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Abstract
In situ monitoring and accurate detecting of welding quality have been one of the common challenges of automatic welding
process. This paper contributes an intelligent decision-making framework for the weld penetration prediction from the keyhole
dynamic behavior under time-varying VPPAW pools. Initially, a series of dynamic experiments under different welding condi-
tions were conducted to acquire the backside images of keyhole and corresponding backside bead width. Then, the geometry
appearance of keyhole was described by the supervised descent method (SDM)–based image processing algorithm.
Subsequently, the internal correlation between the keyhole characteristics and the backside width was further derived to help
understand the nonlinear and time-varying VPPAW process. Finally, a novel dynamic model based on an online sequential
extreme learning machine (OS-ELM) was designed to predict the weld penetration as measured by the backside bead width in
real time. Extensive experiment results further verify and validate that the proposed dynamic OS-ELM model is significantly
better than other state-of-the-art algorithms in terms of predicting accuracy, efficiency, and robustness.
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1 Introduction

As “one of the most prospective advanced welding technolo-
gies in the twenty-first century,” the keyhole variable polarity
plasma arc welding (VPPAW) has many advantages of high
energy density, strong penetrability, and free porosity [1–4]. It
has seen widespread use in high-end aerospace manufacturing
area such as the space shuttle external tanks and rocket pro-
pellant tanks. Due to the unique physical attributes of plasma
arc, it has brought a series of issues, e.g., the stability of key-
hole molten pool, the complexity of welding process, and the

dependability of welding quality [5]. Especially for constant
parameters, open-loop VPPAW process, the keyhole collapse,
or burn-through may easily occur in the thin-walled plates if
disturbances such as abrupt change of heat dissipation, butt-
joint gap, or misalignment exist. Therefore, how to guarantee
the dynamic presence of the keyhole molten pool for
obtaining a desired weld remains one of the greatest chal-
lenges in the automatic VPPAW process. In view of the key-
hole state is a core element for determining the weld penetra-
tion and joint quality, it is quite necessary to obtain the sensing
information in situ for reflecting the keyhole dynamic behav-
ior. Therefore, using the “keyhole effect” as an entry point,
most welding researchers have made extensive efforts in in-
vestigating the relationship between the keyhole signatures
and weld joint penetration. The earlier researches mainly fo-
cus on some indirect in situ sensing methods including plasma
cloud charge [6], efflux plasma voltage [7], and audible sound
signals [8, 9] to monitor and control the keyhole plasma arc
welding process. Nevertheless, the above methods mainly
concern with variation of individual physical phenomena to
reflect the keyhole status, not directly provide the shape and
dimension information of keyhole.

To date, with the rapid development of machine vision
technology, most welding researchers have paid more
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attention to visual sensing of keyhole molten pool, which
could provide intuitive information related to the weld quality
[10–16]. Hence, Zheng et al. [10] acquired the front-side im-
age of the keyhole puddle and extracted the keyhole geomet-
rical sizes to further realize the feedback control for weld
formation during the VPPAW process. However, it is hard to
capture a complete and clear keyhole image from the front-
side workpiece due to the large-diameter plasma torch and
limited standoff distance. To better observe the keyhole ap-
pearance, Liu et al. [13] developed a vision-based sensor to
acquire the keyhole images from the backside of the work-
piece. Based on the mechanism analysis of keyhole formation,
the authors qualitatively investigated the effect of the keyhole
features on the weld quality. Additionally, Wu et al. [14, 15]
described the keyhole variation mechanism based on a
thermal-force model and then proposed a novel intelligent
model to relate the welding parameters to the backside key-
hole characteristics. Nevertheless, detailed studies should be
done to further verify that the keyhole behavior does contain
sufficient information on the weld penetration. The establish-
ment of the correlation between keyhole behavior and weld
penetration demands more accurate in situ inspections and a
suitable welding dynamic model.

