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Abstract
In five-axis machining of blisk, the filleted end mill has attracted more and more attention because of its larger cutting width.
However, it is still a hard work to find the tool posture without interference. In this paper, a method is proposed to solve the
collision-free regions. Based on the visibility of free-form surface, a tool-surface tangent model of the filleted end mill is
established. With the model, only critical points on profiles of checking surface are searched with a self-adapting step length
and the corresponding critical vectors are calculated and mapped to construct the collision-free regions. Firstly, critical points on
the boundaries are searched according to the given precision. Meanwhile, the corresponding critical vectors are calculated and
some special searched points are selected as the endpoints of each profile. Then, the adjacent critical points are searched along the
profile by adjusting iteratively with a self-adapting step length in the parameter domain one by one. During the search, the
corresponding critical vectors are calculated too. After that, the critical vectors are mapped to construct the subinterval collision-
free regions in two-dimensions. And a method is adopted to combine collision-free regions. This algorithm is finally verified with
a closed blisk and compared with a referenced method. The results show that it can efficiently solve collision-free regions in five-
axis milling of blisk with a filleted end mill.
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1 Introduction

Five-axis CNC machines are widely used in machining of
sculptured surfaces such as turbine blades, impellers, blisk,
molds, and dies [1, 2]. As one of the key parts used in new
jet engines, the integrated structure of blisk reduces the en-
gine’s weight, part count, and so on. However, it also intro-
duces more geometrical constraints to the parts, which in-
crease the complexity of tool orientation planning in milling
process. When machining these complex products, it is nec-
essary to flexibly control the direction of the tool posture to
avoid interference [3–5]. And the filleted end mill has
attracted more and more attention because of its larger cutting
width [6–10]. So collision detection and avoidance becomes

one of the key problems in machining of blisk with filleted
end mill.

Collision problems in five-axis machining are divided into
local interference and global collision [2, 4, 11]. The local
interference usually refers to local gouging and rear gouging.
Gouging means that the cutter cuts into the machined surface
deeper than the expected geometry. Many methods are pro-
posed to avoid the local interference [2, 12]. These techniques
dealt with the local interference to obtain gouging-free tool
orientations or locations with the concept of curvature
matching.

Moreover, global collision is considered to be more serious
as accidents may happen if such interference occurs in five-
axis machining. It mainly focuses on the interference between
the cutter and objects involved in machining. Global interfer-
ence detection and avoidance are still a current technique chal-
lenge in five-axis milling [7, 13]. In general, there are two
kinds of approaches to find the collision-free tool postures.
The one firstly generates tool orientations according to some
strategies and then adjusts them with interference detection,
while the other one directly calculates collision-free regions
and then optimizes tool orientations within these spaces [14].
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Many methods are proposed based on the first approach [2,
15].Wu et al. [16] presented a rotationmethod to eliminate the
interference in milling of impellers with a non-orthogonal
four-axis machine tool. In these studies, although the nonin-
terference of existing tool orientations is mainly guaranteed, it
is not convenient for further tool orientation optimization. In
addition, these adjustment methods usually execute interfer-
ence detection and correction iteratively for several times,
which require large computation time and resource.

To avoid deficiencies of iterative adjustments, some re-
search work is devoted to solving the problem of collision-
free region directly. Since the interference between a cutter
and free-form surfaces is difficult to identify, a convenient
approach is converting involved surfaces into points, lines,
or subdivided meshes [17, 18]. Chen et al. [17] expressed
the sculptured surface as a triangular mesh body and solved
the collision-free regions to optimize and smooth tool orien-
tations. Lin et al. [18] expressed the machined surface as point
cloud and detect collisions between the cutter and these points.
These researches successfully calculate noninterference
spaces of tool orientations with adjustment or search method.
The efficiency and accuracy of interference detection are
largely dependent upon the quantity of sampled or subdivided
objects. As the quantity of objects increases, the computation
cost will increase rapidly.

There is another perspective to detect the collision by tak-
ing advantage of the graphics processing unit in graphics hard-
ware. Bi et al. [19] computed collision-free regions in milling
of an impeller with the assistance of occlusion query function-
ality of the graphics hardware. Wang et al. [20] proposed a
two-phase strategy to detect collisions between the cutter and
triangulated obstacles. The hardware approach relies on ex-
pensive hardware and supporting software system.

