s duration was sampled from zone
(b) due to overabundance in data. WPT was then applied to
the sampled signals using 35 different mother wavelets and
up to 10 decomposition levels. At the j th decomposition
level, 2j wavelet packets were generated and sorted in an
increasing order of frequency range. Each wavelet packet
was reconstructed and characterized with eight features,
as described in Table 3. A total of 2j packets were
analyzed at the j th decomposition level. The calculated
feature was plotted against a frequency-ordered wavelet
packet number, and the peaks were detected which indicated
dominant wavelet packets (frequency bands) for a given
feature. The cumulative sum of the peak values at a j th
decomposition level was used as an indicator to characterize
the signal. Next, the step was repeated for 32 experimental
conditions (16 conditions for each of the two staking
configuration). The regression models were developed to
relate the experimental conditions (pressure and traverse
speed) with the calculated signal feature(s)/indicator. The
multivariate regression involved a cubic model alongwith
stepwise (forward and backward) selection method to
eliminate the non contributing terms in the model. This step
was repeated for 35 mother wavelets, 10 decomposition
levels, and for eight different features. A total of 32
conditions resulted in 64 samples (one from each sensor).
A total of 35 × 10 × 8 = 2800 models were created for
each stack configuration and each sensor which adds up
to 11,200 models. The coefficient of determination (R2),
adjusted R2, and RMSE (or CV(RMSD)) was calculated
for each model. RMSE or RMSD is the root mean square
error or root mean standard deviation and CV (RMSD) is
the coefficient of variation of RMSE which is the ratio of
RMSE and sample mean. The optimal wavelet conditions
(mother wavelet, decomposition level, and feature) was
selected based on certain criteria—maximum R2, adjusted
R2, and minimum RMSE or CV(RMSD). Based on the
selected wavelet conditions and features, the correlation
between the process parameters and determined signal
feature was established. Further to enable prediction and
control of kerf wall surface quality, similar methodology
was adopted except that the generated model utilized AE
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Table 3 Features of wavelet
packets Feature Nomenclature Relation

Absolute mean f 1 C̄i = ∑K
k=1|yk |

Maximum peak-to-valley f 2 max(yk) − min(yk)

Root mean square f 3
√∑K

k=1y2
k

K

Skewness f 4 RSki = 1
σ 3

i K

∑K
k=1(yk − ȳi )

3

Kurtosis f 5 RKui = 1
σ 4

i K

∑K
k=1(yk − ȳi )

4

Packet energy f 6 Ei = ∑K
k=1y

2
k

Entropy f 7 Eni = −∑K
k=1

y2
k

Ei
log(

y2
k

Ei
)

Energy-entropy coefficient f 8 ηi = Ei

Eni

signal from both sensors to predict the maximum surface
roughness (Rz) in a given workpiece. The correlation
between signal features extracted using optimal wavelet con
dition and maximum Rz is auxiliary to the quality control.
The process algorithm is summarized as the flowchart in
Fig. 4.

4 Results and discussion

4.1 Kerf surface

Figure 5 shows the optical micrographs of kerf surfaces
generated for TC8–TC12 and CT8–CT-12 experimental

Fig. 4 Flowchart for the
proposed WPT analysis
algorithm
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Fig. 5 Optical micrographs of
surfaces generated in a
AWJ-machined Ti/CFRP and
CFRP/Ti stack at P = 275 MPa

Fig. 6 R2 for regression models developed using wavelet packets from decomposition level 2 to 10 for AE1, TC condition determined using
feature a f1, b f2, c f3, d f4, e f5, f f6, g f7, and h f8
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Fig. 7 Maximum R2, adjusted R2, and RMSE for regression models developed using feature—f1 (absolute mean) with wavelet packets from
decomposition level 2 to 6 for a TC2, b TC1, c CT2, and d CT1 AE sensors