For a full-penetrated weld, a key indicator of determining
the weld quality is the weld penetration status which can be
quantitatively evaluated by the backside bead width [16–18].
However, it is very difficult to achieve the in situ measurement
for the backside width because of the strong plasma arc dis-
turbance during VPPAW process. Hence, how to derive the
complex correlation between the keyhole behavior and the
backside width is of utmost importance towards a better con-
trol of weld joint penetration. To our knowledge, the artificial
neural networks (ANN) are capable of dealing with complex
database with nonlinear and dynamic relationships, which
have been widely used to perform tasks such as nonlinear
approximation, prediction, and classification in a multivari-
able and complicated industrial process, especially in the area
of welding process [19–22]. In this regard, Cook et al. [23]
applied the artificial neural networks (ANN) to predict weld
bead geometry depending on the process parameters and weld
pool characteristics of gas tungsten arc welding (GTAW) pro-
cess. Chen et al. [24, 25] further developed a size and shape
neural network model (SSNNM) for a dynamic GTAW pro-
cess to relate the welding parameters to the backside weld
width. However, traditional ANN algorithms have a good ca-
pacity of nonlinear identification, but have the disadvantages
of slow training speed, low generalization capability, etc.
Moreover, the fluctuating weld conditions or external interfer-
ences challenge the application of ANNmodel for penetration
prediction because an off-line trained model is hardly adapt to
the constantly changing weld pool.

To develop the capability for predicting the weld penetra-
tion despite large variations in keyhole geometry, a novel

dynamic OS-ELM model will be introduced to accomplish
this objective in this study. It is an easy-to-use and incremental
fast learning algorithm for single–hidden layer feedforward
neural networks (SLFNs) [26]. The OS-ELM could provide
the online learning property that guarantees the trained model
matches the real complicated and changing environment per-
fectly [27, 28]. Therefore, recent years have received signifi-
cant attentions on time-series prediction, image processing,
and large-scale data processing area. Yang et al. [29] proposed
a novel OS-ELMmodel–based manufacture execution system
for the position in situ identification under the dynamic chang-
ing environment, which can overcome the problem of mis-
match between the model and the process for a RFID-
positioning system. Frances-Villora et al. [30] applied the
OS-ELM algorithm as a good candidate for the hardware im-
plementation of real-time online learning applications, due to
its combination of high training speeds and a tight use of
resources. And also, Yu et al. [31] put forward a novel ensem-
ble OS-ELM based on combination weight (CWEOS-ELM)
for fast-changing data stream classification. The results dem-
onstrate that the proposed algorithm not only has a better
generalization performance but also provides a faster learning
procedure.

Nevertheless, the advantages of evolving OS-ELM ap-
proach have not been penetrated into welding process domain
up to now. Enlightened by a certain similarity between the
complex welding process and the above industrial process,
our study will further explore the feasibility of the OS-ELM
model for weld penetration in situ prediction under varying
VPPAW pools. Therefore, the structure of this paper was or-
ganized as follows. In Section 2, we briefly described the
VPPAW experiment platform. Section 3 detailed an adaptive
image processing algorithm for characterizing the keyhole
behavior. Section 4 introduced a novel OS-ELM-based
welding penetration in situ prediction model and illustrated
the performance results comparing with some classical algo-
rithms. Section 5 highlighted our conclusions.

2 VPPAW experimentation overview

2.1 Experiment apparatus

The VPPAW experimental platform is mainly composed of a
welding power supply, a moveable manipulator, a low-cost
flexible vision sensing system, and an industrial computer-
based process controller. The basic controller can automatical-
ly adjust the welding parameters through its analog output
interface to the welding power source system. As seen in
Fig. 1, a charge-coupled device (CCD) camera was equipped
with a proposed narrow band-pass filter (central wavelength
660 nm, bandwidth 35 nm). It was located behind the backside
of workpiece to capture the keyhole images when the
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workpiece is penetrated to form a stable keyhole. The plasma
torch and camera were attached to a moveable manipulator
controlling by the computer. The keyhole image (200 × 200
8-bit digital image matrices) can be acquired at the sampling
rate of 45 Hz. To better obtain the clear keyhole image, the
welding angle and distance between the camera and torch
center were set to 15° and 260 mm respectively in our
research.

