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Abstract
Laser vision-sensing technologies are the most widely used to detect weld seam profiles during the intelligentized robotic
welding process (IRWP) with thick steel plates, in which the weld seam profile extraction technology plays a crucial role for
guiding the welding torch in real time. This paper presents an effective method to extract the weld seam profile from the intense
arc background. To emphasize the weld seam profile in images and produce saliency maps at the initial stage, a top-down visual
attention model is proposed using the target-driven characteristics of the weld seam profile and splashes. Due to the interference
data surviving in the saliency map, a visual attention–based strategy is suggested to gradually discern the larger segments of the
weld seam profile through local competition of dynamic saliency based on clustering results. For ineffective weld seam profile
extraction resulting from empirical parameters used in the weld seam profile extraction process, the exponentially weighted
moving average (EWMA) control chart is employed to implement fault detection and diagnosis (FDD) by monitoring irregular
changes of slopes of the extracted weld seam profile. In the final stage, a novel step is arranged to retrieve the possible loss of the
weld seam profile. Using the proposed method, validations are carried out using the welding experiments with T-joints and butt
joints. Experimental results show that the ratio of successful extraction is over 97% andmore stable welding processes with better
welds are obtained. This method lays a good foundation for the general weld seam profile extraction process and shows a
potential industrial application to the IRWP.

Keywords Weld seam profile extraction . Fault detection and diagnosis . Top-down visual attention . Exponentially weighted
moving average control chart . Robotic welding

1 Introduction

Intelligentized robotic welding systems are one of the hot
research branches in the welding field [1]. To realize the real
automatic welding process, a great number of operations must
be implemented such as weld quality monitoring, seam track-
ing, and decision making of welding process parameters [2,

3]. Many types of signals produced in the intelligentized ro-
botic welding process (IRWP) can be used for implementing
the above operations. Of these signals, visual information is
the most widely used [4, 5], and structured light-based laser
vision-sensing technologies are commonly used for robotic
thick plate welding [6–8] to detect the weld seam profile.
With the identified feature points of the extracted weld seam
profile, the welding torch can be positioned for each pass and
the real-time deviation of the welding torch can be eliminated
with control algorithms. Therefore, weld seam profile extrac-
tion is a crucial step for subsequent operations. However, there
are various adverse factors that influence image acquisition
and result in the interference data surrounding the weld seam
profile such as fumes, arc light, and splashes [9]. In addition, it
is true that the larger depth of the groove of the workpiece the
more inhomogeneous weld seam profile in terms of intensity,
and the weld seam profile that crosses the groove is relatively
weak. These are obstacles to integrally extracting the entire
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weld seam profile for each sampling time. Effective algo-
rithms that can detect more details of the weld seam profile
with higher ratios of effective extraction are continuously
sought by researchers.

Extensive research concentrates on algorithms or schemes
of weld seam profile extraction. These methods can be sum-
marized in three types: traditional, visual attention–based, and
target tracking methods. The related studies are reviewed as
follows.

Traditional methods mean that some classic algorithms
such as various filtering algorithms for denoising are used in
the extraction process. In addition, searching algorithms for
thresholding also belong to this category. For the denoising on
the FPGA-based processing result, Pritschow et al. [10] pre-
sented a 2D high-pass filter to enhance edges and discontinu-
ities in pixel intensity, and designed four special filter masks
for detecting the weld seam profile. Moon et al. [11] eliminat-
ed noise caused by open arc and surroundings and used a
pattern matching algorithm to detect the center position of
the weld seam profile. To implement the multipass welding
process based on visual sensing, a robust algorithm of weld
seam profile extraction is proposed by Gu et al. [12], which
consists of median filtering, thresholding, denoising, thinning,
and curve fitting. Since the laser beam is strongly reflected
from smooth metal surfaces, an intensity maximum searching
algorithm is proposed to extract the weld seam profile in the
region of interest by Nguyen and Lee [13]. A multiple peak
detection algorithm similar to intensity-based searching
methods for weld seam profile extraction is proposed by
Chen et al. [14] to overcome arc interference in the high
strength reflection area. An adaptive convolution procedure
by Yin et al. [15] is presented, in which the weld seam profile
center extraction method based on the geometry information
and correlation is implemented, and followed with piecewise
fitting to acquire seam profile centerlines. Traditional methods
for weld seam profile extraction are relatively easy to be im-
plemented and work effectively in most cases when arc light is
kept out or the depth of the groove is relatively small.