An improved approach is presenting involved surfaces as a
hierarchical structure, and only the interested parts involved in
interference detection are further subdivided iteratively. Hu
et al. [14] presented rigorous analyses of the obstacles in
five-axis machining and propose efficient numerical algo-
rithms for calculating and representing them. Tang et al. [21]
approximated the machined part as an octree of bounding
sphere to recursively conduct collision detection in five-axis
machining. With the hierarchical approaches, the computa-
tional efficiency can be improved because the data involved
in the interference calculation can be reduced. However, it is
still time consuming to detect the interference repeatedly.

In addition, a novel approach was presented by Liang
et al. [4] to solve the accessible regions of tool orienta-
tions of ball-end mill. Based on the visibility, only critical
points related to the boundaries of accessible regions are
searched and processed in two-dimensions. During the
search, the checking surface was replaced by an offset
surface and the ball-end cutter is converted to a ray ac-
cordingly that rotates around the known fixed cutter

location point. Therefore, the line between the point on
the offset surface and the fixed point is the critical vector
to be verified. However, this method is not suitable for
filleted end mill. This is because the cutter location point
also changes when adjusting the tool posture. And it is
almost impossible to construct the offset surface of the
checking surface and a ray to replace the cutter.

On the basis of the method described in literature [4],
in this paper, an improved method is proposed to solve
the collision-free regions which can be applied to the
filleted end mill. Based on the concept of free-form
visibility, the tool-surface model in critical state can be
established. With the model, the boundaries of subinter-
val feasible regions are related to the critical points on
the profiles of checking surface. And the critical points
can be searched one by one along the profiles. The rest
of this paper is arranged as follows. In Section 2, the
strategy of this approach is introduced. And the algo-
rithms to search critical points are proposed in
Section 3. Then, the combination of collision-free re-
gion is introduced in Section 4. In Section 5, the pro-
posed algorithm is verified and evaluated with a closed
blisk and comparing with a referenced method. The
work is concluded in the last section.
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Fig. 1 Typical structure of blisk
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2 Strategy to find collision-free region

As shown in Fig. 1, a channel of a blisk is formed by two
adjacent surfaces and hubs. To machine a point located inside
of this channel, tool orientations must be planned appropriate-
ly to avoid the potential collisions from the surfaces and hubs.
For convenience, the surfaces and hubs of a blisk are repre-
sented by the checking surface in the following part.

A collision-free region is a set of tool posture along which
the cutter will not collide or interfere with the checking sur-
faces. Imagine that there is a virtual sphere which can cover all
the checking surfaces centered at the cutter location point.
When putting a light source at this point, the region on the
sphere that the rays can reach to is not obstructed by these
surfaces. It is called collision-free region, while the obstructed
region is called collision region. Geometrically, these regions
can be presented by their boundaries which are constituted
with central projections of these checking surfaces’ profiles.

As shown in Fig. 2, it can be observed how the rays are
obscured by the checking surface in a plane which passes
through the cutter location point PM. Those rays similar to
lR5 can reach the virtual sphere, while the rays similar to lR1,
lR2, and lR3 will be occluded. And the rays similar to lR4 will be
in the critical state, which just reach the boundaries of the
collision-free regions on the virtual sphere. It is these special
rays that determine the boundaries of the collision-free re-
gions. Moreover, the critical rays are different in a and b in
Fig. 2. In Fig. 2a, the ray lR4 is just across the boundary of the
checking surface. However, the ray lR4 in Fig. 2b is tangent to
the checking surface. In addition, the ray lR2 is also special. In
a very small neighborhood δp, the ray lR2 is tangent to the

checking surface at the point Pa. In other words, the ray lR4
is the special state of the ray lR2.

In this paper, the tool similar to the rays of lR2 or lR4 is
called in the critical state. And the vector used to represent
the tool posture is named critical vector. Accordingly, the
points on the checking surface similar to the points Pa or Pb

in Fig. 2b is called critical point. And the curve formed by
those critical points is called the profile of the checking sur-
face. For convenience, all the points on the boundary is also
called critical point.