2.2 Experiment conditions

Generally, the practical welding condition such as work-
piece contamination, thermal-induced deformation, or var-
ied clearance/misalignment may cause an abrupt change
on the keyhole pool. Indeed, these interface factors have a
direct influence on the welding thermal distribution on the
welded workpiece. Therefore, to investigate the effects of
keyhole behavior on the weld joint penetration when the
welding interferences exist, the weld parameters were var-
ied randomly to simulate the time-varying welding pro-
cess. As shown in Table 1, a series of vertical-up butt-
welding experiments were conducted on 2219 aluminum
alloys with uniform dimensions 300 × 50 × 5.5 mm. The
welding process parameters (welding current and plasma
gas flow rate) determining weld quality were randomly
adjusted according to the process controller, as shown in
Fig. 2.

With the rapid changing of weld heat input, the key-
hole behavior continues to change along with the varia-
tion of backside bead width (see Fig. 3). As demonstrated,
the weld penetration status is of importance to weld

formation and joint quality, and the backside weld width
(Wb) is proposed to evaluate the weld penetration quanti-
tatively. In this study, the backside welds were captured
off-line by CCD camera after welding, and then, the ac-
tual weld widths were computed based on the checker-
board calibration method (according to Fig. 8a). To estab-
lish the relationship between the backside width and
welding penetration, it is necessary to develop an appro-
priate evaluation criterion for the weld penetration (see
Table 2).

Figure 3 further shows that the keyhole behavior can
roughly reflect the variation trend of backside width under
the random changing of welding condition. With a low
heat input, the workpiece is not fully penetrated and the
back keyhole has not appeared; after that, with the increase
of heat input, the keyhole sizes increase obviously and the
backside width also increases accordingly. Due to the in-
herent nonlinearity and dynamics of welding process under
varying welding conditions, there exists a complicated re-
lationship between the keyhole features and the backside
weld width. Therefore, in order to achieve accurate predic-
tions of the weld penetration, nonlinear models, rather than
linear models, are used to correlate the keyhole features
with the weld width.

Moreover, the backside weld width correlates with the
keyhole features nonlinearly and dynamically when the
VPPAW pool varies, and the keyhole cannot maintain a
relatively stable state. Therefore, it is essential to develop
an effective and robust image processing algorithm to
characterize the keyhole dynamic behavior. In this regard,
most researchers have applied some traditional edge

Fig. 1 The architecture of VPPAW experimental apparatus

Table 1 Detailed VPPAW
process parameters DCEN current

(A)
DCEN time
(ms)

DCEP current
(A)

DCEP time
(ms)

Plasma gas flow
(L/min)

Travel speed
(mm/min)

190~220 19 210~240 4 1.15~1.35 240
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detection algorithms to plasma arc welding in the flat
position [13]; however, it is difficult to handle the keyhole
images in case of partial occlusion during vertical upward
VPPA welding. Indeed, the dynamic balance inside the
keyhole is more susceptible to the strong interferences
from spatter (slag) and unsteady plasma jet; the keyhole
behavior cannot always maintain a stable status (see Fig.
4) under varying welding parameters.

3 Keyhole image processing using SDM

3.1 Brief review of SDM approach

To overcome the aforementioned drawbacks, we developed
an accurate and robust algorithm for extracting the keyhole
periphery based on supervised descent method (SDM).
Comparing with some traditional edge extraction algorithms,

Fig. 2 The variation of VPPAW
current and plasma gas flow

Fig. 3 Keyhole image acquisition
and the backside weld appearance
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SDM learns in a supervised manner generic descent directions
and can resolve many shortages of second-order optimization
schemes [32]. The SDM has been widely applied in facial
feature detection and tracking fields in recent years [33, 34].

Indeed, the keyhole edge extraction has a certain sim-
ilarity to the face alignment/detection process; hence, our
study will investigate the feasibility of the SDM algorithm
on keyhole image processing. In this section, an overview
of proposed SDM approach for addressing the keyhole
images was briefly reviewed which mainly contains train-
ing and testing sessions. Some processing stages were
shared by the training and testing sessions (indicated by
the dotted box in Fig. 5).

