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Abstract
The characteristics of geometric error affect both the positions and orientations of a five-axis machine tool, which are very
important for precision manufacturing. It is necessary to conduct quantitative analysis for the above characteristics to improve the
precision of the five-axis machine tool. In this paper, the synthetic volumetric error model of the five-axis machine tool with a
turntable-tilting head has been established, which describes the effect of 43 geometric error terms on position and orientation error
vector intuitively. The multidimensional output of geometric error vectors in the workspace of the machine tool is sufficiently
taken into account, and global quantitative sensitivity analysis is introduced to determine the effect of each geometric error on the
precision of the machine tool. The results showed that geometric errors of the rotary axes are dominant sensitivity factors,
reaching 59.32 and 51.59% of sensitivity indices of the position and orientation error vector, respectively. Furthermore, geometric
error terms that are noncritical and critical are extracted according to the result of mutual information analysis. Those geometric
errors were removed from the geometric error compensation model, which are at the same time insensitivity errors and nonsig-
nificant geometric errors. The geometric error compensation results show that the accuracy of the machined parts with complex
curved surfaces was improved 56.22% after error compensation based on sensitivity and mutual information analysis. This
research provides a feasible methodology for analyzing the effect of geometric errors and determining the compensation values of
the machine tool.
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1 Introduction

A five-axis machine can adjust both the tool tip optimal posi-
tion and orientation relative to the workpiece simultaneously
in the process of its machining, and it can realize machining
complex shapes in a single setup, shortening the processing
time by a big margin and improving the surface quality of the
machining part when compared with the three-axis machine
[1, 2]. Owing to their unique advantages, five-axis machine
tools are extensively used in the field of automotive, ship-
building, and aerospace [3]. One of the criteria on the

performances of the five-axis machine tool is its quasi-static
accuracy [4, 5]. Therefore, it has become one of the most
important concerns, and the quasi-static errors (geometric er-
rors and thermal errors) and dynamic errors (cutting force
errors and dynamic errors) affect manufacturing accuracy to-
gether [6, 7]. Geometric errors account for 40–50% of the total
machine errors [8–10], and it has characteristics of coupling
effect and has nonlinear and high repeatability [4, 9]. Hence, it
is important to establish a method for analyzing the character-
istics of geometric error terms and applying the analysis re-
sults in error compensation to enhance the geometric accuracy
of five-axis machine tools.

A five-axis machine tool with a turntable-tilting head has
30 position-dependent geometric errors (PDGEs) and 13
position-independent geometric errors (PIGEs) [11, 12].
PDGEs are mainly caused by manufacturing defects and wear
of the machine tool itself, and PIGEs are mainly caused by
assembling deviation between two motion axes [13–15].

The geometric error model is able to express the mapping
relationship of the movement characteristics corresponding to
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two coordinate systems, the cutting tool position and orienta-
tion in the workpiece coordinate system can be determined
based on the motion commands of each axis in a machine
coordinate system, and therefore, geometric error modeling
is the foundation of error identification, analysis, and compen-
sation. The research works on geometric modeling are devel-
oped according to various methods, and these modeling ap-
proaches include the multibody system (MBS) theory
[16–18], screw theory-based modeling method [19, 20], ex-
ponent product method [21], state space model [22], polyno-
mials model [23, 24], stream of variation theory [25], and so
on. Fan et al. [26] adopted truncated Fourier function to fit the
distribution curve of geometric accuracy of the guideway and
established the mapping model between the tolerance of the
machine tool guideway and the geometric error. He et al. [27]
proposed a hierarchical method for estimating motion errors
of the linear axis and established mapping between the preci-
sion of the slideway and error motion of the work table. Based
on rigid body kinematics and homogeneous transformation
methods (HTMs), Mir et al. [28] established the general vol-
umetric error model of a five-axis machine tool, and the
Gauss–Newton method is used for calculating modified com-
mands of geometric error compensation. Li et al. [24]
established a PDGE model of linear axes based on moving
least squares and Chebyshev polynomials method, and posi-
tion accuracy of motion axis was improved by 90% after error
compensation. Qiao et al. [29] proposed a PIGE calibration
model of five-axis machine tools based on the product of
exponentials (POE) formula, and the validity is validated by
simulations and experiments. Yang et al. [30] presented the
identification method for PIGEs of five-axis machine tools
based on the screw theory, and the proposed correction model
can be used for improving the precision of the table-tilting-
type five-axis machine tool. Ibaraki et al. [31] established a
geometric error model based on HTMs, they developed a
scanning measurement method with laser displacement sen-
sor, and they analyzed the influence of geometric error of
rotary axes on the measurement accuracy of a five-axis ma-
chine tool. The mapping relation between tool posture error
vectors and geometric error for a four-axis machine tool was
proposed by Chen et al. [32] based on differential transforma-
tion theory, where the geometric error components were
expressed as the differential movement relative to the ideal
values. The screw theory-based modeling and HTMmodeling
based onMBS are efficient and commonmethods for geomet-
ric error modeling in the existing methods, and the former is
used to describe a rigid body in a global coordinate system
instead of establishing a local coordinate system on each mo-
tion axis. The latter is implemented for establishing homoge-
neous coordinate transformation matrix of the adjacent body,
which includes geometric error components of motion axis,
and the method can express the motion relationship among the
components of five-axis machine tools simply and intuitively.

Five-axis machine tools can be classified into three types
according to the positions of rotary and linear axes. The pre-
viously presented researches about geometric error modeling
focus mainly on the machine type with a rotary and tilting
table and a universal head, and the type with a tilting head
and rotary table has received little attention. What needs to be
stressed is that the number and nature of the geometric error
has more remarkable differences in various types of five-axis
machine tools; for example, a five-axis machine tool with
tilting rotary table contains 11 PIGEs [4, 10], and a five-axis
machine tool with tilting head and a turntable contains 13
PIGEs [10, 48], and thus, the existing geometric model cannot
be directly used for describing the relationship between geo-
metric error and the position and orientation of five-axis ma-
chine tools with tilting head and turntable [15, 33]; hence in
this paper, the integrated model of geometric errors of five-
axis machine tools with tilting head and turntable will be
established.