Each profile or boundary determines a subinterval
collision-free region on the virtual sphere. If all the profiles
associated with the channel can be found, the collision-free
regions will then be solved with the intersection of those sub-
interval regions. So the key to solving the problem of
collision-free region is to find the profiles of a single checking
surface.

The tool is composed of two parts, as shown in Fig. 3,
where the non-cutting part of the tool is the cylinder with
radius R, while the cutting part is the torus with radius r and
R > r > 0. The normal vector nM of the torus at any machining
point PM points to the axis of the cutter. And in the plane
passing through point PM and the axis of the cutter, the vector
nM passes through the fixed point E, which is the center of arc.
So the distance between the two points PM and E is equal to
radius r. The geometric relationship between the tool and the
checking surface and the machining surface will be discussed
respectively when it is in the critical state in the next.

Shown in Fig. 4 is the tool in the critical state. The torus of
the cutter is tangent to the machining surface SM(u,v) at the

(a) (b)
Fig. 2 Rays obscured by the checking surface Fig. 3 Parameters of tool structure
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machining point PM. The tool posture is represented by vector
τ. Here, the normal vector at the tangent point is the vector nM
in Fig. 3. At the same time, the tool is tangent to the checking
surface SC(u,v) at the point P by adjusting the vector of τ.
Then, the point P is a critical point. The common normal
vector of the cutter and the checking surface at the critical
point is denoted by nP. For the convenience of data process-
ing, a local orthogonal coordinate system E(xm,ym,zm) is set up
at the point PM as follows: (1) the point E is set to the origin of
the coordinates, (2) and the vector nM is set to the zm axis, and
(3) the movement direction of the cutter at point E is set to the
xm axis. Then the ym axis is determined by the right-hand
criterion. All the descriptions and calculations are carried out
in the coordinates in the following part, unless otherwise
specified.

However, the tool-surface tangent model is divided into
two different cases. Firstly, as shown in a in Fig. 4, the tangent
point is inside the surface, which means that the normal vec-
tors at the critical point of the two surfaces are in the same
direction. Secondly, as shown in b in Fig. 4, the tangent point
is on the boundary of the checking surface. And there is no
special requirement for the direction of the common normal
vector and the normal vector of the checking surface at the
critical point. In other words, any point on the boundary is a
critical point and the corresponding critical vector can be
found, while not all points inside the checking surface are
critical points. For some special critical points on the bound-
ary, they may satisfy the above two conditions. Then, these
points are both on the boundary and on the profile.

Any curve on the checking surface can be represented by
sample points distributed over it, whether it is a boundary or a
profile. And those points can be searched one by one along the

curve. In this paper, all sample points on the four boundaries
of the checking surface will be searched with a given discrete
precision and the corresponding critical vectors are calculated.
And the endpoints of the profiles of the checking surface are
selected from the searched sample points. Then, the critical
points on the profiles are searched one by one, starting from
those endpoints.

Each profile, if it exists, has two endpoints. One is called
the starting point and is denoted by Pi,s. The other one is called
the end point, which is denoted by Pi,e. As shown in Fig. 5,
starting from a starting point P1,s, the first profile PL1 and the
end point P1,e of the profile PL1 can be searched. Delete the
point closest to point P1,e in the set of searched endpoints. At
the same time, the point P1,s removed also from the set. Then,
a new starting point P2,s will be taken out of the updated set at
random and the second profile PL2 continues to be searched.
After that, the process will be repeated until there are no new

Fig. 4 The tool in the critical state

Fig. 5 The process of searching profiles
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starting points. The algorithm to search the critical points on a
checking surface is shown in Fig. 6.

3 Algorithm to search sample critical points

In this part, the algorithm to solve sample critical points and
the corresponding critical vectors will be introduced in detail.
During the search, the maximum allowable angle between the
adjacent critical vectors is called the discrete precision. This
value, denoted by θδ, is pre-set as needed which is a very small
number. According to the critical point position, the process is
divided into two phases. First, the critical points on the bound-
aries are searched and the endpoints of the profile are selected.
Then, the sample critical points on the profile of the checking
surface will be searched starting from the selected endpoints.