3.1.1 Training session

Step 1: Given a keyhole image I ∈ℜl × 1 of l pixels
and the coordinate vector of keyhole edge landmarks
(p is the number of landmarks in each keyhole im-
age), I(x) ∈ℜ2p × 1 is feature extraction function.
Then, we detect the specific keyhole edge landmarks
and further capture the SIFT (scale invariant feature
transform) features to achieve a robust representation
for keyhole edge information. During training, we
will assume that the correct p landmarks (in our case
8) are known, and we will refer to them as x∗ (see
Fig. 5a). To reproduce the testing scenario, we ran the

face detector on the training images to provide an
initial configuration of the landmarks (x0), which cor-
responds to an average shape (see Fig. 5b). Therefore,
the objective function for keyhole alignment is:

f x0 þΔxð Þ ¼ h I x0 þΔxð Þð Þ−ϕ*k k22 ð1Þ

where ϕ∗ = h(d(x∗)) refers to the feature (SIFT) of the actual
shape. The main idea behind SDM algorithm is to calculate a
series of descent directions to produce a sequence of updates
(xk + 1 = xk +Δxk) starting from that converges to during
training.

Step 2: The first shape incrementΔx1 can bewritten as
a generic combination of SIFT feature vectors ϕ0 plus
a bias term b0 in Eq. 2:

Δx1 ¼ R0ϕ0 þ b0 ð2Þ

where R0 indicates a descent direction, which represents ma-
trix of regression coefficients. Therefore, SDMwill calculate a
sequence of generic decent directions and bias terms in Eq. 3:

xk ¼ xk−1 þ Rk−1ϕk−1 þ bk−1 ð3Þ

Fig. 4 a–d The keyhole images at
different moments

Table 2 A detailed evaluation criterion for VPPAW penetration status (NP none penetration, PP partial penetration, FP full penetration, OP over
penetration)

Test Number 1 2 3 4

Weld penetration type NP PP FP OP (Cutting)

VPPAW pool shape

Backside bead width ZERO 0~5.5mm 5.6~7.0mm NULL

Wb
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Step 3: For each kth training iteration, Rk and bk are
learned from a distinct linear regression, minimizing the
difference between the true shape and predicted shape as
expressed in Eq. 4:

argmin
R;b

Δxi*−Rkϕk−bk
�� ��2

2
ð4Þ

whereΔxi* ¼ xi*−xik is the desired increment of shape xik from
the current iteration to the true shape in the training set after 5
steps for all training keyhole images.

3.1.2 Testing session

Most of the steps in testing session are the same with the
training session. Firstly, we obtain a testing image and find
the specific landmarks using SIFT descriptor around each
landmark. Then, with the help of the well-trained SVM regres-
sion model, we can acquire the predicted keyhole landmarks,
with a root mean square error (RMSE) comparing with true
edge landmarks. According to Eq. 5, the root mean square
error (RMSE) is calculated on the differences between the
SDM-based detection (yellow points) and true shape (red
points) on keyhole images. It is used to measure the alignment
accuracy of the keyhole edges.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
xit−x

i
e

� �2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
yit−y

i
e

� �2
s !

=2 ð5Þ

where (xit, y
i
t ) is the coordinate values of the ith SDM-based

detection point, and (xie, y
i
e ) is the coordinate values of the

corresponding true point. Figure 6 shows the complete flow
diagram of SDM algorithm for the keyhole image processing
process.

3.2 Result validation using SDM algorithm

In this section, we will perform some experiments with the
keyhole images to verify the proposed SDM approach. We
acquired a total of 215 keyhole images (each image has a size
of 200 × 200 pixels) corresponding to different penetration
statuses and conducted a model training (38%) and testing
(62%). To better represent the whole keyhole shapes, we man-
ually selected several edge points in sequence during the train-
ing phase. The performance was evaluated using RMSE indi-
cator, which can be calculated on the difference between the
predicted keyhole landmarks and the true keyhole landmarks.