PIGEs and PDGEs of motion axes of a five-axis machine
tool are generally considered as independent in the identifica-
tion process, which is not in accordance with the fact that
some errors are correlative variables [14, 34]. Meanwhile,
the difference of the effect of geometric error on precision of
a machine tool was neglected. While many approaches for
geometric error identification and compensation have been
put forward, the investigation of the quantitative analysis of
geometric error having influence on the precision of a five-
axis machine tool is scarce. The coupling of geometric error
on the machine accuracy exists in a five-axis machine tool
[35], and geometric error distribution is characterized as non-
linear which brings obstructions to accuracy allocation and
error compensation of the five-axis machine tool [9, 36].
Sensitivity analysis can be used for the quantitative evaluation
of key factors and the coupling effects between geometric
errors, and the sensitivity analysis can be categorized as global
sensitivity analysis (GSA) and local sensitivity analysis (LSA)
[37]. LSA focuses on the influence of certain parameters on
the output of the model. On the contrary, the GSA method is
used to analyze the influence of all parameters on the output of
the model at the same time.

Much effort has been made by researchers to reveal the
relative changes of machine tool accuracy which are caused
by uncertainties of geometric error components from the per-
spective of qualitative analysis. Tsutsumi et al. [13] analyzed
the influence of PIGEs of tilting rotary table-type five-axis
machine tool on circular trajectory based on simulation and
experiments. Based on the method of numerical simulation,
Zargarbashi and Mayer [38] analyzed the influence of 12
PDGEs of trunnion axis on measure-trajectory with double
ball bar (DBB), and this LSA method was evolved and ap-
plied for describing the influence of PIGEs and PDGEs [14,
34]. Cheng et al. [9, 39, 35] proposed the GSA method for
determining crucial geometric error terms, and the stochastic
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and intercoupling characteristics of the geometric errors are
considered as well, and the precision of the machine tool is
improved after replacing the parts. Ibaraki et al. [40] conduct-
ed LSA based on numerical simulation to assess the contribu-
tion of position and orientation errors of motion axes of five-
axis machine tool, and installation deviation that includes po-
sition and orientation errors of the workpiece is fully taken
into account simultaneously. Lee and Lin [41] established a
model of PIGEs which is caused by assembly deficiency and
analyzed the sensitivities of indirect compensation geometric
error terms based on the form-shaping function theory. The
Spearman method is adopted by Chen et al. [42] to determine
the key geometric error terms of a four-axis machine tool, and
six geometric errors that have greater influence on the tool
posture are determined. Lei et al. [43] measured dynamic er-
rors of rotary axes by synchronous motion of linear and rotary
axes, then mapping between rotational range and measure-
ment sensitivity of the rotary axis was established, and error
compensation is conducted to verify the feasibility of the mod-
ified identification values based on sensitivity analysis. Liu
et al. [44] conducted research on the effect due to change of
geometric error on the form error with different surfaces by
numerical simulation method, and its effectiveness is verified
through manufacturing and measuring a simple part that has a
plane-spherical surface. Li et al. [45] defined new sensitivity
indices for GSA and LSA through the projection of the error
vectors and the effective cutting length of the cutting tool, and
key factors are extracted from 41 geometric errors which in-
clude position and posture error of the cutting tool based on
numerical simulation. Guo et al. [12] proposed an approach
for determining the coupling effect of four adjustable PIGEs
and compensation values of tilting head and a turntable-type
five-axis machine tool. Error compensation was conducted by
Zou et al. [46] based on the analysis of variance, and the
influence of verticality error is eliminated by adjusting the
assembly precision of the machine components. Du et al.
[47] modeled position error and straightness geometric error
based on Jacobian–Torsor, and the effect of manufacturing
error on the comprehensive error of single-axis assembly
and its cumulative effect is determined by the Monte Carlo
simulation method.

Previous studies mainly focused on sensitivity analysis of
the direct influence and coupling effect of geometric error for
the three-axis and five-axis machine tools, and the same mag-
nitude characteristics of geometric error numerical simulation
parameters cannot reflect the unequal magnitude relationship
of geometric error terms. In another respect, the position and
posture accuracy of the machine tool are affected by some of
the same geometric errors, while position and posture errors of
the vector also interacted with each other. The influence of
uncertainty of geometric error on the multidimensional output
simultaneously has seldom been considered, although root
mean square values of three error vectors are analyzed [11,

44, 46], and moreover, the result of sensitivity analysis is
rarely directly applied in geometric error compensation except
replacing parts of the machine tool and guiding the design.
However, the geometric accuracy of machine tools will fluc-
tuate due to the replaced parts, and sensitivity analysis is ap-
plied in the precision design of the machine tool only for error
avoidance purposes, and it means that the abovementioned
methods do not effectively and economically guarantee geo-
metric accuracy of the CNC machine tool in operation and
maintenance. The contributions of this paper are listed as fol-
lows: One is the volumetric error modeling of the five-axis
machine tool with tilting head and rotary table by the MBS
theory and HTMmethod, in which 43 error terms particular to
the RTTTR-type five-axis machine tool are all involved. The
other is that multivariate output characteristic of geometric
error is taken into consideration, and then the identification
of noncritical geometric error terms and error compensation
based on sensitivity analysis for improving the geometric ac-
curacy of the tilting head and a turntable-type five-axis ma-
chine tools is performed.

The structure of the paper is as follows: in Section 2, geo-
metric error modeling of the five-axis machine tool with tilting
head and turntable is presented with consideration given to
position and orientation error vectors. In Section 3, the GSA
model of geometric error for the five-axis machine tool is
established and the identified results of sensitivity factors are
described in detail and the relationship between geometric
error and error vector is determined by mutual information
analysis. In Section 4, experiments are carried out on the
five-axis machine tool to validate the effectiveness of the anal-
ysis method. Some conclusions are drawn finally.

