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Abstract
During the turning process of the lathe, the cutting chatter may be generated with the increase of cutting vibration amplitude,
which is harmful tomachining precision of the turning process. In order to effectively avoid the influence of cutting chatter during
the turning process, the improved variational nonlinear chirp mode decomposition (VNCMD) algorithm is presented for the
detection and identification of cutting chatter. The wideband and weak characteristic of the vibration signal are considered by the
improved algorithm, which cannot only overcome the mode mixing and pseudo-component problems of the empirical mode
decomposition (EMD) algorithm but also overcome the drawbacks of the wideband signal extraction. To eliminate the influence
of uncertainty of the number of signal components on the decomposition of the VNCMD algorithm, the cross-correlation
coefficient method is used to determine the optimal number of signal intrinsic mode functions. And the improved algorithm is
further applied to the detection of the cutting chatter, where the fourth-order cumulant, permutation entropy, and instantaneous
frequency of the signal intrinsic mode functions are extracted as the multi-feature vector for the cutting chatter. As the results
show, it can effectively identify the existence and extent of cutting chatter.

Keywords Cutting chatter . VNCMD algorithm . Correlation coefficient . Permutation entropy

1 Introduction

With the demand for higher efficiency and precision in machin-
ing, the development of machine tools has encountered many
problems, such as the cutting chatter caused by external interfer-
ence factors or the nature of the workpiece [1]. Cutting chatter is
a strong self-excited vibration that occurs between the workpiece

and the cutting tool [2]. Many disadvantages may be induced by
the chatter, such as the reduction of the workpiece surface finish,
the damage of the cutting tool, and the decrease of cutting tool
life. The common types of cutting chatter are mode coupling
chatter, frictional chatter, and regenerative chatter [3–6]. In order
to study chatter better, the accurate dynamical model needs to be
built for the dynamic characteristics and cutting process of ma-
chine tool, but the reliability of the established model is difficult
to guarantee [7, 8]. As a result, the study of cutting chatter is
mainly focused on the extraction of fault features and the identi-
fication of the chatter status.

Cutting vibrations are always nonstationary and nonlinear [9,
10]. Therefore, the statistical characteristics of vibration signal in
the time domain and frequency domain variedwith the change of
vibration, and this change is usually disturbed by the background
noise. In order to better analyze the characteristic of chatter state,
Choi and Shin [11] proposed themaximum likelihood estimation
algorithmbasedonwaveletanalysis.WuandDu[12]extractedthe
limit cycle characteristics as an indicator of chatter state based on
the wavelet transform and signal reconstruction method. Vela-
Martinezetal. [13]monitoredtheevolutionofcutter tooldynamics
by using the detrended fluctuation analysis method, which is
adapted for time-frequency domain. Kuljanic et al. [14, 15]
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proposedthewaveletanalysismethodbasedonthemultiplesensor
chattermonitoring system, and theyused the statistical parameters
obtained fromwaveletdecomposition todetectchatterbyusingan
artificial intelligence classification system based on neural net-
works.TheEMDalgorithmhasbeenapplied to thesignalprocess-
ing of cutting chatter by a number of researchers [16–18]. Wang
et al. [19] proposed a rotor fault feature detectionmethodbasedon
the variational mode decomposition (VMD) and achieved good
results. Recently, thewidespread concern has been caused by var-
ious fields’ variational nonlinear chirp mode decomposition
(VNCMD) algorithm proposed by Chen et al. [20]. It is because
thewidebandnonlinear signalswithmanysimilarmodes couldbe
decomposed from the time domain byVNCMD,which has good
convergence performance even in a noisy environment.

Some new feature extraction methods have been studied
when the cutting chatter characteristics are weak and diffi-
cult to extract. For example, Grabec et al. [21] extracted the
chatter characteristics based on coarse-grained entropy.
Berger et al. [22] proposed the chatter feature extraction
method based on Toeplitz matrix singular value. Bickraj
et al. [23] proposed the index-based reasoning for chatter
detection and tool wear estimation by using the torque signal
data of rotary dynamometers during the end milling opera-
tion. In this paper, the detection and identification of lathe
cutting chatter are investigated based on the improved
VNCMD algorithm. And it is organized as follows. In
Section 2, the principle and improvement of VNCMD algo-
rithm are presented. In Section 3, the improved VNCMD
algorithm is verified by the simulation signals. In
Section 4, the experimental signals are analyzed by the im-
proved VNCMD algorithm. Section 5 identifies the vibra-
tion status based on multi-feature vector for the lathe cutting
chatter. Finally, the main conclusions are drawn.

2 Principle and improvement of the VNCMD
algorithm

2.1 Principle of the VNCMD algorithm

Huang et al. [24] believe that any signal is composed of several
intrinsic mode functions (IMFs). A signal can contain several
intrinsic mode functions at any time. Based on the VNCMD
algorithm, the nonlinear signals can be adaptively decomposed
into a series of IMFs with amplitude modulation (AM) and fre-
quency modulation (FM) characteristics through the joint opti-
mization scheme. The intrinsic mode functions of signal can be
expressed as

gi tð Þ ¼ ai tð Þcos 2π∫t0 f i sð Þdsþ ϕi

h i
ð1Þ

where ai(t) denotes the instantaneous amplitude (IA) of the signal
component, fi(s) denotes the instantaneous frequency (IF), and ϕi

stands for the initial phase. And the phase is

f i tð Þ ¼ 2π∫t0 f i sð Þdsþ ϕi, then one could have ∣ai′(t)∣ ,∣ fi
′(-

t)∣ < < ∣ f
i
(s)∣ [25].