In addition, Fig. 7 shows an example of the keyhole edge
estimation taken for a test sequence. With regard to each key-
hole image, the RMS errors were almost within 10 and the
average RMS error was nearly 7.004. To make sense of the
numerical results, several location results on different keyhole
images were presented to validate the effectiveness of the
SDM algorithm. As depicted in Fig. 7, we cannot observe
obvious differences between the predicted and true shapes.
Note that in the 49 and 74 frames of keyhole images, the
SDM algorithm could accurately track the keyhole edge even
in cases of partial occlusion. Moreover, the algorithm was
implemented in OpenCV platform, and the computation time
per image needs 80~120 ms, which is suitable for real-time
image processing during VPPAW process.

3.3 Keyhole behavior characterization

After detecting all 8 landmarks from the keyhole images
using the SDM-based approach, it is essential to extract the
keyhole complete boundary to further analyze the keyhole
behavior in detail. Indeed, the keyhole shape is almost
oblate according to Fig. 4; we will apply a common
ellipse-fitting algorithm to extract the keyhole edges. In
this regard, we respectively defined the keyhole length
(Kl), width (Kw), length-to-width ratio (Kr), and keyhole

Fig. 5 a A manually labeled
keyhole image (200 × 200 pixels)
with 8 landmarks. b Blue outline
represents a specified keyhole
detector on the training images
which provides the mean
landmarks
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area (Ka) as the keyhole feature parameters (see Fig. 8),
which further to holistically descript the keyhole dynamic
behavior. The length-to-width ratio (Kr) is used to describe
the oblateness of the keyhole [35].

To obtain the actual keyhole geometric characteristics, we will
transform the pixel numbers into the real dimensions both con-
taining x-axis (along the welding direction) and y-axis (perpen-
dicular to the welding direction) based on a 6mm× 6mm check-
erboard calibration method. The four points Ai (i = 1~4) have the
coordinates (Xi, Yi), and the distance of adjacent two points along
the same direction is 6 mm. The calibration coefficients CX and
CY can be determined as Eq. 6. Thus, with the acquired keyhole
images and the calibrated correlation, we can calculate the actual
sizes of keyhole and further represent themorphology and size of
the keyhole in the actual welding process.

CX ¼ 6=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1ð Þ2 þ y2−y1ð Þ2

q
¼ 0:05128mm=pixl

CY ¼ 6=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3−x1ð Þ2 þ y3−y1ð Þ2

q
¼ 0:05042mm=pixl

ð6Þ

4 OS-ELM-based dynamic process modeling

As depicted above, the measured keyhole pool was character-
ized by its width, length, length-to-width ratio, and keyhole
area which could identify the weld penetration. To our knowl-
edge, the substantial thermal inertia effect exists in VPPA
welding of aluminum alloy, which indicates the backside weld
width at any moment may not be determined not only by the

Fig. 6 Block diagram of SDM algorithm for keyhole image processing (red points refer to manual landmarks and yellow points refer to initialized/
predicted landmarks)

Fig. 7 The RMSE results
between the SDM-based
detection (yellow points) and true
shape (red points) on keyhole
images
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Fig. 8 The keyhole behavior characterization using ellipse-fitting algorithm (yellow points refer to the acquired landmarks)

Fig. 9 a Measured data for
keyhole characteristic parameters.
b Backside bead width and weld
appearance formation.
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keyhole pool at the same moment, but also by the adjacent
keyhole pool [15]. This implies that the correlation between
the keyhole pool and weld penetration is highly nonlinear and
time-varying which can be demonstrated in Fig. 9. Hence, a
dynamic OS-ELM model was considered to perform in situ
prediction of the backside width using the keyhole character-
istic parameters.