2 Geometric error model of the five-axis
machine tool

2.1 Five-axis machine tool configuration

Five-axis machine tool with a tilting head and turntable is
considered, as shown in Fig. 1, which consists of three linear
axes (X-, Y-, and Z-axes) and two rotary axes (C- and A-axes).
The direction of each local coordinate system is consistent
with the reference coordinate system.

According to MBS, the five-axis machine tool with
tilting head and turntable can be described abstractly as
an adjacent body array in the form of a topological struc-
ture, in which components of the five-axis machine tool
are abstracted into bodies, and the bodies are sorted in
ascending order from machine bed to cutting tool and
workpiece, respectively, which form two kinematic
chains: tool kinematic chain and workpiece kinematic
chain, as shown in Fig. 2.
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2.2 Definition of PIGEs and PDGEs

Known from the nature of rigid body motion, each machine
tool component has six degrees of freedom in the Cartesian
coordinate system [49, 50]. PDGEs exist in moving compo-
nents and each rotary axis has three positional errors (two
runout errors and one axial shift error) and three angular er-
rors. Each linear axis has three positional errors (one position-
ing error and two straightness errors) and three angular errors

(yaw error, pitch error, and roll error). For the five-axis ma-
chine tool, there exist three squareness errors between three
linear axes. The 43 geometric errors of the five-axis machine
tool with a tilting head and rotary table should be considered
[48, 11], which are listed in Table 1.

δ and ε represent translational errors and angle errors which
belong to PDGEs of the linear and rotary axes, respectively,
and the subscript is the error direction and the position coor-
dinate is defined within the parenthesis. γxy, αyz, and βxz are
squareness errors between each pair of axes, αCY is the square-
ness error of the C-axis around the X-axis in the YOZ plane,
βCY is the squareness error of the C-axis around the Y-axis in
the ZOX plane, δxCY is the position deviation of the C-axis in
the X-direction, δyCY is the position deviation of the C-axis in
the Y-direction, αZA is the angular deviation of initial of angu-
lar position of the A-axis in the ZOYplane, βZA is the square-
ness error of the A-axis center line around the Y-direction in the
ZOX plane, γZA is the squareness error of the A-axis center
line around the Z-direction in the XOY plane, δyAS is the po-
sition deviations between the A-axis center line and spindle
axis in the Y-direction in the XOY plane, δzAS is the position
deviation between the ideal and actual of the spindle nose in
the Z-direction in the ZOX plane, and βAS is the squareness
between the spindle axis center line and A-axis movement in
the ZOX plane.

2.3 Modeling of geometric errors

According to the MBS theory, 4 × 4 matrices can be used for
expressing the position relation and motion feature between
classical lower bodies with respect to geometric errors of the
five-axis machine tool. The characteristic matrices of geomet-
ric errors of the five-axis machine tool are listed in Table 2.

i
jT s, i

jT se, ijT m, ijT me, ijRm, and i
jRme represent the position

characteristic transformation matrix, position error characteris-
tic transformation matrix, motion characteristic transformation
matrix, motion error characteristic transformation matrix, angle
transformation matrix, and angle error characteristic transfor-
mation matrix, respectively, which are from the j coordinate
system to the i coordinate system. For the linear axes, the angle
transformation matrices are equal to the unit matrix I4 × 4.

The vector Pt represents the tool tip position in the tool
coordinate system, and Pw represents the position of the
workpiece-forming point in a workpiece coordinate system,
which can be expressed as:

Pt ¼ xt; yt; zt; 1ð ÞT ð1Þ
Pw ¼ xw; yw; zw; 1ð ÞT ð2Þ

There is an overlap between the cutting point in the tool
coordinate system and workpiece coordinate system, when
there is no geometric error in the multibody system. The

Fig. 1 Five-axis machine tool with tilting head and turntable

Fig. 2 Schematic diagram of topology of the five-axis machine tool
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relationship of the cutting point between the reference frame
and the workpiece coordinate system is shown below.
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The forming point of the tool will inevitably deviate from
the ideal position under the influence of geometric errors in
practice, and the volumetric position errors of the five-axis
machine tool can be expressed as:
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¼ 0
1T s

0
1T se

0
1Tm

0
1Tme

1
2T s

1
2T se

1
2Tm

1
2Tme

2
3T s

2
3T se

2
3Tm

2
3Tme

3
4T s

3
4T se

3
4Tm

3
4Tme

� �
Pt− 0

5T s
0
5T se

0
5Tm

0
5Tme

5
6T s

5
6T se

5
6Tm

5
6Tme

� �
Pw

Similarly, the projection of the ideal tool orientation in the
tool coordinate system At and workpiece coordinate system
Aw can be expressed as Eq. (5). Only angular errors and in-
struction values of motion axes will influence tool orientation,
that is, different numbers of geometric errors will be consid-
ered for establishing volumetric positional error vector model
and volumetric orientation error vector model.

At ¼ Atx;Aty;Atz; 0
� �T ð5Þ

Aw ¼ Awx;Awy;Awz; 0
� �T ð6Þ

Under ideal conditions, the relationship ofAw andAt can be
established with respect to the angle transformation matrix
and angle error characteristic transformation matrix.
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Under the state of real operation of the machine tool, there
are deviations between the actual orientation and ideal orien-
tation of tool orientation. The volumetric orientation errors of
the five-axis machine tool can be expressed as:
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The total volumetric positional error vector and the total
volumetric orientation error vector including all the PIGEs
and PDGEs of the five-axis machine tool with swiveling head
can be used in error prediction, geometric error analysis, and
compensation value determination.

2.4 Measurement and identification of geometric
error

Effective measurement methods with special equipment have
been recommended by ISO 230-1 and ISO 10791-6 for linear
axes [48, 51], which include the multiline method and body
diagonal measurement method based on the laser interference
measurement system [52, 53]. For the measurement of rota-
tion axes, circular test with DBB is the most popular indirect
measurement method.