Since the regular arc region contributes to positioning the
welding torch in real time [16], it is useful except a barrier to
weld seam profile extraction. Recently, visual attention
models developed from visual attention mechanism are pro-
posed for rapid scene analysis and image classification using
saliency, which can also extract objects of interest from the
complex background. Zhou et al. [17] proposed saliency de-
tection to locate the weld pool region for weld seam extraction
in the pipeline welding process. Gharsallah and Braiek [18]
exploited an off-center saliency map as a feature to represent
image pixels and realize weld defect inspection using radiog-
raphy images. Li et al. [19] presented a visual saliency model
based on local contrast to emphasize weld seam candidates for
weld seam detection. Visual saliency evoked from this mech-
anism is also presented to emphasize the weld seam profile

from the arc background [20, 21]. More complicated visual
attention models investigated in a bottom-up (scene-
dependent) manner are proposed to augment the saliency of
the weld seam profile against the arc region [22, 23]. Because
of the weld pool, back weld pool, and the seam in the same
image, a visual attention–based method is also adopted to
detect the small areas related to the weld pool by Yan et al.
[24]. To eliminate heavy noise, Gong et al. [25] developed a
multilayer hierarchy vision processing architecture integrated
with bottom-up and top-down inference algorithms, in which
the bottom-up process acts as a basic information collector
while the top-down process performs acts as a missing data
hunter. Visual attention–based methods use saliency to distin-
guish the weld seam profile from the arc background, and one
defect of these methods is that interference with significant
orientation characteristics (e.g., splashes) is simultaneously
strengthened.

Currently, target tracking algorithms derived from visual
attention are developed to track targets in images or videos.
Classic target tracking algorithms use the correlation between
adjacent images to determine the optical flow pattern. To ex-
tract the weld seam profile, a seam tracking system based on
the morphological image processing method and a continuous
convolution operator tracker (CCOT) algorithm are presented
by [26]. These methods are also used to directly track an
appointed feature point of the weld seam profile [27].
However, these algorithms cannot accurately position the en-
tire weld seam profile because the profile possesses large
spans in images. These methods are improper to track the
feature point of the weld seam profile because the necessary
tracking point changes with the position of the pass.

The weld seam image using active vision can be divided
into two categories: the first category is that only the weld
seam profile is in the image whereas the arc region is kept
out, and the second one contains both. There are no algorithms
that are fit for all applications to weld seam profile extraction,
and the existing methods do not arrange a remedy for ineffec-
tive extraction. Note that empirical parameters account for
ineffective extraction in most cases.

The study in this paper concentrates on two aims. The first
one is striving to develop a general method to extract the weld
seam profile for thick plate welding with the typical T-joints
and butt joints, and the second one is attempting to build a
fault detection and diagnosis (FDD) mechanism for weld
seam profile extraction with a higher probability of successful
extraction. To achieve the two targets, a method using top-
down (task-dependent) visual attention model is first sug-
gested, which fully uses the visual imaging characteristics of
the weld seam profile and splashes to augment the saliency of
the former. A dynamic saliency-based strategy is then present-
ed to gradually discern the larger pieces of the weld seam
profile in size through local competition at the initial stage.
In the second stage, the exponentially weighted moving
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average (EWMA) control chart is investigated to overcome
the disadvantage of the proposed method resulting from some
empirical parameters used in this process and implement
FDD.