conditions mentioned in Table 1. At a given pressure, as
the jet traverse speed increased, the backward bending of
cutting front resulted in high striations on the kerf surface.
This observation was consistent regardless of the stacking
sequence of Ti and CFRP. The maximum 2D surface
roughness was observed towards the jet exit side (bottom
edge of the kerf) where jet curving and resulting loss in
cutting energy is maximum. Within the given experimental
conditions, the range of average roughness Ra was 1.8–
17 μm and 1.89–11.6 μm for Ti and CFRP respectively.The
maximum Ra observed for Ti/CFRP in Ti was 4.56 μm
with a corresponding Ra of 6.67 μm in CFRP at TC2
condition (P = 350 MPa, u = 7.5 mm/s). The maximum
Ra observed for Ti/CFRP in CFRP was 11.6 μm with
a corresponding Ra of 4.05 μm in Ti at TC9 condition
(P = 275 MPa, u = 7.5 mm/s). The maximum Ra in CFRP-
Ti configuration was at TC1 condition (P = 350 MPa,
u = 10 mm/s) with Ra = 7.33 μm–10.1 μm (CFRP–Ti) and
also at TC8 condition (P = 275 MPa, u = 10 mm/s) with
Ra = 6.24 μm–17 μm (CFRP–Ti). The kerf wall roughness
and taper results are discussed in detail in the previous work
[32].

4.2 Relationship with process parameters

Upon WPT of signals, the features mentioned in Table 3
were calculated and regressed with the process conditions—
pressure and speed. A stepwise linear regression model was

used with maximum degree of 3 for each predictor (P and
u) in the initial model. An F-statistic was used to add or
reject the potential predictor terms in the model according
to SSE (sum of squares) criterion. This means that if a term

Fig. 8 R2 decomposition level 2 to 6 for regression models calculated
with selected feature (f1) and wavelet (coif2) for sensor a TC2, b TC1,
c CT2, and d CT1 AE sensors
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is not currently in the model, the null hypothesis is that
the term would amount to zero coefficient if added to the
model. However, a p value for those terms is calculated,
and if qualifies (entry p value < 0.05), the null hypothesis
is rejected and the term is added to the model. Similarly,
if model currently has a term, the null hypothesis is that
the term has zero coefficient. If qualifies (i.e., exit p value
> 0.1), there is insufficient evidence to reject the null
hypothesis and the term is removed from the model. A
logarithmic transformation of the response variable was
used to improve on the model statistics. Figure 6 shows the
heat map for coefficient of determination when regressed
with the AWJ process variable—pressure (P) and speed (u)
for Ti/CFRP configuration for AE1 signal. The abscissa of
the map is the mother wavelet used to calculate WPT of the
signal and ordinate is the decomposition level.

It was found that among all the features, absolute mean
(f1), maximum peak-to-valley (f2), root mean square (f3),
packet energy (f6), and energy-entropy coefficient (f8) were
the competent candidates that could reasonably (R2 >

90%) correlate with the process parameters for all the
sensor locations. The heat maps for other sensor location(s)
and stacking configuration are not shown for the sake of
brevity. Further, it was realized that satisfactory results
could be obtained within decomposition level 6. Figure 7

shows the maximum R2, adjusted R2, and RMSE (root
mean square error) regression models developed using
wavelet packets with feature—f1 (absolute mean) from
decomposition level 2 to 6 for (a) TC2, (b) TC1, (c)
CT2, and (d) CT1 AE sensors respectively. As apparent, in
Ti/CFRP configuration, the AE signal from top layer sensor
correlated well with the process parameters for almost all
mother wavelets with R2 > 0.97 for most of the cases.
However, only a few wavelets could effectively R2 >

94% extract the features at the second layer (CFRP) in
Ti/CFRP. On average, RMSE was less than 0.1 for top
Ti layer while it was between 0.1 and 0.2 for the bottom
CFRP layer. When the stacking sequence was reversed
to CFRP/Ti, RMSE was between 0.1 and 0.2 from the
top CFRP layer and between 0.15 and 0.4 for the bottom
Ti layer. This confirms the response from the high-speed
particle interaction with metal is more distinguishable than
interaction with CFRP when at the top in stacking sequence.
High R2 could be obtained in CFRP but for selective
wavelet parameters. As the jet cutting ability degrades with
penetration depth, the correlation is more contingent upon
the wavelet parameter selection, more so when titanium is
at the bottom. The poor relation between signal features
and process parameters at bottom titanium is a possible
effect of (1) reduction in jet density and (b) reverse flow

Fig. 9 R2 Relationship between
process variables and signal
feature f1 determined with
optimal wavelet conditions for
sensor a TC2, b TC1, c CT2, and
d CT1 AE sensors

ca

db
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a

b

c

d

Fig. 10 Feature f 1 versus wavelet packets determined at decomposi-
tion level 10 with coiflet-2 wavelet for experimental conditions TC2
and CT2: a TC2, b TC1, c CT2, and d CT1 AE signals