In practice, the collected signal consists of many intrinsic
mode functions and the measurement noise; thus, it can be
expressed as the following model

g tð Þ ¼ ∑
Q

i¼1
ai tð Þcos 2π∫t0 f i sð Þdsþ ϕi

h i
þ n tð Þ ð2Þ

where Q is the number of signal intrinsic mode functions
which is assumed to be known, n~N(0, σ2) denotes the
Gaussian white noise. According to Ref. [26], a(t) can be
assumed as a band-limited function, and its bandwidth can
be estimated as

BW ¼ BWAM þ BWFM ð3Þ
where BWAM = 2Fa denotes the bandwidth resulting from the
AM, and Fa stands for the maximum frequency of a(t). BWFM

is the bandwidth caused by the FM and it can be determined
by the Carson bandwidth rule [27]. And a(t) is a slowly vary-
ing function. For a wide-band intrinsic mode function compo-
nent, its total bandwidth is often dominated by BWFM, and one
could have

BWFM >> BWAM ð4Þ

Next, the demodulation operator and modulation operator
can be defined as [28]:

Φ− tð Þ ¼ exp − j2π ∫t0 f sð Þds− f ct
h in o

ð5aÞ

Φþ tð Þ ¼ exp j2π ∫t0 f sð Þds− f ct
h in o

ð5bÞ

where f sð Þ denotes the frequency function of the operators
and fc > 0 is a carrier frequency. According to the principle of
Fourier series, smoothing function can be uniformly approxi-
mated. And the demodulated signal in Eq. (1) can be
expressed as

gi tð Þ ¼ ai tð Þcos 2π∫t0 f i tð Þ− f i tð Þ
h i

dsþ ϕi

n o
cos 2π∫t0 f i sð Þds

h i
−ai tð Þsin 2π∫t0 f i sð Þ− f i sð Þ

h i
dsþ ϕi

n o
sin 2π∫t0 f i sð Þds

h i
ð6Þ

According to Eqs. (5a, 5b) and (6), the signal of Eq. (2) can
be obtained as

g tð Þ ¼ ∑
Q

i¼1
ui tð Þcos 2π∫t0 f i sð Þds

h i
þ vi tð Þsin 2π∫t0 f i sð Þds

h in o
þ n tð Þð7Þ

where ui(t) and vi(t) are two demodulated signals given as:

ui tð Þ ¼ ai tð Þcos 2π∫t0 f i sð Þ− f i sð Þ
h i

dsþ ϕi

n o
ð8aÞ
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vi tð Þ ¼ −ai tð Þsin 2π∫t0 f i sð Þ− f i sð Þ
h i

dsþ ϕi

n o
ð8bÞ

The IA of Eq. (8a, 8b) can be expressed as

ai tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i tð Þ þ v2i tð Þ

q
ð9Þ

The square of the L2 norm of the second-order derivative is
used to estimate the signal bandwidth [29]. And the decom-
position problem can be formulated as:

min
uif g vif g f i

n o ∑
Q

i¼1
ui

0 0 tð Þ�� ��2
2
þ vi

0 0 tð Þ�� ��2
2

� �� �

s:t: g tð Þ−∑
Q

i
ui tð Þcos 2π∫t0 f i sð Þds

h i
þ vi tð Þsin 2π∫t0 f i sð Þds

h i� �����
����
2

≤ε

ð10Þ
where ε > 0 is an upper bound determined by the noise level.

The optimal f i sð Þ of the demodulated signals ui(t) and vi(t) can
be simultaneously searched by Eq. (10). That makes the IMFs
have the narrowest frequency band. Note that the difference
from many methods such as the VMD is that the influence of
noise is explicitly considered. Consequently, the VNCMD
will have better convergence and filtering performance in
noisy environment in comparison with alternative methods.

The detailed derivation process and the flow of the algo-
rithm refer to [20, 30].

2.2 Improvement of the VNCMD algorithm

Based on the above principle of VNCMD, the decomposition
results will be affected by the number of IMFs. However, the
number of IMFs is uncertain in the practical signal processing. If
the given number of IMFs is larger, the signals whose frequen-
cies are concentrated in a range will be decomposed into several
IMFs, which will lead to the center frequency being closer, and
result in the generating of frequency aliasing components. If the
given number of IMFs is smaller, some key information of the
original signal will be filtered by the time-frequency filter. At this
time, the decomposition components of the original signal will
not be comprehensive. In order to overcome the above limita-
tions, the number of IMFs is determined based on the cross-
correlation coefficient. When the maximum center frequency of
the IMFs occurs, the cross-correlation coefficients of the IMFs
are calculated. The number of IMFs can be determined by ana-
lyzing whether the frequency aliasing of IMFs components is
generated. The correlation coefficient for the given sequence
signals x and y is defined as follows [31]:

ρxy ¼
1

N
∑
N

i¼1
x ið Þy ið Þ−E xð ÞE yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
N

i¼1
x2 ið Þ−E2 xð Þ

� 	
1

N
∑
N

i¼1
y2 ið Þ−E2 yð Þ

� 	s ð11Þ

where E is the mathematical expectation, and N is the length of
the sequence signals. Letting x and y be the decomposition com-
ponents of the given signal, the correlation coefficients of each
IMFs can be obtained by using Eq. (11).

The calculation process of the optimization algorithm is as
follows:

1. The number of signal IMFs is initialized asQ = 2, andQ is
recorded as PQ.

2. By introducing the parameter K to VNCMD, the signal
components can be obtained by processing the original
signal.

3. Calculating the cross-correlation coefficients between
each signal components, the maximum value can be
obtained.

4. The threshold is selected as 0.1 through a lot of
experiments.

5. Judge whether the maximum cross-correlation coefficient
exceeds the threshold; if it exceeds, the number of IMFs is
determined as PQ, and the process ends.

6. If the maximum cross-correlation coefficient does not ex-
ceed the threshold,Q is recorded as PQ and the number of
IMFs is set to Q =Q + 1, and repeat step 3.