Based on the proposed method from a previous study in
refs. [12, 54], 10 PIGEs of rotary axes are identified, and the
DBB is adopted for measuring and identifying 12 PDGEs of
rotation axes based on the method proposed in refs. [52, 55].
The 12-line method is applied to identify 21 geometric error
terms for linear axes based on Renishaw XL-80 laser interfer-
ometer measuring system, as shown in Fig. 3.

Multiple consecutive measurements are performed under
the same conditions according to ISO 230-1 for the purpose
of reducing the uncertainty of measurement. All the PIGEs
and PDGEs can be identified by the corresponding identifica-
tion algorithm [54, 55]. The identified values of PDGEs are
shown in Fig. 4, and identification results of PIGEs are listed
in Table 3.

3 Geometric error analysis

3.1 Sensitivity analysis modeling of geometric error

The geometric errors of machine tools mainly originated from
the defects in the assembling, adjustment, and manufacturing,
and the geometric errors obey a normal distribution [39, 56].
Besides, coupling interaction exists among the geometric error
terms [16, 54, 57], which will result in a total effect being not
the simple algebraic stack of geometric errors. As an effective

Table 1 Geometric error
components of the five-axis
machine tool

Type Number Geometric error

PDGEs 1, 2, 3, 4, 5, 6 δx(x), δy(x), δz(x), εx(x), εy(x), εz(x)

7, 8, 9, 10, 11, 12 δy(y), δx(y), δz(y), εx(y), εy(y), εz(y)

13, 14, 15, 16, 17, 18 δz(z), δx(z), δy(z), εx(z), εy(z), εz(z)

19, 20, 21, 22, 23, 24 δx(a), δy(a), δz(a), εx(b), εy(b), εz(b)

25, 26, 27, 28, 29, 30 δx(c), δy(c), δz(c), εx(c), εy(c), εz(c)

PIGEs 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43

γxy, αyz, βxz, αCY, βCY, δxCY, δyCY, αZA,

βZA, γZA, δyAS, δzAS, βAS

(4)

(8)
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potential method, GSA plays a key role in revealing an inter-
action mechanism of PIGEs and PDGEs while quantitatively
determining significant factors. The variance-based sensitivity
analysis (multivariate output sensitivity analysis method) [58,
59] is selected in this paper.

The core idea of variance-basedmethod is that a mathemat-
ic model will be decomposed into a combination of a single
parameter and multiple parameters, and then sensitivity coef-
ficients corresponding to the outputs of the model will be
obtained, which reflect the effect of geometric error on the
volumetric error vector.

Let Ykv = g(X1, X2,….., Xn), (k = A, P; v = X, Y, Z) be the
geometric error model of the five-axis machine tool, and these
models are established in Section 2. The range of geometric
errors can be determined according to the identified result after
geometric error measurement; meanwhile, according to previ-
ous studies, the geometric error parameters are always normal-
ly distributed. The steps for conducting improved sensitivity
method are as follows:

1. Firstly, geometric error model Y = g(X1, X2,….., Xn) is
decomposed as

g Xð Þ ¼ g0 þ ∑
n

i¼1
gi X ið Þ þ ∑

n

i1¼1
∑
n

i2¼i1þ1
gi1i2 X i1;X i2ð Þ

þ⋯þ g1⋯n X 1;X 2;⋯;X nð Þ ð9Þ

Where (X1, X2,….., Xn) are the independent input variables,
and g0 is constant. g0 represents the expected value of output
Y, which can be expressed as

g0 ¼ ∫g Xð Þ ∏
n

i¼1
f xi xið Þdxi

� � ð10Þ

Where fxi(xi) represents probability density function of input
variables.

2. Secondly, defining Y1 and Y2 as the output parameters, i
and j are complement subsets of (X1, X2,….., Xn), and Y1
and Y2 can be decomposed into several components.

Y 1 ¼ f 0 þ f u þ f v þ f u;v
Y 2 ¼ g0 þ gu þ gv þ gu;v

ð11Þ

Based on the relation of the expected value of output f0, g0,
and output parameters Yi, the decomposition formulation of
output response can be expressed as

Y 1− f 0ð Þ Y 2−g0ð Þ ¼ f ugu þ f vgv

þ f ugv þ f vgu þ⋯þ f u;vgu;v
� � ð12Þ
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Covariance decomposition relation of output response Y1
and Y2 can be obtained.

C Y 1; Y 2ð Þ ¼ Cu þ Cv þ Cu;v ð13Þ

The above covariance decomposition can be expanded to k
multidimensional output mode

C Y 1;⋯; Ymð Þ ¼ ∑
n

i¼1
Ci Y 1;⋯; Ymð Þ

þ ∑
n

1≤ i≤ j≤n
Ci; j Y 1;⋯; Ymð Þ þ⋯

þ C1;2⋯;n Y 1;⋯; Ymð Þ ð14Þ

The covariance matrix of each output response can be
decomposed into the following form

C Y 1;⋯; Ymð Þ

¼
V Y 1ð Þ C Y 2; Y 1ð Þ ⋯ C Y 1; Ymð Þ

C Y 1; Y 2ð Þ V Y 1ð Þ ⋯ C Y 2; Ymð Þ
⋯ ⋯ ⋯ ⋯

C Y 1; Ymð Þ C Y 2; Ymð Þ ⋯ V Ymð Þ

2
664

3
775 ð15Þ

The decomposition form degrades to the variance
analysis of single output as m equal to 1. The global
sensitivity index can be defined as the ratio between the
decomposition term of the covariance matrix and the
covariance matrix, and the first-order sensitivity indices
geometric error i can be expressed as

Si ¼ Ci Y 1;⋯; Ymð Þ
C Y 1;⋯; Ymð Þ ð16Þ

3. Thirdly, converting matrix Si into scalar quantity by cal-
culating the trace of matrix of Eq. (17).

Tr C Y 1;⋯; Ymð Þ½ � ¼ ∑
n

i¼1
Tr Ci Y 1;⋯; Ymð Þ½ �

þ ∑
1≤ i≤ j≤n

Tr Ci; j Y 1;⋯; Ymð Þ� �
þ⋯

þ Tr C1;2;⋯;n Y 1;⋯; Ymð Þ� �
ð17Þ

The modified first-order sensitivity indices geometric error
i can be expressed as

Si ¼ Y 1;⋯; Ymð Þ ¼ Tr Ci Y 1;⋯; Ymð Þ½ �
Tr C Y 1;⋯; Ymð Þ½ � ð18Þ

4. Fourthly, the covariance matrix and the decomposition
term of the covariance matrix can be derived into the form
of variance and conditional moments.