2 Analysis of imaging characteristics of weld
seam profiles and splashes

The spectrum generated in the metal active gas (MAG) arc
welding process shows that the intensity of arc light is lower
when its wavelength is from 630 to 660 nm. To maximize the
intensity of the laser stripe (weld seam profile) as well as
weaken arc light, the structured light-based laser whose cen-
tral wavelength is about 660 nm is usually adopted. The weld
seam profile is relatively weak when the entire arc region is
not kept out (see Fig. 1a–c). On the contrary, using appropriate
dimmer glass and optical filters, the weld seam profile is cap-
tured with higher intensity when the arc region is concealed
(see Fig. 1d). The welding system and the visual sensing sys-
tem refer to [23] and the imaging characteristic analysis of the
weld seam profile consult [28].

There are four characteristics of weld seam profiles and
splashes that are used as target-driven factors to enhance the
saliency of the former. The first characteristic is that the weld

seam profile usually covers larger space than splashes do in
the horizontal direction. The second one is that the thickness
of the weld seam profile in the vertical direction is nearly a
constant (about 5 pixels on average) whereas the thickness of
the splash is not uniform. The third is that splashes usually
cross the weld seam profile rather than are parallel to it with
higher probabilities. In addition, the intensity of the weld seam
profile in images with the arc region is weaker than that of the
weld seam profile in images without the arc region because a
dimmer glass must be used to acquire the more regular shape
of the arc region (more regular shape can more accurately
position the welding torch).

3 The proposed top-down visual attention
model

Classic computational models of human visual search have
embraced the idea of a saliency map to accomplish
preattentive selection [29], which are mainly based on
bottom-up visual attention and mostly implemented for scene
analysis with a generated saliency map. For accurate weld
seam profile extraction, these models are not competent to
such task, and the test results using three classic models are
given in this section. Meanwhile, since our previously

Fig. 1 Different raw images to show four imaging characteristics of laser
stripes and splashes. a–c The first three imaging characteristics of the
weld seam profile with the arc region (the thickness of the workpiece is

about 50 mm). d The fourth imaging characteristic with stronger weld
seam profile in terms of intensity when the arc region is kept out (the
thickness of the workpiece is 30 mm)
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presented models are mainly based on data-driven, they are
sensitive to splashes. However, top-down visual attention
models can strengthen the weld seam profile along with weak-
ening interference as possible. In this paper, a top-down visual
attention model is developed with these characteristics de-
scribed in Section 2, as shown in Fig. 2.

3.1 Orientation feature detection

Compared with the intensity of the weld seam profile, its
orientation characteristics are more salient than the arc re-
gion’s. Therefore, orientation feature detection is mainly con-
sidered in the proposed model. Gabor filters are used to pro-
duce orientation features (Offline tests determine the appro-
priate filtering angles). Note that two sets of filtering angles
are used for different thickness of the workpiece, namely {5°,
−5°} for less than 30 mm and {±5°, 80°} for over 30 mm.
Orientation feature detection results with different filtering
angles are linearly integrated into the final orientation feature
map.

3.2 Denoising

Because of intense electromagnetic disturbance occurring during
thewelding process, the background of the captured image is full
of different noise, which always survives after thresholding is
carried out. In this study, it is removed as [12] first.

3.3 Saliency map

Since the weld seam profile is usually divided into several
pieces after thresholding, the nearest neighbor clustering is
used to gather the data points as clusters. There are three
metric methods that use imaging characteristics of weld seam
profiles and splashes to further strengthen the saliency of the
weld seam profile. The data points belonging to the same
cluster have the same saliency. The first metric is called length
metric, which is described as

~Li ∼ ¼ Li Li=
1

n
∑
n

i¼1
Li

� �
ð1Þ

where Li is the maximum Euclidean distance between the two
points of the ith cluster, n is the number of the cluster, and ~Li ∼
is length saliency. This metric effectively enlarges the saliency
of the pieces of the weld seam profile with larger lengths where-
as fully lowers the saliency of the interference data points.
Width metric is the second metric method, which intentionally
uses the thickness (this statistical parameter is referred to as Tn)
of the weld seam profile to further strengthen the weld seam
profile as well as weaken the interference data points:

~Ti ¼
jTi−2jð Þ3; Ti < 2
Ti; 2≤Ti≤10
Ti=max Tið Þð Þ−3; Ti > 10

8<
: ð2Þ

where Ti represents the average thickness of the ith cluster.
Moreover, width uniformity metric is developed to measure

the saliency of each cluster via variance 1
mi

∑
j¼1

mi

T i; j−Ti
� �2

:

~Vi ∼ ¼ Li=
1

mi
∑
j¼1

mi

T i; j−Ti

� �2
ð3Þ

where mi is the column number of the ith cluster, Ti, j is the
thickness of the jth column of the ith cluster, and Ti is the
average thickness of all clusters. The three saliency maps are
normalized and summed into the final global saliency map S
like [30]:

S ¼ 1

3
Ν ~Li ∼ð Þ þ Ν ~Ti ∼ð Þ þ Ν ~Vi ∼ð Þð Þ ð4Þ

where Ν(⋅) is a normalization operator, with which ~Li ∼,
~Ti ∼, and ~Vi ∼ are normalized to 0–255, respectively. ToFig. 2 Architecture of the proposed top-down visual attention model
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show the effectiveness of the proposed method in this
paper, three classic bottom-up based models are tested
as shown in Fig. 3.

Figure 3 shows these classic models are not fit to accurately
enhance the saliency of the long and narrow weld seam pro-
file, whereas the top-down–based method proposed in this

(a) (b) (c) (d) (e)

Fig. 3 Comparison of saliency
maps between classic bottom-up
based models and the proposed
one. a Raw images. b Saliency
maps produced with the proposed
method in [31], c in [30], d in
[32], and e in this paper

Fig. 4 Strategy of extracting the
weld seam profile based on local
saliency
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paper can intentionally highlight the weld seam profile against
the interference background.

4 Strategy of weld seam profile extraction via
local saliency competition

It is unrealistic to extract the weld seam profile at once because
the orientation saliency of the weld seam profile is different in
various regions. Piecewise extraction is a solution to this prob-
lem. Using the generated saliencymap and combing the visual
attention process by our eyes, the pieces of the weld seam
profile is extracted gradually. The related strategy is presented
through local saliency competition containing two steps: dis-
cerning the main parts of the weld seam profile and determin-
ing its details (see Fig. 4).

It is crucial to correctly discriminate the first piece of the
weld seam profile. The rule of determining the first piece is
selecting the first cluster (from left to right) that is strength-
ened with all three metric methods.

4.1 Candidate clusters

Since only one cluster is judged as part of the weld seam
profile from candidate clusters in each discrimination loop,
the rule of determining candidate clusters needs to be institut-
ed. Candidate clusters are from the clusters whose data points
are on the right of the last discerned piece in each loop. If the
number of these clusters that satisfy the above requirement in
each loop is Tempnum, the number of candidate clusters NCC
is set as follows: NCC = 3 if Tempnum ≥ 3, NCC = 2 if
Tempnum = 2, and NCC = 1 if Tempnum = 1.

Fig. 5 Example of the weld seam profile extraction process. a The extraction process of the main parts of the weld seam profile. b Details of the weld
seam profile. c The final extraction result

Fig. 6 Comparison of weld seam
profile extraction using three
methods. a The result using the
method proposed in [22]. b The
result using the method proposed
in [23]. c The result using the
method proposed in this paper
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4.2 Competition using local saliency

In each loop, saliency is still used to implement segment ex-
traction of the weld seam profile. The saliency of each candi-
date cluster is dynamic, which is described as:

S
0
t; j ¼

max
j

Dt; j
� �
Dt; j

þ Lt; j
max

j
Lt; j
� �

2
4

3
5St; j ð5Þ

where j(j = 1, 2,⋯,NCC) is the number of candidate clusters
in the tth loop,Dt, j is the smallest Euclidean distance between
the last discerned cluster and the jth candidate cluster, Lt, j is
the maximum distance between two points of the jth candidate
cluster, and St, j is the global saliency of the jth candidate

cluster produced with Eq. (4). The candidate cluster with the

maximum dynamic saliency S
0
t; j is picked in each loop.