3.1 Search sample points on boundary

Suppose four boundaries of the checking surface are
SC(u,0), SC(u,1), SC(0,v), and SC(1,v). For convenience,

use Lj(w) to represent the jth boundary. Here, w is the
curve parameter (wjS ≤ w ≤ wjE), while wjS and wjE are
the parameters at the start and end points of the jth
boundary, respectively. The kth sample critical point on
the boundary Lj(w) is represented by Pj(wk). The tangent
vector of the curve Lj(w) at point Pj(wk) is denoted by
mj(wk). And the common normal vector at the point
Pj(wk) is denoted by nj(wk), as shown in Fig. 7. The
intersection of the common normal line at the point
Pj(wk) and the axis of the cutter is denoted by Fj(wk),
while the intersection of the common normal line at the
point PM and the axis of the cutter is denoted by
Gj(wk). The intersection between the perpendicular line
passing through the point E and the axis of the cutter is
denoted as Mj(wk). The tool posture, which is represent-
ed by the vector τj(wk), can be determined by points
Mj(wk) and Gj(wk).

The coordinate values of pointMj(wk) and pointGj(wk) can
be solved by the geometric constraint relation that the cutter is
tangent to both boundary Lj(w) and the machining surface
SM(u,v). The unit vector nM can be calculated with Eq. 1.
Here, the outward direction is used in the algorithm.

nM ¼
∂SM u; vð Þ

∂u
� ∂SM u; vð Þ

∂v

j ∂SM u; vð Þ
∂u

� ∂SM u; vð Þ
∂v

j
ð1Þ

Start

Critical points on boundaries

Select starting point Pi,s

Critical points on PLi and Pi,e

Existing endpoint

NO

YES

END

i=i+1

Input PM, SC(u,v) and SM(u,v)

Update the set of endpoints

Set of endpoints

i=1

Fig. 6 Flow chart of searching critical points
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Pj(wk)

Lj(w)

mj(wk)

nj(wk)

Fj(wk)
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Fig. 7 The cutter is tangent to the boundary
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And the vector EGj wkð Þ�����!
can be represented by the vector

nM with a positive real number ak as Eq. 2.

EGj wkð Þ�����! ¼ ak ⋅nM ð2Þ

In addition, the pointsMj(wk), Gj(wk), and Fj(wk) are all on
the axis of cutter, so there should be a non-zero bk which
satisfies Eq. 3.

M j wkð ÞF j wkð Þ����������! ¼ bk ⋅M j wkð ÞGj wkð Þ���������! ð3Þ

At the same time, the distance between point Pj(wk) and
point Fj(wk) should be equal to R + Δs and the distance be-
tween the point E and the axis of cutter should be equal to R-r.
Then, the point Mj(wk) and point Fj(wk) should satisfy Eq. 4.
Here, Δs is safety allowance, which is the distance between the
cutter and the checking surface when the cutter is in critical
state.

jP j wkð ÞF j wkð Þ���������!j ¼ RþΔs

jEF j wkð Þ�����!j ¼ R−r

(
ð4Þ

Furthermore, the vector τj(wk) is perpendicular to vector

EM j wkð Þ�����!
and vector P j wkð ÞF j wkð Þ���������!

, respectively. And the

vector mj(wk) also is perpendicular to vector Pj wkð ÞF j wkð Þ���������!
.

Then, the point Mj(wk), point Gj(wk), and point Fj(wk) should
also satisfy Eq. 5.

m j wkð Þ⋅P j wkð ÞF j wkð Þ���������! ¼ 0

EM j wkð Þ�����!
⋅M j wkð ÞGj wkð Þ���������! ¼ 0

P j wkð ÞF j wkð Þ���������!
⋅M j wkð ÞGj wkð Þ���������! ¼ 0

8><
>: ð5Þ

In Eq. 4 and Eq. 5, there are five unknowns and five
independent equations. The values of ak, bk and the
coordinates of point Mj(wk) can be solved. And the out-

ward direction of vector Pj wkð ÞF j wkð Þ���������!
is used in the

algorithm. Then, the coordinates of points Gj(wk) and
Fj (wk ) can be so lved wi th Eq. 2 and Eq. 3 .
Furthermore, the unit vector τj(wk) can be calculated
by Eq. 6.