Vi ¼ V E Y jX ið Þ½ � ð19Þ

Then, Eq. (20) can be obtained according to Eq. (19).

Vi ¼ E V Yð Þ−V Y jX ið Þ½ � ð20Þ

Square calculation is introduced in order to avoid the prob-
lem of decreasing the importance of input random variables

Fig. 3 a, b Geometric error
measurement and experiment
setup
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Fig. 4 Identified values of geometric error of motion axes. a Identified
values of position errors of the C-axis. b Identified values of angle errors
of the C-axis. c Identified values of position errors of the A-axis. d
Identified values of angle errors of the A-axis. e Identified values of

position errors of the X-axis. f Identified values of angle errors of the X-
axis. g Identified values of position errors of the Y-axis. h Identified values
of angle errors of the Y-axis. i Identified values of position errors of the Z-
axis. j Identified values of angle errors of the Z-axis
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caused by the canceling effect of the positive and negative
effects when deterring coefficients of the abovementioned
global sensitivity.

Vm
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E V Yð Þ−V Y jX ið Þ½ �2

q
ð21Þ

The global sensitivity coefficients can be modified and rep-
resented as

Smi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E V Yð Þ−V Y jX ið Þ½ �2

q
V Yð Þ ð22Þ

Therefore, Eq. (23) can be obtained according to Eq. (22)

Smi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i þ V V Y jX ið Þ½ �

V2 Yð Þ

s
ð23Þ

and therefore the generalized global sensitivity index in the
form of conditional moments is represented as

Smi Y 1;⋯; Ymð Þ

¼
∑
m

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 E Y jjE Y ið ÞjX i

� �� �þ V V Y jjE Y j
� �� �jX i

� �� �q

∑
m

j¼1
V Y jjE Y j

� �� �
ð24Þ

Define Smi Y kvð Þ, (k = A, P; v = X, Y, Z) as the multidimen-
sional model of volumetric position errors vector Ep and vol-
umetric posture errors vector Ea, which has been presented in
Section 2. The sensitivity coefficient Smi Y kvð Þ of geometric
error elements represents the direct influence of the geometric
error on the total variance of the multidimensional output.

3.2 GSA of geometric errors

Global sensitivity coefficient can be determined by
conducting multivariate output sensitivity analysis based on
the calculation procedure which was elaborated in detail in
Section 3.1. The stroke of the X-, Y-, Z-, C-, and A-axis is
406 mm, 305 mm, 254 mm, 0° to 360°, and − 100° to + 10°,
respectively. According to the varying range and probability
distributions of PIGEs and PDGEs, 20,000 random values are
taken for each geometric error based on the Latin hypercube
sampling technique [9].

The calculated results of the sensitivity analysis about vol-
umetric positional error vector Ep are shown in Fig. 5, and Ep

is a multivariate output which is made up of three components
of total positional error vector in three directions rather than
the root mean square value of three components.

As Fig. 5 illustrates, for the volumetric position error vec-
tor, the sensitivity coefficients of geometric error terms δx(x),
δy(x), δz(x), δx(y), δx(z), δz(z), δx(a), δz(a), εx(a), εy(a), γxy, αyz,
αCY, βCY, δxCY, αZA, and γZA are greater than 0.025. The

Table 3 The identification result of PIGEs

PIGEs Identified values Standard deviation

αCY (″) − 11.9 ± 0.2

βCY (″) − 12.1 ± 0.5

δxCY (μm) 13.9 ± 1.3

δyCY (μm) 21.2 ± 0.9

αZA (″) 5.6 ± 0.5

βZA (″) 7.4 ± 0.4

γZA (″) 9.8 ± 0.7

δyAS (μm) 16.5 ± 0.8

δzAS (μm) − 19.5 ± 1.2

βAS (″) − 16.3 ± 0.6

γxy (″) 18.2 ± 0.8

αyz (″) − 10.4 ± 0.7

βxz (″) 12.5 ± 0.3

Fig. 4 (continued)
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sensitivity coefficients of geometric error terms εx(x), δy(y),
δz(y), εx(y), εy(y), εx(z), εy(z), εz(z), δy(a), εz(a), δx(c), εx(c),
εy(c), εz(c), γxy, βZA, δyAS, δyCY, and βAS whose sensitivity co-
efficients are lower than 0.0125 are considered as the least
important error terms. Geometric errors δx(x), δy(x), δz(x),
δx(y), δx(z), δz(z), δx(a), δz(a), εx(a), εy(a), βxz, αyz, αCY, βCY,
δxCY, and αZA are considered as the sensitive factors that im-
pact the position precision of the machine tool. For the posi-
tion error vector, the percentage of sensitivity indices of
PIGEs and PDGEs of motion axes is 45.42 and 54.58%, re-
spectively. The average sensitivity indices of PIGEs and
PDGEs are 0.034 and 0.018, respectively.

For the volumetric orientation error vector, only 24 angular
errors will have an effect on Ea. Similar to Ep, Ea is a multi-
variate output which is made up of three components of total
orientation error vector in three directions rather than the root
mean square value of three components. The analysis results
of the global sensitivity analysis are shown in Fig. 6.