3 Verification by simulation signals

Before the practical signal processing, the improved algorithm
needs to be verified by the simulation signals. Therefore, a
synthetic signal consisting of four signals is selected to ana-
lyze and verify. The simulation signal Sig can be expressed as:

s1 ¼ exp −0:03tð Þcos 2π 1:3þ 25t þ 4t2−0:8t3 þ 0:07t4

 �� 


s2 ¼ 0:9exp −0:06tð Þcos 2π 2:6þ 40t þ 8t2−1:6t3 þ 0:14t4

 �� 


s3 ¼ 0:8exp −0:09tð Þcos 2π 3:9þ 60t þ 12t2−2:4t3 þ 0:21t4

 �� 


noise ¼ addnoise length Sigð Þ; 0; 0:5ð Þ
Sig ¼ s1þ s2þ s3þ noise

ð12Þ

As can be seen from Eq. (12), the simulation signal is
composed of three AM-FM components and a Gaussian noise
of power 0.5. To maintain the same conditions as the practical
cutting vibration signal, the simulation signal is sampled with
12800 Hz. The time domain waveform of the simulation sig-
nal is shown in Fig. 1.

As can be seen from Fig. 1, the AM-FM signal has no
obvious abrupt characteristics. That is said its bandwidth is
not large. Therefore, under the interference of strong noise,
the parameter alpha of VNCMD should be selected to be 4.8e
−10, and the parameter beta of VNCMD should be selected to
be 0.5e−10. The values of these two parameters are not fixed;
they should be determined by the characteristics of the signal
and require a lot of debugging. If the parameter alpha is larger,
it can help the VNCMD algorithm to find the correct IMFs
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even if the initial instantaneous frequency is too rough. But it
will introduce more noise and also may increase the interfer-
ence between the signal IMFs. The parameter beta can be
smaller which will be helpful for the convergence, but it can-
not track fast varying instantaneous frequency properly. For
the sake of simplicity, the initial number of IMFs is set to 3,
and the signal is decomposed by the improved VNCMD al-
gorithm. Next, the correlation coefficients of the IMFs are
calculated and the results are shown in Table 1.

In Table 1, ρxy is the correlation coefficient of two IMFs,
where the auto-correlation coefficient is 1, and the cross-
correlation coefficients do not exceed the given threshold.
And there is no mode mixing in this decomposition. The in-
trinsic mode function component is expressed as IMF. The
decomposition results are shown in Fig. 2. And the relative
error of the original component and decomposition compo-
nent is shown by the red dotted line.

In Fig. 2, the decomposition components are shown by the
solid blue line. It can be seen from the relative errors that the
decomposition components are basically the same as the orig-
inal components. Therefore, there is no frequency loss during
the decomposition process. The above analysis can be shown
that the noise can be removed and the effective components
can be retained based on the VNCMD. However, when the
practical signals are decomposed, one could not know how
many signal components should be initialized. In order to
further verify the effectiveness of the cross-correlation coeffi-
cient for the decomposition algorithm, the initial number of
IMFs is set as 4 and the simulation signal is decomposed by

the improved VNCMD. Then, the calculated correlation coef-
ficients are shown in Table 2.

As shown in Table 2, the maximum value of the correlation
coefficients is 0.1031, which has exceeded the given thresh-
old. Therefore, when the number of IMFs exceeds the number
of the original components, the phenomena of mode mixing
will be produced. This conclusion further confirms the effec-
tiveness of the cross-correlation coefficient for the improved
algorithm.

In order to reflect the advantages of the VNCMD algorithm
compared with the similar algorithms, the simulation signal is
decomposed by using the VMD algorithm, which is widely
used in relevant researches. When the number of IMFs is set
as 3, the decomposition results are shown in Fig. 3.

From Fig. 3, it can be seen that each of the components still
has strong noise interference. According to the principle of
VMD, it is based on the assumption of narrow-band signal
decomposition. The wideband signals with overlapping fre-
quency spectrum cannot be decomposed effectively and the
fast-changing frequency components cannot be captured. At
the same time, the decomposition effect will be affected by the
penalty parameters and the number of IMFs. Therefore, com-
pared with other similar algorithms, the VNCMD algorithm
has a better decomposition effect on the wideband signal. And
the improved VNCMD algorithm not only has the advantages
of the VNCMD but also can effectively determine the number
of signal components.

4 Analysis of turning machine experimental
signals

4.1 Experimental setup for cutting chatter detection

In this section, the improved VNCMD is applied to the anal-
ysis of practical turning machine vibration signals. The vibra-
tion signals are acquired through the cutting experiment of
CA6150 lathe. The experimental system is composed of a
cutting tool, workpieces, vibration acceleration sensors, signal
analyzers, and computers. The cutting tool material is of high-
speed steel. The workpiece materials are Q235 and No. 45
steel, respectively. And ten sets of cutting experiments were
performed by variable parameters on the experimental system.
The cutting parameters are shown in Tables 3 and 4.

In order to acquire the more effective vibration signal dur-
ing the machining process, the vibrations of different parts are
studied by fixing the INV9832 vibration acceleration sensors
on the front of the cutting tool and the workpiece fixture
through a powerful magnetic base. The parameters of vibra-
tion acceleration sensor are shown in Table 5.

After acquiring the signal by the vibration acceleration sen-
sors mentioned above, it is transmitted to the BK4528-B/
INV3060S signal conditioner. Next, the signal is integrated

Table 1 Correlation
coefficients of three
IMFs

ρxy 1 2 3

1 1 0.0676 0.0832

2 0.0676 1 0.0223

3 0.0832 0.0223 1

Fig. 1 Simulation signal in time domain
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and transmitted to the computer through USB interface. The
relevant signal analysis is performed by data acquisition and
signal processing (DASP) software which helps us to select
the appropriate vibration signal. The sampling frequency is set
as 12800 Hz. The sampling time is 23 s. The experimental
setup and vibration acceleration sensors are shown in Fig. 4.
The execution flow of the experimental detection system is
shown in Fig. 5.