(and resulting high turbulence) due to sudden interaction
from a material of low resistance to high resistance.
For Ti/CFRP configuration, wavelets that resulted in a
reasonable correlation were Bior1.3, 2.2, 3.1, Sym2, and
Coif2. In CFRP/Ti configuration, db2, db5, db7, bior1.3,
bior2.8, Coif2, and Sym3 were significant for top CFRP.
For bottom, Ti, db3, db5, db9, db10, bior2.8, boif2-5, Sym3,
and Sym8 were statistically significant. Among all, coiflet-2
was selected as the mother wavelet. Next, the decomposition
level was selected based on maximum R2 and minimum
RMSE. Figure 8 a and b shows the R2 and RMSE for
decomposition levels 2 to 6 for the selected wavelet and
feature f 1. It was again observed that the performance of

a

b

c

d

Fig. 11 Maximum R2, adjusted R2, and CV(RMSD) for regression
models developed using wavelet packets from decomposition level 2
to 10 for a Ti in TC, b CFRP in TC, c CFRP in CT, and d Ti in CT

CT1 signal was poor at levels where other signals perform
adequately. At this point, different decomposition levels
may be chosen for higher accuracy; however, for the sake
of simplicity and comprehensibility, one level is selected.
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Fig. 12 Rz—signal feature (f8)
model statistics a R2 and b CV
(RMSD) for decomposition level
2–10 with features calculated
using Sym5 mother wavelet

Going forward, level 3 was selected for the analysis since
lower decomposition level is computationally inexpensive.
Figure 9 shows the relationship between process variables
(pressure and speed) and selected signal feature (f 1)
determined using optimal wavelet conditions (Coiflet-2,
level-3). In general, the most contributive factor was
traverse speed followed by hydraulic pressure. For Ti/CFRP
configuration, increment in traverse speed resulted in high
f 1 value. The effect of pressure was negligible at low speed,
but at high speed, a positive trend was observed with f 1. In
CFRP/Ti configuration, a positive trend was observed with
speed while the effect of pressure is not well captured.

To further investigate the physical significance of the
signal signature, feature f 1 was plotted against the wavelet
packet number for decomposition level 10 and coiflet 2.
Figure 10 shows the f 1 as a function of frequency-ordered
wavelet packets. At decomposition level 10 , 210 = 1024
wavelet packets were generated. As evident, the absolute
mean feature has several dominant peaks while CFRP
response is more compacted.

4.3 Correlation with surface roughness

Once the correlation between signal features and control
variables have been identified and established, it is also
important to identify signal features that affect the surface
quality of the machined kerf wall. In contrast to the previous
section where correlation between process parameters and
signal features was independently for each sensor signal, the
roughness correlation a multi-sensor approach for a given

staking configuration. The maximum 2D roughness Rz

parameters in each member of a given stack configuration
was considered. Signal features from both the sensors were
used as the predictors and maximum Rz as the response
variable. Stepwise selection and removal of model terms
were according to F-statistics, and a p value was 0.05 and
0.1 for entry and exit statistics. Quadratic mathematical
models were developed and the heat maps were generated
which are not included for the sake of brevity. This time,
absolute mean (f1) and energy-entropy coefficient was
successful in predicting the roughness behavior with R2 >

95%. Figure 11 shows the maximum R2, adjusted R2, and
coefficient of variation of RMSD for decomposition levels
1–10 calculated with feature f1. As can be observed, CV
(RMSD) was minimum (< 0.8) for Ti6Al4V in Ti/CFRP
followed by CFRP in Ti/CFRP. Next, CFRP in CFRP/Ti
resulted in CV(RMSD) < 0.85 which was mostly greater
than 0.85 for Ti6Al4V in Ti/CFRP configuration.

Moving forward, Symlet–5 and feature f8 was selected as
the optimum mother wavelet based on its high R2 and low
CV (RMSD). Figure 12 shows (a) R2 and (b) CV (RMSD)
for optimal wavelet parameters at decomposition levels 2–
10. As evident, level 10 resulted in high R2 and reasonably
low CV (RMSD) for roughness prediction in both layers
in both stacking configuration. Feature f1 also provided
reasonable correlation but resulted in different optimal
wavelet parameters for different stacking configuration. For
Ti/CFRP configuration, it was Sym2 wavelet and level-5
decomposition while it was Sym5 and level 4 decomposition
for CFRP/Ti configuration.
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c d e

f g

b

Fig. 13 Predicted vs. observed Rz with prediction calculated using averaged time domain a RMS, b standard deviation, c skewness, d kurtosis, e
entropy, and wavelet packet using optimal wavelet conditions for feature f f1 (absolute mean) and g f8 (energy-entropy coefficient)
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4.3.1 Comparison of models