4.3 End rule of discerning weld seam profile

The end rule of discerning the weld seam profile is Cp =Cl

(see Fig. 4 and p is the subscript used in the loop). The rule
does not work when larger splashes lie on the right of the
entire laser stripe. The FDD method proposed in this paper
accounts for this case. The saliency map with bigger V-groove
in Fig. 3 is used to show the extraction process (Fig. 5).

To show the effectiveness of the proposed method in this
paper, our two publishedmethods are applied as shown in Fig.
3a. The extraction results in Fig. 6 indicate that the proposed

Fig. 7 Slope characteristics of the weld seam profiles: group I with butt joints and group II with T-joints
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one here is closer to a general solution to different weld seam
profile extraction than the previous methods and can extract
more details of the weld seam profile.

5 EWMA-based FDD for weld seam profile
extraction process

Due to process parameters used in the proposed method, it is
necessary to respond to their ineffectiveness during the
welding process. The goal of FDD in this paper is to ensure
higher probabilities of weld seam profile extraction.

The slopes of the effectively extracted weld seam pro-
files of different passes with T-joints and butt joints are
statistically analyzed, and their three characteristics are re-
vealed. Firstly, the slopes of the initial part of the weld
seam profile are nearly a constant 0 (butt joints) or a neg-
ative constant (T-joints). Secondly, for the butt joint, the
slopes change only once from positive to negative or from
negative to positive with relatively big variations except in
the case of the backing weld. In addition, the slopes of the
final part of the weld seam profile are also nearly a con-
stant 0 (butt joints) or a positive constant (T-joints). These
statistical characteristics are shown in Fig. 7, in which the
slopes are calculated using Eq. (6).

Fig. 7 continued.

Int J Adv Manuf Technol (2019) 104:3883–38973890



k j−7 ¼
∑

i¼1;3;5;7

y j−ið Þ−y jþ ið Þ
x jþ ið Þ−x j−ið Þ

4
j >¼ 8ð Þ ð6Þ

where j represents the data point and y(⋅) and x(⋅) are two
coordinates of data points in images, respectively. Each
slope is determined with 8 adjacent data points. Note that
the points used to calculate slopes are from linear weld
seam profiles like the images in Fig. 7. Figure 7 shows that
slopes of the weld seam profiles of different passes gradu-
ally change, and the changes of the monotonous intervals
of slopes are generally small apart from the backing weld.
The FDD method proposed in this paper is based on these
characteristics, and the structure of the proposed FDD
method is shown as Fig. 8.

5.1 Performance indexes and fault detection rules

In this paper, three performance indexes are defined to mon-
itor whether the extracted weld seam profile is effective for T-
joints and butt joints. The first performance index is the mean
of the first 50 slopes using the data points of the first cluster
~C1 ∼whose number of data points is over 50, which is referred

to as AVSF. The second index is defined with the mean of the
last 50 slopes using the data points of the last cluster ~Cl ∼ and

referred to as ASLF. The third one is the biggest length of the
monotonous intervals of slopes called BLMI, in which the
first slope and the last one must be contrary sign and they both
deviate from 0 to at least 0.3. Table 1 gives these definitions.

For butt joints, the first and the last identified clusters con-
tain the horizontal parts of the weld seam profile. Therefore,
the benchmarks of performance indexes I and II are both set to
0 to monitor ineffective extraction. Performance index III is
used to monitor ineffective extraction with the interference
data for the middle extraction process and set to 2.0. For T-
joints, the benchmarks of performance indexes I, II, and III are
0.4, 0.7, and 2.0, respectively.

The general diagnosis rule for Tn is that it should be
narrowed down when performance index I and/or II deviate(s)
from the corresponding benchmark(s). The rule for NCC is
that it should be increased if performance III deviates from
its benchmark. The rules are set for both butt joints and T-
joints. Tables 2 and 3 list the detailed rules, in which “↑” and
“↓” indicate the changes of the performance index compared
with its benchmark. The sign “―” indicates no change.
Moreover, “∨” is the logic OR operation.