As can be seen from Figs. 4 and 5, the experimental detection
system has three vibration acceleration sensors. The two uniaxial
vibration acceleration sensors are fixed on the workpiece fixture,
and the triaxial vibration acceleration sensor is fixedon the cutting
tool.Considering the limitation of paper length, the analysis of the
above 10 sets of data cannot be fully displayed. Through the anal-
ysis of the vibration signals, it is found that the vibration changeof
the workpiece fixture is not obvious during the turning process of
the machine tool. Although the vibration changes on the cutting
tool are obvious, theX-axis andZ-axis directions of the sensor are
susceptible to the impact of themetal chipwhich is not conducive

to signal analysis. Therefore, the vibration signal of the sensor of
Y-axis on the cutting tool is selected as the analysis signal, where
the coordinate system ismachine coordinate system.

4.2 Experimental signal analysis

Through the analysis above, the third set of cutting data in
Table 4 is selected as an example to analyze the cutting chatter.
In order to accurately reflect the changes in the cutting pro-
cess, the vibration signals for 23 s were acquired. The sampled
signal in the time domain is shown in Fig. 6a, where g denotes
9.8m/s2. And the sampled signal is transformed into frequen-
cy domain by the fast Fourier transform, which is shown in
Fig. 6b.

As can be seen from Fig. 6a, the cutting process is basi-
cally smooth in the former 15 s. When it reaches 16 s, the
vibration amplitude begins to increase gradually, because the
processing system is subjected to some kind of excitation.
When it reaches 19.5 s, the vibration amplitude starts to in-
crease sharply and may induce cutting chatter [32–34]. It can
be seen from Fig. 6b that the frequency components cannot be
distinguished correctly under the strong noise background.
Therefore, further analysis is needed. The most obvious data
of the vibration change from 18.7 to 22.3 s is extracted from
the sampled signal as the target sample. The normally proc-
essed data from 1 to 5 s is extracted from the original signal
as the validation sample. The waveforms of the target sample
and validation sample in the time domain are shown in Fig. 7.

(a) IMF1 and relative error in time domain (b) IMF2 and relative error in time domain 

(c) IMF3 and relative error in time domain (d) IF and relative error with time 

Fig. 2 Decomposition results of
simulation signal by VNCMD. a
IMF1 and relative error in time
domain. b IMF2 and relative error
in time domain. c IMF3 and
relative error in time domain. d IF
and relative error with time

Table 2 Correlation coefficients of four IMFs

ρxy 1 2 3 4

1 1 0.0684 0.0911 − 0.1031

2 0.0684 1 0.0218 − 0.0145

3 0.0911 0.0218 1 0.0014

4 − 0.1031 − 0.0145 0.0014 1
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As can be seen from Fig. 7b, the target sample has distinct
impulse components. It is necessary to extract the feature infor-
mation from the time domain and frequency domain by signal
processing method for chatter judgment. Therefore, the target
sample can be analyzed by the improved VNCMD above.
Considering that the impulse component is included in the target
sample, an appropriate bandwidth penalty factor needs to be
selected to extract the signal intrinsic mode functions.
Therefore, the bandwidth penalty factor alpha of the time-
frequency filter should be chosen to be larger, which will help
the VNCMD algorithm to find correct IMFs, and the bandwidth
penalty factor beta of the instantaneous frequency should be
chosen to be smaller, which will contribute to the convergence
of the VNCMD algorithm. As mentioned above, the parameters
of alpha and beta should be determined by the characteristics of
the signal. After several tests, the parameter alpha is set as 3e−3
and parameter beta is set as 1e−9. Calculating the correlation
coefficients of the signal IMFs by the improved VNCMD

algorithm, the number of IMFs can be finally determined to be
4. And the correlation coefficients of the IMFs decomposed by
the target sample are shown in Table 6. As can be seen from
Table 6, the maximum correlation coefficient of the IMFs is
0.0904, which is less than the given threshold of the algorithm.

The decomposition components and Hilbert marginal spec-
trum of the target sample are shown in Figs. 8, 9, 10, and 11.
From Fig. 8b, it can be seen that the frequency with maximum
amplitude of the intrinsic mode function 1 is approximately 300
Hz. Combined with the vibration amplitude shown in Fig. 8a, it
can be known that the cutting vibration of the system gradually
increases, which indicates that the chatter will be generated. But
the vibration energy is weak, and this weak feature is difficult to
extract under strong noise background in general.

The frequency with maximum amplitude of the intrinsic
mode function 2 as shown in Fig. 9b is approximately 1300
Hz. It can be concluded that this frequency is not the natural
frequency of the cutting tool according to Ref. [35]. Therefore,

(a)  IMF1 and  relative error in time domain (b) IMF2 and relative error in time domain 

(c) IMF3 and relative error in time domain 

Fig. 3 Decomposition results of
simulation signal by VMD. a
IMF1 and relative error in time
domain. b IMF2 and relative error
in time domain. c IMF3 and
relative error in time domain

Table 3 Q235 steel cutting parameters

Parameter 1st 2nd 3rd 4th 5th

Rotating speed (r/min) 250 250 250 250 250

Cutting depth (mm) 0 2 3 4 5

Feed rate (mm) 0 2.7 2.7 2.7 2.7

External elongation (mm) 0 60 60 60 60

Workpiece diameter (mm) 0 50 50 50 50

Table 4 No. 45 steel cutting parameters

Parameter 1st 2nd 3rd 4th 5th

Rotating speed (r/min) 710 710 450 450 450

Cutting depth (mm) 3 5 3 6 7

Feed rate (mm) 2.7 2.7 2.7 2.7 2.7

External elongation (mm) 150 150 150 150 150

Workpiece diameter (mm) 40 40 40 40 40
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the IMF2 can be considered as chatter near the natural frequency
of workpiece. Combined with the vibration amplitude shown in
Fig. 9a, it can be known that the vibration amplitude of IMF2 is
significantly increased relative to IMF1. But the vibration energy
of IMF2 does not increase significantly, which shows that the
system has appeared chatter and the vibration degree is not se-
vere. If appropriate measures can be taken, the chatter conditions
can be eliminated and normal processing conditions can be
restored.