The sensitivity coefficients of geometric error terms εx(x),
εy(x), εz(x), εx(z), εy(z), εx(a), εy(a), εz(a), εy(c), βxz, αyz, αCY,
βCY, βZA, and βAS are greater than 0.025. The sensitivity coef-
ficients of geometric error terms εx(y), εy(y), εz(y), εz(z), εz(c),
γxy, αZA, and γZA are lower than 0.015. So the geometric error

terms εx(x), εy(x), εz(x), εx(z), εy(z), εx(a), εy(a), εz(a), εy(c),
βxz, αyz, αCY, βCY, βZA, and βAS are considered as sensitive
factors that impact the orientation precision of the cutting tool.
For the orientation error vector, the percentage of sensitivity
indices of PIGEs and PDGEs of motion axes is 62.15 and
37.85%, respectively.

The sensitive geometric error terms for Ep and Ea can be
obtained from Figs. 3 and 4, which are listed in Table 4. It can
be concluded from Table 4 that the average sensitivity indices
of PIGEs are larger than those of PDGEs of motion axes for
position error vector. The average sensitivity indices of PIGEs
have been shown to affect the volumetric position error more
significantly than those of PDGEs of rotary axes and the latter
are numerically superior.

For the volumetric orientation error vector, the average
sensitivity indices of PDGEs and PIGEs of motion axes are
0.0368 and 0.0983, respectively. It can be concluded that
PIGEs have a more sensitive function than PDGEs to volu-
metric orientation error. Furthermore, it should be noted that
the percentage of sensitivity indices of the rotary axes and
linear axes is 59.32 and 40.68%, respectively, for the position
error vector. The percentage of sensitivity indices of the rotary
axes and linear axes is 51.59 and 48.41%, respectively, for the

Fig. 6 Sensitivity analysis result of orientation error vector

Fig. 5 Sensitivity analysis result of position error vector
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orientation error vector. It shows that machine accuracy has
more sensitivity in terms of the effect of the PIGEs and
PDGEs on rotary axes.

3.3 Extraction of noncritical parameters

The identification of geometric error is usually based on the
assumption that geometric errors are independent of each oth-
er; however, some errors are essentially related due to mutual
coupling among the source of the errors and the unavoidable
flaw in error modeling being factored in.

In order to further reveal the intrinsic relationship between
geometric error and spatial error vector, the concept of mutual
information is introduced [60]. This method can quantify the
information of random variable that contains information of
other factors. Let [Gmin(j), Gmin(j)] be the range of geometric
error, and [Emin(i), Emin(j)] be the range of position and orien-
tation error vector. The vector of position and posture and
geometric error terms are divided intoN andM equal intervals,
separately.

The number of samples falling into each equal interval will
be statistically measured, and the probability for P(Ei(j))(i =
1,2,…,n; j = 1,2,…, N) and P(Dk) (k = 1,2,…,M) will be cal-
culated. According to the information theory, the mutual in-
formation between error vector and geometric error values of
the machine tool motion axes can be expressed as

I E;Gið Þ ¼ ∑
M

k¼1
∑
N

j¼1
P Ek ;Gi jð Þð Þ � lg

P Ek ;Gi jð Þð Þ
P Gi jð Þ;P Ekð Þð Þ ð25Þ

Where P(Ek,Gi(j)) is the probability distribution.
The analysis of key error sources is done to obtain the

maximum information of error vector of position and orienta-
tion deviation of the five-axis machine tool by minimizing the
number of geometric errors. The mutual information I(E, Gi)
between the error vector and geometric error of each measur-
ing point of motion axis is calculated, respectively.

The mutual information of geometric error and error vector
is obtained, as shown in Table 5.

Further analysis of Table 5 indicates that the mutual infor-
mation between positioning errors, straightness errors, and
volumetric error vectors is larger, and the geometric error term
with smaller mutual information value contains smaller spatial
error vector. The mutual information values between

geometric errors and error vector are less than 1 simultaneous-
ly, which are as follows: δy(x), εx(x), εx(y), εy(y), εx(z), εz(z),
εz(c), γxy, δyAS, δzAS, and δyCY, and this means that the correla-
tions between the abovementioned geometric errors and error
vectors are weak.

It can be seen from the above discussion that the effect of
geometric error on the precision of the machine tool should be
comprehensively analyzed. Geometric errors will be identified
that are at the same time nonsignificant and insensitive.
Insensitivity geometric error terms are determined based on
the sensitivity analysis in Section 3, and the correlations be-
tween geometric error terms and error vectors are identified by
the mutual information method. After implementing the pro-
posed synthesis evaluation, the error terms would not be con-
sidered for geometric error compensation and error identifica-
tion, which include εx(y), εy(y), εz(z), εz(c), γxy, δyAS, δzAS, and
δyCY.