It must be noted that the fault occurring in the middle of the
extraction process is directly detected through large changes
of slopes rather than EWMAbecause the change in this case is
so much.

Fig. 8 Structure of the proposed
FDD method

Table 1 Definitions of
performance indexes Performance

index
Definition Description

I AVSF ∑
50

i¼1
ki; ~C1 ∼=50 k is the slope

II ASLF ∑
50

i¼1
ki; ~Cl ∼=50 k is the slope

III BLMI max
j

ℓ j
� �

ℓjis the length of the jth monotonous interval
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5.2 Fault detection using EWMA

The EWMAmethod was originally presented by Roberts [33]
for detecting small shifts described as Eq. (7). Thomson et al.
[34] introduced EWMA control charts for the early detection
of fouling of the heat recovery system. Zhao et al. [35] used
the EWMA control chart to detect faults in a statistical way to
improve the ratios of correctly detected points for centrifugal
chillers. In this study, the EWMA control chart is used to
detect the deviations of slopes of the designated part of the
weld seam profile from the benchmarks.

Zi ¼ λX i þ 1−λð ÞZi−1

¼ λX i þ 1−λð ÞX i−1 þ λ 1−λð Þ2X i−2 þ⋯þ λ 1−λð Þi−1X 1 þ 1−λð Þiμ0

ð7Þ
where λ 0 < λ≤1ð Þ is a constant weighting factor for de-

termining the importance of the current group mean X i

(the mean of ith sample group which has constant size
n) and Zi is the ith EWMA value. Z0 = μ0 is the expected
value (namely the corresponding benchmark). The control
limits used in the EWMA control chart are calculated
using Eqs. (8) and (9):

UCL ¼ μ0 þ Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

n 2−λð Þ

s
ð8Þ

LCL ¼ μ0−Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

n 2−λð Þ

s
ð9Þ

where UCL and LCL are the upper and lower control limit
respectively; L is the coefficient of the control limit; σ is the
standard deviation of samples. n is set to 50. L and λ are
influenced with average run lengths (ARL) when monitoring
targets are in control and out of control. Statistical results
suggest that λ should be small, which contributes to detecting
tiny shifts with better ARL. L and λ depend on σ and the
desired UCL/LCL.

6 Validation of the proposed FDD method

For butt joints, UCL is set to 0.23 for AVSF and ASLF using
the characteristics of slopes of splashes. L is assigned to 75
when λ is 0.5 and σ is 0.04. To validate the proposed FDD
method, 186 images are tested offline and the results show that
the ratio of effective weld seam profile extraction increases
from 92.4 to 98.6% (see example in Fig. 9).

For T-joints the test of the third pass is conducted, in which
L is set to 71 and UCL is set to 0.8 when λ is 0.5 and σ is
0.025. In this case, faults usually occur in the middle and end
stages of the weld seam profile extraction process. With the
proposed FDD method, the ratio of successful extraction rises
from 91.8 to 97.3%. Another welding test is done to show the
influence of the FDD process on welds. Figure 10 illustrates
two typical diagnosis processes and gives two welding results,
which shows that the welding process with the proposed FDD
in this paper is more stable than the process without this FDD
process.

7 Discussion

In this paper, we investigate a FDD method based on
EWMA for improving the success probability of weld
seam profile extraction during the traditional MAG
welding process with thick steel plates. Our results show
that the slopes of the weld seam profile seem to be an
effective factor to determine whether the extracted weld
seam profile is effective and the EWMA control chart is
competent for implementing FDD by monitoring irregular
changes of these slopes.