The frequency with maximum amplitude of the intrinsic
mode function 3 as shown in Fig. 10b is approximately 2500
Hz. According to Ref. [35], the intrinsic mode function 3 is the
chatter near the natural frequency of the cutting tool. Combined
with the vibration amplitude shown in Fig. 10a, the IMF3 has
stronger vibration energy than IMF2, and the impulse component
is produced. It shows that the cutting chatter has been induced. At
this point, the cutting parameters need to be adjusted as soon as
possible to avoid further development of the cutting chatter.

The frequency with maximum amplitude of the intrinsic
mode function 4 as shown in Fig. 11b is approximately 3200
Hz. Combined with the vibration amplitude shown in Fig. 11a, it
can be known that the IMF4 has stronger vibration energy and
impulse characteristics than IMF3. It shows that the system has
produced severe cutting chatter at this time. If no relevant mea-
sures are taken, there will be serious consequences.

Table 5 Parameters of vibration
acceleration sensor Sensitivity Test range Nonlinearity Lateral sensitivity

100 mV/g 50 g 1% < 5%

Frequency range Resonant frequency Temperature range Vibration limit

0.4–12 k (± 3 dB)Hz 40 kHz − 50~+ 120 °C 500 g

Impact limit Peripheral size Weight Output impedance

5000 g 19 × 19 × 19(mm) 12 g < 100 Ω

Fig. 4 Experimental setup for
chatter detection

Workpiece fixture Machine Cutter

X axis Y axis X axis Y axis Z axis

Uniaxial vibration 

acceleration sensors

Triaxial vibration 

acceleration sensor

Signal conditioner

End

Machine tool

DASP software analysis

Start

End

Fig. 5 Execution flow for chatter detection
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After the experiment, serious periodic scratches can be
found on the left-hand side surface of the workpiece, which
is shown in Fig. 12. To some extent, it reflects the conse-
quences of cutting chatter.

Based on the above experimental analysis, it can be seen
that the characteristic components of the cutting vibration
signal can be effectively decomposed through the improved
VNCMD, which can provide favorable conditions for sub-
sequent feature extraction and chatter identification.

5 Chatter identification based
on multi-feature vector

Although the vibration signal has been separated from the
background of strong noise in the previous section, the
chatter stages are still difficult to distinguish. In the machin-
ing process, two issues of cutting chatter that need to be

concerned are whether or not the chatter has occurred and
at what extent the chatter has developed. To accurately
identify whether the cutting chatter is generated, it is nec-
essary to extract chatter features from the time domain and
frequency domain of the intrinsic mode functions to obtain
feature vectors by using relevant statistical methods.
Therefore, the fourth-order cumulant and permutation en-
tropy are used to extract the features from the target sample
and validation sample of the experimental signal [36, 37].
The fourth-order cumulant can suppress the influence of
Gauss noise and characterize the nonlinearity of signals.
Compared with low-order cumulant, more information of
signals can be obtained from the fourth-order cumulant.
And permutation entropy can be used to detect the qualita-
tive and quantitative dynamic changes in time series [38]. It
has a good effect on the detection of impulse components
and has a strong anti-noise ability. This combined eigen-
vector cannot only extract useful information from abrupt
and strong interfering signals but also eliminate the inter-
ference caused by unexpected factors.

The fourth-order cumulants and permutation entropies
of the target sample and validation sample are shown in
Fig. 13, where the target sample and validation sample
represent the machining with chatter and normal machin-
ing, respectively. Each of the statistical points represents
the fourth-order cumulant of the target sample and the
validation sample for 10,000 data points as shown in

(a) Sampled signal in time domain     (b) Sampled signal in frequency domain

Fig. 6 Sampled signal of chatter
detection. a Sampled signal in the
time domain. b Sampled signal in
the frequency domain

(b) Target sample in time domain(a) Validation sample in time domain      

Fig. 7 Target sample in the time
domain. a Validation sample in
the time domain. b Target sample
in the time domain

Table 6 Correlation coefficients of four IMFs in the target sample

ρxy 1 2 3 4

1 1 0.0030 0.0904 0.0048

2 0.0030 1 0.0037 0.0724

3 0.0904 0.0037 1 0.0508

4 0.0048 0.0724 0.0508 1
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(b) Hilbert marginal spectrum of IMF1(a) IMF1 in time domain

Fig. 8 Intrinsic mode function 1
of the target sample. a IMF1 in
the time domain. b Hilbert
marginal spectrum of IMF1

(a) IMF 2 in time domain (b) Hilbert marginal spectrum of IMF2

Fig. 9 Intrinsic mode function 2
of the target sample. a IMF2 in
the time domain. b Hilbert
marginal spectrum of IMF2

(a) IMF 3 in time domain (b) Hilbert marginal spectrum of IMF 3

Fig. 10 Intrinsic mode function 3
of the target sample. a IMF3 in
the time domain. b Hilbert
marginal spectrum of IMF3