4.1 Review of OS-ELM algorithm

As an extension of basic ELM, the online sequential extreme
learning machine (OS-ELM) is an incremental fast learning
algorithm for single–hidden layer feedforward neural net-
works (SLFNs) [29]. For a given dataset of learning samples
N = {(xi,wbi)| xi ∈ Rn,wbi ∈ Rm, i = 1,…,N}, where xi refers to
the feature vector of the keyhole that contains m visual fea-
tures that are acquired by the SDM approach, wbi is the mea-
sured backside weld width, and N is the sample number. In
OS-ELM, the learning process is divided into two phases, i.e.,
an initialization phase and a sequential phase, which was de-
scribed as follows [33]:

Step 1: Initialization phase

A small chunk of training data is used to initialize learning

N0 ¼ xi;wbið Þf gN0
i¼0 from the given training set, and set N0 ≥

L.

(1) Randomly assign the input parameters. For the number L
of hidden RBF nodes: G(ai, bi, x) = g(bi‖x − ai‖), where
ai and bi are the center and biases of the ith RBF node

(2) Calculate the initial hidden layer output matrix H0:

H0 ¼
G a1; b1; x1ð Þ ⋯ G aL; bL; x1ð Þ

⋮ ⋮ ⋮
G a1; b1; xN0ð Þ ⋯ G aL; bL; xN0ð Þ

2
4

3
5
N0�L

ð7Þ

(3) Estimate the initial output weight β(0)

For the target vector T 0 ¼ t1;…; tN0½ �T , the problem is to
minimize H0β = T0. In OS-ELM, H† is given by

H† ¼ HTH
� �−1

HT ð8Þ

which is called the left pseudoinverse of H. Hence, the
solution to minimize H0β = T0 is given by β(0) = P0H0T0,

where P0 ¼ HT
0H0

� �−1
.

(4) Set k =N0, and then go to step 2 to learn other samples
one by one

Step 2: Sequential learning phase

(5) Present the (k + 1)th chunk of new observations

Nkþ1 ¼ xi; tið Þf g
∑
kþ1

j¼0
N j

i¼ ∑
k

j¼0
N j

� �; Nk + 1 denotes the sample

number in the (k + 1)th chunk.
(6) Compute the partial hidden layer output matrix Hk + 1:

Hkþ1 ¼

G a1; b1; x
∑
k

j¼0
N j

� �
þ1

0
BB@

1
CCA ⋯ G aL; bL; x

∑
k

j¼0
N j

� �
þ1

0
BB@

1
CCA

⋮ ⋮ ⋮

G a1; b1; x
∑
kþ1

j¼0
N j

� �
þ1

0
BB@

1
CCA ⋯ G aL; bL; x

∑
k

j¼0
N j

� �
þ1

0
BB@

1
CCA

2
666666666664

3
777777777775
Nkþ1�L

ð9Þ

(7) Set Tkþ1 ¼ t
∑
k

j¼0
N j

� �
þ1

;⋯; t
∑
kþ1

j¼0
N j

� �
þ1

2
664

3
775,

Kkþ1 ¼ Kk þ HT
kþ1Hkþ1

βkþ1 ¼ βk þ K−1
kþ1H

T
kþ1 Tkþ1−Hkþ1β

kð Þ
� 	 ð10Þ

From Eq. 10, it is found that K−1
kþ1 is used to compute β(k +

1). To avoid calculating the inverse in a recursive process, the
Woodbury formula is applied to derive the equations:

K−1
kþ1 ¼ K−1

k −K−1
k HT

kþ1 I þ Hkþ1K−1
k HT

kþ1

� �−1
Hkþ1K−1

k ð11Þ

Set Pkþ1 ¼ K−1
kþ1; then, the equation for updating Pkþ1 ¼

K−1
kþ1 can be written as:

Pkþ1 ¼ Pk−PkHT
kþ1 I þ Hkþ1PkHT

kþ1

� �−1
Hkþ1Pk

β kþ1ð Þ ¼ β kð Þ þ Pkþ1HT
kþ1 Tkþ1−Hkþ1β

kð Þ
� 	 ð12Þ

(8) Set k = k + 1; go back to (7) to train the next sample. After
training all the samples, the OS-ELM algorithm can pre-
dict the backside width wbi based on the keyhole feature
vector xi and RBF parameters (ai and bi), which as pre-
sented [36]:
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wbi ¼ f xið Þ ¼ ∑L
i¼1βiG ai; bi; xið Þ ð13Þ

4.2 OS-ELM-based penetration prediction system

In this section, Fig. 10 shows a flowchart of OS-ELM-based in
situ penetration prediction system for VPPAW process. It
mainly includes four parts, namely, (1) a real-time visual-
based monitoring system; (2) a SDM-based keyhole charac-
teristic parameter acquisition module; (3) an OS-ELM-based
regressive prediction model construction; (4) an in situ
welding penetration prediction output model.