Table 5 Mutual information analysis result

Error Vector Ep Vector Ev Error Vector Ep Vector Ev

1 δx(x) 1.8116 1.2647 23 εy(a) 1.868 1.0944

2 δy(x) 0.254 0.9795 24 εz(a) 1.3575 0.9967

3 δz(x) 1.8268 0.8912 25 δx(c) 1.5155 1.3115

4 εx(x) 0.3152 0.5521 26 δy(c) 1.4863 0.515

5 εy(x) 0.1951 1.4187 27 δz(c) 0.7845 1.6814

6 εz(x) 0.557 1.5094 28 εx(c) 1.311 1.8585

7 δx(y) 1.0938 1.2926 29 εy(c) 0.3424 1.6286

8 δy(y) 0.2772 1.3594 30 εz(c) 0.487 0.5086

9 δz(y) 1.9298 1.3102 31 γxy 0.0637 0.3932

10 εx(y) 0.0689 0.3252 32 βxz 0.5538 0.5022

11 εy(y) 0.238 0.9412 33 αyz 1.4121 1.5844

12 εz(y) 1.9143 1.2986 34 αCY 1.915 1.8315

13 δx(z) 0.9708 1.9195 35 βCY 1.6469 1.2321

14 δy(z) 1.6006 0.6808 36 δxCY 1.3897 0.9466

15 δz(z) 0.2838 1.1705 37 δyCY 0.6342 0.7033

16 εx(z) 0.0714 0.5102 38 αZA 1.9004 1.6617

17 εy(z) 0.0923 1.5025 39 βZA 0.8435 1.1705

18 εz(z) 0.3737 0.4476 40 γZA 0.8775 1.0994

19 δx(a) 1.919 1.0119 41 δyAS 0.7631 0.8435

20 δy(a) 0.1943 1.3982 42 δzAS 0.6342 0.5717

21 δz(a) 1.7818 0.698 43 βAS 1.5904 1.5144
22 εx(a) 1.6983 1.9186

Table 4 Sensitive geometric errors of Ep and Ea

Error vector Sensitive geometric error terms Average sensitivity indices

Ep PDGEs: δx(x), δy(x), δz(x), δx(y), δx(z), δz(z), δx(a), δz(a), εx(a), and εy(a) 0.0428

PIGEs: βxz, αyz, αCY, βCY, δxCY, αZA, and γZA 0.0571

Ea PDGEs: εx(x), εy(x), εz(x), εx(z), εy(z), εx(a), εy(a), εz(a), and εy(c) 0.0367

PIGEs: βxz, αyz, αCY, βCY, βZA, and βAS 0.0983
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4 Experiments and results

Experiment was carried out to verify the feasibility of the
above method of geometric accuracy enhancement through
volumetric error model and error analysis. The machine tool
used in the experiments was a HSC 75 five-axis CNCmachine
center with Heidenhain iTNC 530 control system. The X-, Y-,
and Z-axis strokes are 406, 305, and 254 mm, respectively,
and the rotation range of rotation axes C and A is − 100° to +
10° and 0° to 360°, respectively.

In our research, impellers were adopted as the test parts for
measuring the performance of the five-axis machine tool. The
machining process of test parts is mainly by the following or-
der: rough machining of the impeller passage, semifinishing of
the impeller passage, semifinishing and finishing of the blade of
the impeller, and finishing of the impeller passage. Solid car-
bide cutting tools were selected for machining the impeller. The
ball end cutter radius is 5 mm and the number of teeth of cutting
is 2, which is used for rough machining. In the finishing stage,
the conical ball end cutter radius is 3mm, the number of teeth of
cutting is 4, and the cutter taper is 3°. The maximum spindle
speedwas 6000 rpm during roughmachining and semifinishing
of the impeller passage, and feeding speed of the cutting tool is
400 mm/min. The maximum spindle speed was 8000 rpm dur-
ing semifinishing and finishing of the blade of the impeller, and
the maximum feeding speed of the cutting tool is 300 mm/min
for machining of variable feedrate. The CAD/CAM software
UG was used to design the test parts, as shown in Fig. 8.
Toolpaths, feed, and withdraw of the blade are locally enlarged
in Fig. 8a, in which part of the toolpath of the blade of the
impeller is listed in Table 6 due to space constraints in this
paper. All of the toolpath file is imported into the inverse kine-
matics model proposed in Section 2.3, and the motion com-
mand of each axis with ideal values and compensation values
taken into account can be obtained.

As described in Section 2, geometric error measurements
were conducted for linear and rotary axes with a Renishaw
laser interferometer and DBB. Based on the geometric error
analysis results in Section 3, nonsignificant and insensitivity
geometric errors were identified, including PDGEs εx(y),
εy(y), εz(z), and εz(c) and PIGEs γxy, δyAS, δzAS, and δyCY.
These geometric errors were removed from the geometric er-
ror compensation model according to Eqs. (4) and (8), geo-
metric error compensation was conducted based on the gen-
erated new CNC codes, and the flowchart shows modeling,
error analysis, and compensation for geometric accuracy en-
hancement, as shown in Fig. 7.

Error vectors of position and attitude are determined with
the kinematic model that was established in Section 2.3, and
the actual values of error vectors Oa are quantitatively
expressed based on recognition of noncritical geometric error
terms, which can be used for determining the vector error Oe
and compensation values of each motion axis.

The process for error compensation based on error analysis
is carried out in following steps:

Step 1. The machine tool is without geometric error in the
ideal form, position and attitude vectors Oi = [EPXi,
EPYi, EPZi, EAXi, EAYi, EAZi] can be generated with the
UG software according to the 3Dmodel, and the NC
codes for motion axes of the five machine tool can
be determined considering the constraints of accel-
eration and velocity.

Step 2. The machine tool will be affected unavoidably by
geometric error in actual state, the actual position
and attitude vectors Oa = [EPXa, EPYa, EPZa, EAXa,
EAYa, EAZa] can be determined with the identified
values of geometric error and the kinematic model,
and noncritical geometric error terms will not be
involved in the progress of calculating Oa and NC
codes.

Step 3. The deviation Oe = [EPXe, EPYe, EPZe, EAXe, EAYe,
EAZe] of actual position and attitude vectors Oa
and ideal value Oi can be determined, which is
expressed as:

Oe¼Oi−Oa ð26Þ

Table 6 Parts of the toolpath of the blade

EPXi EPYi EPZi EAXi EAYi EAZi

27.7077 − 40.4987 − 0.6604 0.712048 − 0.38908 − 0.58447
27.8786 − 40.7597 − 3.1141 0.722031 − 0.39285 − 0.56951
28.0909 − 41.0425 − 5.562 0.731934 − 0.39654 − 0.5541
28.3447 − 41.3475 − 8.0058 0.741758 − 0.40012 − 0.53823
28.6392 − 41.674 − 10.4409 0.751483 − 0.4036 − 0.5219
28.9748 − 42.0229 − 12.8715 0.761121 − 0.40697 − 0.50504
29.3502 − 42.393 − 15.2907 0.770639 − 0.41022 − 0.48769
29.7662 − 42.7854 − 17.7051 0.78006 − 0.41333 − 0.46975
30.2209 − 43.1987 − 20.1055 0.789333 − 0.41629 − 0.45128
30.7157 − 43.6344 − 22.5009 0.798487 − 0.41911 − 0.43217
31.2478 − 44.0903 − 24.8799 0.807465 − 0.42174 − 0.41247
31.8196 − 44.5686 − 27.2538 0.816297 − 0.42421 − 0.39206
32.4273 − 45.0666 − 29.609 0.824915 − 0.42646 − 0.37101
33.0737 − 45.587 − 31.959 0.833351 − 0.4285 − 0.34916
33.7542 − 46.1266 − 34.2885 0.841526 − 0.4303 − 0.32662
34.4728 − 46.6887 − 36.6128 0.84947 − 0.43184 − 0.30318
35.2237 − 47.2691 − 38.9149 0.857092 − 0.43308 − 0.27899
36.0122 − 47.8721 − 41.2118 0.864413 − 0.43402 − 0.25381
36.8315 − 48.4926 − 43.485 0.871334 − 0.43461 − 0.2278
37.6879 − 49.1356 − 45.753 0.877863 − 0.43482 − 0.20071
38.5767 − 49.7975 − 48.0045 0.883912 − 0.43463 − 0.17262
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Fig. 7 The flowchart of
geometric error compensation

Fig. 8 Experimental verification
of geometric error compensation.
a Three-dimension model of the
impeller. b Impeller machining on
a five-axis machine tool. c
Machined impeller before and
after compensation. d Accuracy
measurement on CMM
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When the deviation valuesOe are greater than the tolerance
of geometric accuracy of motion axes, the deviation value is
superimposed on nominal trajectoryOi as error compensation
values.

Oc ¼ OiþOe ð27Þ

whereOc is the new position and attitude vector of the tool
with error compensation, and the new NC codes of each mo-
tion axis with error compensation can be obtained by calcu-
lating the solution inverse with Oc. If residual error still ex-
ceeds the tolerance range after linear compensation, iterative
operation is required.

The machined test parts before and after geometric error
compensation are shown in Fig. 8.

After machining, the machined parts were measured on a
coordinate measuring machine of Hexagon Global classic SR
575, as shown in Fig. 8 d. The measured results are listed in
Table 7.

The machined impeller 1 was milled with no compensa-
tion, and the impeller 2 was machined after geometric error
compensation based on geometric error analysis. The blade
thickness errors and profile deviations of the impeller were
measured on the coordinate measuring machine. Table 7
shows that the blade thickness error changed significantly
after geometric error compensation, which is reduced to
12.1 μm from 30.2 μm, and the profile deviation decreases
to 6.6 μm from 13.9 μm after geometric error compensation is
conducted. The deviation on each test term reduced by 59.93
and 52.51%, respectively.

5 Conclusions

With the rapidly increasing requirement of parts design and
processing accuracy, the role of geometric accuracy of a five-
axis machine tool has become increasingly prominent. The
geometric error is quantitative characterization of geometric
accuracy, and the influence of geometric error is not the simple
algebraic stack of error terms due to coupling interaction
among multiple geometric errors; however, the comprehen-
sive effect of geometric error random variables on the error
vector with multidimensional output has rarely been quantita-
tively analyzed, and existent methods cannot effectively over-
come the shortfalls with canceling effect which is caused by
algebraic stack of geometric error terms. Therefore, a new

geometric accuracy enhancement method of the five-axis ma-
chine tool with tilting head and rotary table based on geomet-
ric error modeling, analysis, and compensation is proposed.
The characteristics of this method are shown as follows:

1. A synthetic geometric error model for a five-axis machine
tool with tilting head and turntable is established based on
the multibody system theory and the method of homoge-
neous transformation, which includes position error vec-
tor and orientation error vector that consist of 30 PDGEs
and 13 PIGEs, and the type and number of error terms are
peculiar to the RTTTR-type five-axis machine tool. The
analysis and compensation of geometric error for the five-
axis machine tool can be achieved to improve accuracy
with the error model.

2. The influence of uncertainty of geometric error on the
multidimensional output simultaneously is quantitatively
analyzed with the global sensitivity analysis method, and
it prevents the loss of information of the quantitative ob-
jects with proper dimensionless indexes. The result of the
sensitivity analysis shows that the effect of geometric er-
ror on position and attitude accuracy is quantified accord-
ing to the type of error vector and property of geometric
error, respectively. For the volumetric position error vec-
tor Ep, the average sensitivity indices of PDGEs and
PIGEs of motion axes are 0.0428 and 0.0571, and for
the volumetric attitude error vector Ea, the average sensi-
tivity indices of PDGEs and PIGEs of motion axes are
0.0367 and 0.0981, respectively. Sensitivity coefficient
of rotary axes accounted for 59.32 and 51.59% of the
position and orientation error vector, respectively, whose
effect is larger than that of the linear axis.

3. Insensitivity and nonsignificant geometric errors are de-
termined by analyzing the correlation of error vector and
geometric errors with mutual information and sensitivity
analysis, which are removed in the geometric error com-
pensation. The results show that the accuracy of machined
parts has been significantly improved after geometric er-
ror compensation, which is conducted based on the geo-
metric error analysis results and mutual information anal-
ysis. The enhancement methods of geometric accuracy
are demonstrated on the five-axis machine tool, and the
accuracy on blade thickness and profile of the machined
part is advanced by 59.93 and 52.51% after geometric
error compensation, respectively. The proposed research
also established a reliable basis for the design and error
compensation of other types of multi-axis machine tool.

In this paper, systematic approaches of geometric error
modeling, analysis, and compensation are the main focus of
the study. It should be pointed out that the geometric error
modeling in this paper is based on the rigidity assumption
and accuracy fluctuations caused by wear, and errors induced

Table 7 Comparison of accuracy of the machined parts

Deviations Before compensation After compensation

Blade thickness error/μm 30.2 12.1

Profile deviation/μm 13.9 6.6
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by thermal deformation and control accuracy are not consid-
ered. The abovementioned problems need to be researched for
further improving machine precision.
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