(a) IMF 4 in time domain (b) Hilbert marginal spectrum of IMF 4

Fig. 11 Intrinsic mode function 4
of the target sample. a IMF4 in
the time domain. b Hilbert
marginal spectrum of IMF4
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Fig. 13a, which can reflect the degree of deviation of
signal from Gaussian distribution. And each of the statis-
tical points represents the permutation entropy of the tar-

get sample and validation sample for 1,452 data points as
shown in Fig. 13b, which can reflect the impulse compo-
nent in the signal. As can be seen from Fig. 13a, there are
obvious differences between these two statuses, which
can be used as a criterion for the occurrence of chatter.
The fourth-order cumulant of the validation sample is
smooth, which indicates that the cutting process is nor-
mal. The fourth-order cumulant of target sample in-
creases gradually at first then appears three peak values,
and then it decreases slightly at last. It shows that the
weak cutting chatter occurs at the beginning, and three
types of severe cutting chatter may occur with the in-
crease of cutting chatter degree. In Fig. 13b, the features
cannot be distinguished from the two statuses because of
the aliasing from 7 to 14 points.

Fig. 12 Workpiece after machining

(a) Fourth-order cumulants of samples (b) Permutation entropies of samples

Fig. 13 Features of samples. a
Fourth-order cumulants of the
samples. b Permutation entropies
of the samples

(a) Fourth-order cumulants of target sample (b) Permutation entropies of target sample 

(c) Instantaneous frequencies of the target sample

Fig. 14 Multi-feature vector of
the target sample. a Fourth-order
cumulants of the target sample. b
Permutation entropies of the
target sample. c Instantaneous
frequencies of the target sample
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When the cutting chatter occurs, the type and extent of chatter
development need to be further identified. The target sample is
decomposed into several components by the improved
VNCMD. And the fourth-order cumulants, permutation entro-
pies, and instantaneous frequencies of each component can be
obtained, which are shown in Fig. 14.

The four decomposition components represent the four stages
of chatter development. Combined with the Hilbert marginal
spectrum analysis results in Figs. 8, 9, 10, and 11, it can be
known that IMF1 denotes the initial stage of chatter, IMF2 de-
notes the chatter near the natural frequency of workpiece, IMF3
denotes the chatter near the natural frequency of the cutting tool,
and IMF4 denotes the sharp development of chatter. It can be
seen from Fig. 14a that the features of IMF1 and IMF2 are
overlapped and the features of IMF3 and IMF4 can be distin-
guished clearly. In Fig. 14b, the permutation entropies of IMF1
and IMF2 can be distinguished clearly, but the permutation en-
tropies of IMF3 and IMF4 are very close, which are not condu-
cive to the judgment of the cutting chatter status. It can be seen
from Fig. 14c that the type and extent of chatter development can
be distinguished clearly by the instantaneous frequencies of the
four intrinsic mode functions of the target sample. Therefore, if
these three characteristics are considered comprehensively, it will
be more helpful to identify the type and extent of cutting chatter.
The above analysis indicates that the multi-feature vector is more
accurate to identify the development of chatter.

6 Conclusions

Aiming at the problem that the vibration signal of turning process
is susceptible to noise interference and low signal-to-noise ratio, a
cutting chatter identification method based on the improved
VNCMD and multi-feature vector is proposed in this paper.
The improved VNCMD algorithm not only has the advantages
of the original VNCMD algorithm but also can accurately deter-
mine the number of signal components. Compared with the or-
dinary narrow-band signal decomposition algorithm, this im-
proved algorithm can effectively eliminate the noise interference
and extract the characteristic components of the signal. Through
the analysis results of the multi-feature vector of the cutting vi-
bration signal, it can be seen that this method has good weak
feature extraction ability and can greatly improve the accuracy of
the cutting chatter identification. The good classification results
also indicate that the multi-feature vector is suitable to chatter
status recognition.

For future work, although the multi-feature vector based on
the improved VNCMD algorithm has a good performance, this
method might not be the optimal choice. How to choose and
estimate the feature vector is still a challenge work for pattern
recognition. Therefore, the intelligent identification of cutting
chatter based on the feature vectors is our next step work.
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Natural Science Foundation of China (Nos. 11872254, 11790282 and
U1534204).

References

1. Smith S, Tlusty J (1997) Current trends in high-speed machining.
ASME JManuf Sci Eng 119(4):664–666. https://doi.org/10.1115/1.
2836806

2. Ji YJ, Wang XB, Liu ZB, Wang HJ, Jiao L, Zhang L, Huang T
(2018) Milling stability prediction with simultaneously considering
the multiple factors coupling effects-regenerative effect, mode cou-
pling, and process damping. Int J Adv Manuf Technol 97(5–8):
2509–2527. https://doi.org/10.1007/s00170-018-2017-7

3. WeremczukA, Rusinek R (2016) Influence of frictional mechanism
on chatter vibrations in the cutting process–analytical approach. Int
J Adv Manuf Technol 89(9):12):1–12):8. https://doi.org/10.1007/
s00170-016-9520-5

4. Zhang XJ, Xiong CH, Ding Y, Feng MJ, Xiong YL (2012)
Milling stability analysis with simultaneously considering the
structural mode coupling effect and regenerative effect. Int J
Mach Tool Manu 53(1):127–140. https://doi.org/10.1016/
j.ijmachtools.2011.10.004

5. Yan Y, Xu J, Wiercigroch M (2017) Regenerative chatter in a
plunge grinding process with workpiece imbalance. Int J Adv
Manuf Technol 89(9–12):2845–2862. https://doi.org/10.1007/
s00170-016-9830-7

6. Yan Y, Xu J, Wiercigroch M (2018) Stability and dynamics of
parallel plunge grinding. Int J Adv Manuf Technol 99(1–4):881–
895. https://doi.org/10.1007/s00170-018-2440-9