4.2.1 Data acquisition

The real-time visual-based monitoring system used the CCD
camera to capture the backside keyhole images to reflect the
VPPAWpenetration status as presented in Section 3. Then, we

obtained the keyhole features based on SDM approach and
combined with backside widths to compose a keyhole dataset
Di = {Xi, Wbi}, where Xi = {Kli, Kwi, Kri, Kai} is the keyhole
features of the ith sample, andWbi refers to the corresponding
backside width (off-line measured using a structure-light vi-
sion system after welding). Further, the total dataset was ran-
domly split into two sub-datasets which contain a training
dataset DTrain and a testing dataset Dtest in a ratio of 7:3.
Then, DTrain was applied to train the OS-ELM-based regres-
sive prediction model through its initialization and sequential
learning phases, and Dtest was employed to predict the weld
backside width.

4.2.2 Data pre-processing

Before establishing the OS-ELM-basedmodel, to ensure all of
the keyhole features vector and backside width have the same
contribution for training and testing datasets, all values from

Fig. 10 The flow diagram of the
OS-ELM-based penetration
estimation system

Fig. 11 The RMSE values for
different numbers of hidden
nodes
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the VPPAWprocess should be linearly normalized between [−
1, 1] by the following formula:

y ¼ 2* x−xminð Þ
xmax−xmin

−1 ð14Þ

where xmin and xmax denote the maximum and minimum
values of the original dataset, and y refers to the new dataset
after normalizing.

4.3 Performance evaluation and result discussion

4.3.1 Experiment scenario

In this section, a nonlinear OS-ELM model was used to de-
velop an in situ welding penetration monitoring system for
predicting the welding backside width. To avoid overly com-
plicated process and consider the impact of historical values
on current unknown values, the input variables of dynamic
OS-ELM model were adopted as Kl (t − i), Kw (t − i), Kr (t −
i), Ka (t − i), and Wb (t − j), and the output variable was
backside width Wb (t), where t denotes the current moment, i
= 0, 1, 2, j = 1, 2. Its prediction accuracy/generalization per-
formance can be evaluated using root mean square error
(RMSE) as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
ŵb ið Þ−wb ið Þ� �2

=N

s
ð15Þ

where ŵb ið Þ is the predicted backside width at instant i, wb (i)
is the measured backside width at instant k, and N is the num-
ber of data points.

4.3.2 Model parameter selection

For the proposed OS-ELM-based prediction model, the num-
ber of hidden layer nodes L is a unique parameter to be man-
ually selected; hence, we will vary the value of L from 5 to 50
with an interval of 5. The optimal parameter was thus chosen
based on the lowest RMSE value. Additionally, the number of
initial training data N0 was empirically set to N0 = L + 50
according to [33]. For the OS-ELM with the Gaussian RBF
activation functionG(a, b, x) = exp(−x − a2/b), the centers and
the impact width were randomly selected from the range [− 1,
1] and [0.1, 3.5] respectively. In our experimental simulations
as mentioned before, the 1178 dataset samples were randomly
divided into a training dataset DTrain with 824 samples and a
testing dataset Dtest with 354 samples. The performance com-
parison of different hidden layer nodes L for training and

Table 3 Performance comparison between OS-ELM and other algorithms

Algorithm Activation function/parameter selection Training RMSE Training time (s) Testing RMSE Testing time (s)

OS-ELM Gaussian L = 30 0.2336 0.5418 0.2397 0.0312

ELM Gaussian L = 100 0.2567 1.2345 0.2489 0.5678

SVR Gaussian kernel (C, γ) = (24, 27) 1.3456 1.5678 0.8976 1.4532

BPNN Levenberg-Marquardt, L = 60 1.2345 2.4543 1.3456 1.6548

Fig. 12 The schematic of in situ VPPAW penetration monitoring system
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testing datasets was presented in Fig. 11. When the hidden
layer nodes L exceeded 25, the performance of OS-ELM on
the training and testing datasets remained stable. Thus, we
selected the hidden layer nodes L as 30 for the following
experimental simulations.