To our knowledge, this is the first FDD method for weld
seam profile extraction with slopes in the robotic arc welding
field with thick steel plates. This finding is significant for
smoothing the welding process and improving welding qual-
ity, which offers useful references when laser vision sensing is

Table 2 Fault detection and
diagnosis rules for butt joints Fault type AVSF∨ASLF BLMI Diagnosis method

1. Interference data exists in the first extraction loop ↑↓ ― Narrow down Tn

2. Interference data exists in the middle extraction loop ― ↑↓ Increase NCC

3. Interference data exists in the last extraction loop ↑↓ ― Narrow down Tn

Table 3 Fault detection and
diagnosis rules for T-joints Fault type AVSF ASLF BLMI Diagnosis method

1. Interference data exists in the first extraction loop ↑↓ ― ― Narrow down Tn

2. Interference data exists in the middle extraction loop ― ― ↑↓ Increase NCC

3. Interference data exists in the last extraction loop ― ↑↓ ― Narrow down Tn
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used and empirical parameters are set in visual information
extraction technologies.

To date, various visual sensing systems have been reported
and many algorithms have been proposed for weld seam pro-
file extraction. These algorithms [4–6] are used to cope with
the case in which the thickness of the steel plate is less than
30 mm and the intensity of the laser stripe is high and uniform
even in the groove region. It is relatively easy to extract the

weld seam profile in this case. However, when the thickness
increases to more than 50 mm, the intensity of the laser stripe
becomes nonuniform, which brings about the issue described
in this paper. Therefore, the segmental extraction process like
this paper is an effective solution to weld seam profile extrac-
tion. Differing from [21–23], the top-down visual attention in
this paper is implemented with the binary result of the final
global saliency map whereas the previous visual attention

Fig. 9 Examples of the FDD process using the EWMA chart for butt
joints (red circles mark examples of fault detection, similarly
hereinafter). a Example of the FDD process for the initial stage of weld

seam profile extraction. b Example of the FDD process for the final stage
of weld seam profile extraction. c For the middle stage
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Fig. 9 continued.
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Fig. 10 Examples of the FDD process using the EWMA chart for T-
joints. a FDD for the initial stage of weld seam profile extraction. b
FDD for the final stage of weld seam profile extraction. c Feature
points of the weld seam profile using the method proposed by He et al.

[23] (“point 3” is selected as the tracking point). d Welding result with
better welds using the proposed FDD method. e Welding result without
the proposed FDD method
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methods are designedwith the law image. The metric methods
in this paper are also different from the previous ones.

Empirical parameters are usually used in various algo-
rithms [12, 15, 21–23] for weld seam profile extraction.
Different noise and unknown interference may hit the de-
fects of these empirical parameters because the welding
process is full of randomness. The FDD process to effec-
tively adjust these parameters to adapt to unknown noise
and interference is necessary. Currently, there is a little
research that proposes methods to detect the faults be-
cause of empirical parameters for weld seam profile ex-
traction during the welding process. We previously used
the phenomenon of over proximity of the identified fea-
ture points of the extracted weld profile to trigger the
FDD process [36]. Using the abnormal change of slopes
in this study saves time cost in contrast to the previous
one because the step of identifying the feature points of
the extracted weld seam profile (using slopes) is not
involved.

The method in this paper exposes its defects because of
thresholds still used for UCL/LCL, λ, etc. These settings ac-
count for the rest percentage of effective weld seam profile
extraction. Developingmore effective methods and investigat-
ing more effective monitoring signals (e.g., the derivative of
the slope) are our next research interest. Meanwhile, the cor-
responding strategy of adjusting the empirical parameters is
studied in the future.

8 Conclusions

In conclusion, the proposed target-driven visual attention
model combining the EWMA-based FDD method is used
to extract weld seam profiles for the robotic MAG
welding process with thick steel plates. Conclusions are
as follows:

1. The abnormal changes of slopes of the extracted weld
profile are a relatively effective monitoring object to de-
termine whether the weld seam profile extraction process
is effective.

2. With the proposed FDDmethod in this paper, the percent-
age of successful weld seam profile extraction is over
97% for the typical butt joints and T-joints.

3. Using this proposed method, a more stable welding pro-
cess with better welds is acquired.

4. The proposed method in this work is nearly a general
solution to weld seam profile extraction using the tradi-
tional welding methods to join thick steel plates with laser
vision-sensing technologies. The method here shows a
potential industrial application to the field of
intelligentized robotic arc welding.
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