7. Kim JS, Lee BH (1991) An analytical model of dynamic cutting
forces in chatter vibration. Int J Mach Tool Manu 31(3):371–381.
https://doi.org/10.1016/0890-6955(91)90082-E

8. Zhang HT, Wu Y, He DF, Zhao H (2015) Model predictive control
to mitigate chatters in milling processes with input constraints. Int J
Mach Tool Manu 91:54–61. https://doi.org/10.1016/j.ijmachtools.
2015.01.002

9. Shorr MJ, Liang SY (1996) Chatter stability analysis for end mill-
ing via convolution modelling. Int J Adv Manuf Technol 11(5):
311–318. https://doi.org/10.1007/BF01845689

10. ChenCK, Tsao YM (2006)A stability analysis of turning a tailstock
supported flexible work-piece. Int J Mach Tool Manu 46(1):18–25.
https://doi.org/10.1016/j.ijmachtools.2005.04.002

11. Choi T, Shin YC (2003) On-line chatter detection using wavelet-
based parameter estimation. J Manuf Sci Eng 125(1):21–28. https://
doi.org/10.1115/1.1531113

12. Wu Y, Du R (1996) Feature extraction and assessment using wave-
let packets for monitoring of machining processes. Mech Syst
Signal Process 10(1):29–53. https://doi.org/10.1006/mssp.1996.
0003

13. Vela-Martínez L, Jauregui-Correa JC, Rodriguez E, Alvarez-
Ramirez J (2010) Using detrended fluctuation analysis to monitor
chattering in cutter tool machines. Int J Mach Tool Manu 50(7):
651–657. https://doi.org/10.1016/j.ijmachtools.2010.03.012

14. Kuljani E, Sortino M, Totis G (2008) Multisensor approaches for
chatter detection in milling. J Sound Vib 312(4–5):672–693. https://
doi.org/10.1016/j.jsv.2007.11.006

15. Kuljanic E, Totis G, Sortino M (2009) Development of an intelli-
gent multisensor chatter detection system in milling. Mech Syst
Signal Process 23(5):1704–1718. https://doi.org/10.1016/j.ymssp.
2009.01.003

16. Liu CF, Zhu LD, Ni CB (2017) The chatter identification in end
milling based on combining EMD and WPD. Int J Adv Manuf

Int J Adv Manuf Technol (2019) 104:2567–2578 2577

https://doi.org/10.1115/1.2836806
https://doi.org/10.1115/1.2836806
https://doi.org/10.1007/s00170-018-2017-7
https://doi.org/10.1007/s00170-016-9520-5
https://doi.org/10.1007/s00170-016-9520-5
https://doi.org/10.1007/s00170-016-9830-7
https://doi.org/10.1007/s00170-016-9830-7
https://doi.org/10.1007/s00170-018-2440-9
https://doi.org/10.1016/0890-6955(91)90082-E
https://doi.org/10.1016/j.ijmachtools.2015.01.002
https://doi.org/10.1016/j.ijmachtools.2015.01.002
https://doi.org/10.1007/BF01845689
https://doi.org/10.1016/j.ijmachtools.2005.04.002
https://doi.org/10.1115/1.1531113
https://doi.org/10.1115/1.1531113
https://doi.org/10.1006/mssp.1996.0003
https://doi.org/10.1006/mssp.1996.0003
https://doi.org/10.1016/j.ijmachtools.2010.03.012
https://doi.org/10.1016/j.jsv.2007.11.006
https://doi.org/10.1016/j.jsv.2007.11.006
https://doi.org/10.1016/j.ymssp.2009.01.003
https://doi.org/10.1016/j.ymssp.2009.01.003


Technol 91(9–12):3339–3348. https://doi.org/10.1007/s00170-
017-0024-8

17. Ji YJ,Wang XB, Liu ZB, Yan ZG, Li J,Wang DQ,Wang JQ (2017)
EEMD-based online milling chatter detection by fractal dimension
and power spectral entropy. Int J Adv Manuf Technol 92(1–4):
1185–1200. https://doi.org/10.1007/s00170-017-0183-7

18. Cao HR, Zhou K, Chen XF (2015) Chatter identification in end
milling process based on EEMD and nonlinear dimensionless indi-
cators. Int J Mach Tools Manuf 92:52–59. https://doi.org/10.1016/j.
ijmachtools.2015.03.002

19. Wang YX, Markert R, Xiang J, Zheng WG (2015) Research on
variational mode decomposition and its application in detecting
rub-impact fault of the rotor system. Mech Syst Signal Process
60–61:243–251. https://doi.org/10.1016/j.ymssp.2015.02.020

20. Chen SQ, Dong XJ, Peng ZK, Zhang WM (2017) Nonlinear chirp
mode decomposition: a variational method. IEEE Trans Signal
Process 65(22):6024–6037. https://doi.org/10.1109/TSP.2017.
2731300

21. Grabec I, Gradišek J, Govekar E (1999) A new method for chatter
detection in turning. CIRP Ann- Manuf Technol 48(1):29–32.
https://doi.org/10.1016/s0007-8506(07)63125-4

22. Berger B, Belai C, Anand D (2003) Chatter identification with
mutual information. J Sound Vib 267(1):178–186. https://doi.org/
10.1016/s0022-460x(03)00067-1

23. Tansel IN, Li M, Demetgul M, Bickraj B, Ozcelik B (2012)
Detecting chatter and estimating wear from the torque of end mill-
ing signals by using index based reasoner (IBR). Int J Adv Manuf
Technol 58(1–4):109–118. https://doi.org/10.1007/s00170-010-
2838-5

24. Cao HR, Lei YG, He ZG (2015) Chatter identification in end mill-
ing process using wavelet packets and Hilbert-Huang transform. Int
J Mach Tools Manuf 92:52–59. https://doi.org/10.1016/j.
ijmachtools.2013.02.007