4.3.3 The performance comparison of different algorithms

To demonstrate the superiority of OS-ELM model in
predicting the backside width, the performance of OS-ELM-
based penetration identification system was compared with
other popular algorithms which include BP neural networks
(BPNN), support vector regression (SVR), and extreme learn-
ing machine (ELM). To make this a fair comparison, we first
selected their corresponding best performance parameters for
each algorithm by computing RMSE values, which were av-
eraged over 30 trials. In addition, the average training/testing
time and RMSE for predicting the backside weld width were
summarized in Table 3. It can be seen that the training and
testing time taken by OS-ELM is much less than that by ELM,
SVR, and BPNN. However, out of all learning algorithms,
OS-ELM can obtain the lowest testing RMSE for predicting
the weld width. The comparison results demonstrate that the
proposed OS-ELM is significantly superior to the other state-
of-the-art algorithms in terms of predicting accuracy and cal-
culating time. This is mainly because OS-ELM is trained with
the initial samples, and then, newly arrived samples could be
directly input to model without the previous trained data.

Moreover, during the sequential learning phase, the newly
samples can real-time update the previous trained network
parameters (include H and β) for the next stage training,
which will greatly strengthen the generalization capacity of
OS-ELM algorithm.

4.3.4 Online OS-ELM model validation for VPPAW process

To further evaluate the performance of the dynamic OS-ELM
model, the developed SDM-based algorithm for keyhole image
processing has been applied to construct an in situ penetration
monitoring system for predicting the backside bead width. As
depicted in Fig. 12, the welding current and gas flow rates were
firstly randomly varied to achieve different joint penetrations,
and the keyhole features were obtained by using SDMalgorithm.
Secondly, we will use the optimal parameter (L = 30,N0 = 80) of
the OS-ELM model to predict the backside weld width which
was shown in Fig. 13. Finally, the weld penetration status is
estimated by predicting the weld width according to the evalua-
tion criterion (see Table 2). The calculation of the proposed on-
line OS-ELM model validation for VPPAW process is operated
in less than 35 ms on a 2.8-GHz Intel Core i7 processor.
Therefore, the monitoring and estimation of the weld penetration
status can be well implemented online.

The future research will investigate the effects of keyhole
behaviors on the welding penetration in different thickness (3–
8 mm), and prove the feasibility and robustness of the OS-
ELM model for predicting the welding penetration under dif-
ferent dimensions and types of the workpiece.

5 Conclusion

This paper developed an innovative in situ weld penetration pre-
diction framework based on the keyhole dynamic behaviors and
OS-ELM model to monitor the nonlinear and time-varying
VPPAW process. The conclusions can be drawn as follows:

(1) The SDM-based image processing algorithm can accu-
rately characterize the keyhole behavior in describing the
visual geometrical appearance, which can give a good
description of the variation trend of resultant weld
penetration.

(2) The correlation between the keyhole features (including
keyhole length, width, area, and length-to-width ratio) and
the weld penetration under different welding conditions
revealed inherent nonlinear and time-varying characteristics
of VPPAW process.

(3) The proposed OS-ELM model can precisely track the
dynamics of the backside bead width based on the key-
hole behaviors, thereby realizing in situ prediction of the
weld penetration despite the varying VPPAW pools. The
experimental results further showed that the proposed

Fig. 13 Online OS-ELMpredicting model verification experiment. a The
acquired keyhole parameters based on SDM algorithm. b Online
estimated backside width and the measured backside width
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OS-ELM approach improved performance and generali-
zation over the other state-of-the-art approaches such as
ELM, BPNN, and SVR in terms of accuracy, efficiency,
and robustness.
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