Previous work [17] has demonstrated the techniques in time
and frequency domain to correlate AE signal characteristics
better with the process conditions. To determine and
compare the features and methods that helps in better
prediction of surface roughness parameter (Rz), the signal
was windowed with a duration of 0.01 s each and a
few features were determined. These time varying features
were average RMS, standard deviation, skewness, kurtosis
and entropy. From wavelet packet analysis, f1 (absolute
mean) and f8 (energy-entropy coefficient) were selected. A
quadratic, stepwise linear regression model was developed
for each stacking sequence. Similar to the ANOVA in WPT,
features of signals acquired from both top and bottom layers
of the stack were used as predictors for maximum Rz in both
layers. The p entry value was 0.05 and p exit was 0.1.

The combined results for observed vs. predicted rough-
ness is plotted in Fig. 13. Among time-domain analysis,
RMS, and standard deviation were the best estimators
with R2 = 88.23% and 88.58% respectively, and CV
(RMSD) = 12.68% and 12.25% respectively. The features
skewness and kurtosis resulted in R2 < 44.84% with
CV (RMSD) > 27.46%. Also, entropy was slightly better
with R2 = 57% and CV (RMSD) = 24.24%. Figure 13
a–e shows the predicted vs. observed Rz in time-domain
analysis. This means RMS and standard deviation can be
employed in roughness prediction. However, skewness vs.
kurtosis, entropy, and cloud characteristics were effectively
used in characterizing and clustering the signals. Figure 13
shows the prediction against the observed surface roughness
in both experimental configurations. The prediction using
feature f1 showed R2 and CV(RMSD) of 97.12% and 6%
respectively while it was R2 = 95.66% and CV (RMSD) =
7.37% for feature f8. Clearly, WPT was superior over other
methods.

5 Summary and conclusion

In this study, acoustic emission signals were analyzed to
predict the surface quality in abrasive water jet machining
of a stacked titanium-CFRP hybrid structure. A novel
approach was proposed to decompose the signals using
wavelet packet transform and extract characteristic features
that can optimally describe the relationship between
process parameters and kerf quality of the machined
workpiece. A compendium of 35 mother wavelets and
decomposition levels up to 10 were used to identify
the wavelet decomposition parameters based on high R2,
low RMSE, and less computation power requirement
(low decomposition level). Besides, several statistical
features were extracted such as absolute mean, maximum

peak-to-valley height, skewness, kurtosis, entropy, and
energy-entropy coefficient. These features were used
to determine relationship with process parameters and
resulting surface quality. Using this proposed multi-
scaled wavelet packet decomposition technique, following
conclusions were made:

1. The maximum roughness Ra and Rz was observed
at high traverse speed (u > 7.5 mm/s) at each
pressure level, regardless of the stacking configuration.
The roughness Rz was as high as 11.6 μm in Ti/CFRP
(at P = 275 MPa, u = 7.5 mm/s), while it was
17 μm in CFRP/Ti configuration (at P = 275 MPa,
u = 10 mm/s). Regression models were developed to
select the optimal features, wavelet decomposition level
and mother wavelet that help establish correlation with
process parameters and surface quality.

2. Among the statistical features, absolute mean (f 1),
packet energy (f 6), and energy-entropy coefficient
(f 8) were determined as optimal features to describe
the process performance with R2 > 90%.

3. In determining the signal signature in relation with
process parameters, Coiflet-2 and level 3 was identified
as optimal wavelet parameter. In general, R2 was higher
for AE signals acquired at the top layer, especially in
Ti/CFRP configuration.

4. Prediction of surface quality required a dual sensor
approach which means the signal signatures from
both the sensors were used simultaneously to generate
predictive models for surface roughness. Symlet-
5 and energy-entropy coefficient (f 8) resulted in
roughness prediction with R2 > 95%. The optimal
decomposition level was 5 and 4 for Ti/CFRP and
CFRP/Ti configuration respectively.

5. Upon comparing with the time domain analysis, WPT
was found to be superior in predicting maximum
roughness (Rz) in the specimens with R2 = 97.12% and
CV (RMSD) = 6%.
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