25. Kowalski M, Meynard A, Hua-tieng W (2016) Convex
Optimization approach to signals with fast varying instantaneous
frequency. Appl Comput Harmon Anal 9(9):1260–1267. https://
doi.org/10.1016/j.acha.2016.03.008

26. Dragomiretskiy K, Zosso D (2014) Variational mode decomposi-
tion. IEEE Trans Signal Process 62(3):531–544. https://doi.org/10.
1109/TSP.2013.2288675

27. Carson JR (1922) Notes on the theory of modulation. 10(1):57–64.
https://doi.org/10.1109/proc.1963.2322

28. Meignen S, Pham DH, Mclaughlin S (2017) On demodulation,
ridge detection, and synchrosqueezing for multicomponent signals.
IEEE Trans Signal Process 65(8):2093–2103. https://doi.org/10.
1109/TSP.2017.2656838

29. Pan MC, Lin YF (2006) Further exploration of Vold–Kalman-fil-
tering order tracking with shaft-speed information—II: engineering
applications. Mech Syst Signal Process 20(6):1410–1428. https://
doi.org/10.1016/j.ymssp.2005.01.007

30. Auger F, Flandrin P (1995) Improving the readability of time-
frequency and time-scale representations by the reassignmentmeth-
od. IEEE Transactions on Signal Processing 43(5):1068–1089.
https://doi.org/10.1109/78.382394

31. Ahlgren P, Jarneving B, Rousseau R (2003) Requirements for a
cocitation similarity measure, with special reference to Pearson’s
correlation coefficient. J Am Soc Inf Sci Technol 54(6):550–560.
https://doi.org/10.1002/asi.10242

32. Balachandran B (2001) Nonlinear dynamics of milling processes.
Philos Trans R Soc A Math Phys Eng Sci 359(1781):793–819.
https://doi.org/10.1098/rsta.2000.0755

33. Gilsinn DE, Davies MA, Balachandran B (2001) Stability of preci-
sion diamond turning processes that use round nosed tools. J Manuf
Sci Eng 123(4):747. https://doi.org/10.1115/1.1373648

34. Balachandran B, Gilsinn D (2005) Non-linear oscillations of mill-
ing. Math Comput Model Dyn Syst 11(3):273–290. https://doi.org/
10.1080/13873950500076479

35. SekarM, Srinivas J, Kotaiah KR, Yang SH (2009) Stability analysis
of turning process with tailstock-supported workpiece. Int J Adv
Manuf Technol 43(9–10):862–871. https://doi.org/10.1007/
s00170-008-1764-2

36. Lyu S, Farid H (2003) Detecting hidden messages using higher-
order statistics and support vector machines. In: Petitcolas FAP
(ed) Information hiding. IH 2002. Lecture Notes in Computer
Science, vol 2578. Springer, Berlin, Heidelberg. https://doi.org/10.
1007/3-540-36415-3_22

37. Bandt C, Pompe B (2002) Permutation entropy: a natural complex-
ity measure for time series. Phys Rev Lett 88(17):174102. https://
doi.org/10.1103/PhysRevLett.88.174102

38. Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM (2004)
Detecting dynamical changes in time series using the permutation
entropy. Phys Rev E 70(4 Pt 2):046217. https://doi.org/10.1103/
PhysRevE.70.046217

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2578 Int J Adv Manuf Technol (2019) 104:2567–2578

https://doi.org/10.1007/s00170-017-0024-8
https://doi.org/10.1007/s00170-017-0024-8
https://doi.org/10.1007/s00170-017-0183-7
https://doi.org/10.1016/j.ijmachtools.2015.03.002
https://doi.org/10.1016/j.ijmachtools.2015.03.002
https://doi.org/10.1016/j.ymssp.2015.02.020
https://doi.org/10.1109/TSP.2017.2731300
https://doi.org/10.1109/TSP.2017.2731300
https://doi.org/10.1016/s0007-8506(07)63125-4
https://doi.org/10.1016/s0022-460x(03)00067-1
https://doi.org/10.1016/s0022-460x(03)00067-1
https://doi.org/10.1007/s00170-010-2838-5
https://doi.org/10.1007/s00170-010-2838-5
https://doi.org/10.1016/j.ijmachtools.2013.02.007
https://doi.org/10.1016/j.ijmachtools.2013.02.007
https://doi.org/10.1016/j.acha.2016.03.008
https://doi.org/10.1016/j.acha.2016.03.008
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/proc.1963.2322
https://doi.org/10.1109/TSP.2017.2656838
https://doi.org/10.1109/TSP.2017.2656838
https://doi.org/10.1016/j.ymssp.2005.01.007
https://doi.org/10.1016/j.ymssp.2005.01.007
https://doi.org/10.1109/78.382394
https://doi.org/10.1002/asi.10242
https://doi.org/10.1098/rsta.2000.0755
https://doi.org/10.1115/1.1373648
https://doi.org/10.1080/13873950500076479
https://doi.org/10.1080/13873950500076479
https://doi.org/10.1007/s00170-008-1764-2
https://doi.org/10.1007/s00170-008-1764-2
https://doi.org/10.1007/3-540-36415-3_22
https://doi.org/10.1007/3-540-36415-3_22
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevE.70.046217
https://doi.org/10.1103/PhysRevE.70.046217

	Detection and identification of cutting chatter based on improved variational nonlinear chirp mode decomposition
	Abstract
	Introduction
	Principle and improvement of the VNCMD algorithm
	Principle of the VNCMD algorithm
	Improvement of the VNCMD algorithm

	Verification by simulation signals
	Analysis of turning machine experimental signals
	Experimental setup for cutting chatter detection
	Experimental signal analysis

	Chatter identification based on multi-feature vector
	Conclusions
	References