τ j wkð Þ ¼ M j wkð ÞGj wkð Þ���������!
jM j wkð ÞGj wkð Þ���������!j

ð6Þ

Next, the sample points on the boundary Lj(w) are
searched. And the included angle between the adjacent critical
vectors τj(wk) and τj(wk+1) is denoted by Δθk, which should
not be greater than the criterion θδ. The search process is
divided into five steps, as shown below.

Step 1 Starting at the start point of the boundary Lj(w), the
corresponding unit critical vector τj(wk) is calculated
on the sample points Pj(wk). Here, k = 1 and wk = 0.

Step 2 Search the next sample point Pj(wk+1) on the bound-
ary with a step ofΔw and calculate the corresponding
critical vector τj(wk+1). Here, wk+1 =wk + Δw.

Step 3 Calculate the included angle Δθk between the adja-
cent critical vectors τj(wk) and τj(wk+ 1). IfΔθk > θδ,
then turn to the next step; otherwise, turn to step 5.

Step 4 Change the step Δw by 0.5Δw temporarily. Search
the point Pj(wk+1), and calculate the vector τj(wk+ 1)
again. Judge whether the parameter Δθk meets the
condition. If Δθk > θδ, update the parameter Δw
again in the same way; otherwise, turn to step 5.

Step 5 If wk+1 + Δw< wjE, let k = k + 1 and turn to step 2;
otherwise, the search is over.

k=1

Caculate Pj(wk),τ j(wk)

Caculate Pj(wk+1), τ j(wk+1)

YES

Δτ j,k<θδk=k+1

wk+1=wk+Δw

wk+1=wk+0.5ΔwNO

NO

wk+1<wjE

Store Pj(wk) into STjIs endpoint
YES

NO

YES

End

NO

j<5

j=j+1

j=1

YES

Start

Input PM, SC(u,v) and SM(u,v)

Store Pj(wk) into SPB

Fig. 8 Flow chart of solving critical points on the boundaries
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In this way, all sample points on the boundaries can be
searched one by one and the flow chart of algorithm is shown
in Fig. 8. After searching the sample points on the boundaries
of checking surface, the endpoints of the profiles should be
solved if there are. So some special points will be selected
from the searched critical points on the boundaries.

Assume that the sample point Pj(wk) is one of the end-
points, at where the cutter and the checking surface are tan-
gent. Then, the normal vectors at that point of the cutter and
the checking surfaces should be in the same direction. Here,

the normal vector P j wkð ÞF j wkð Þ���������!
of the cutter has been calcu-

lated in Eq. 5 and the normal vector of the checking surfaces
can be calculated, which will be described in Section 3.2.
Considering the adjacent sample points on the boundary are
very close and the number of endpoints is relatively small, the
point Pj(wk) is directly taken as the endpoint of the profile if
the angle between normal vectors of the cutter and the
checking surfaces is no greater than the precision θδ.

During the search, the searched points are stored into set
SPB in order and the selected endpoints are stored into set STj
accordingly.

3.2 Search adjacent sample critical point on profile

The process of searching adjacent sample critical point is di-
vided into two parts. It firstly moves with a large step in a
certain direction to approach the desired point and then adjusts
with adaptive steps to reach the adjacent critical point. This
part mainly focuses on the direction and step length of the
search process. And the second part will be discussed in
Section 3.3 and Section 3.4.

For convenience, the ith profile on the checking surface
SC(u,v) is represented by PLi. The current known critical point
and the next adjacent critical point on the ith profile are de-
noted by Pi,C and Pi,N, respectively, as shown in Fig. 9. In
addition, the corresponding critical vector at the point Pi,C is
denoted as τi,C, and the normal vector of the checking surface
at the point Pi,C is denoted by ni,C, Here, the vector ni,C can be
got with Eq. 7 and the outward direction is used in the algo-
rithm.

ni;C ¼
∂SC u; vð Þ

∂u
� ∂SC u; vð Þ

∂v

j ∂SC u; vð Þ
∂u

� ∂SC u; vð Þ
∂v

j
ð7Þ

Keeping the cutter tangent to the checking surface, when
the critical point moves from the point Pi,C to the next sample
critical point Pi,N, the vector of the tool orientation also
changed accordingly. The angle between the adjacent critical
vectors is denoted by Δθ. And the angle Δθ should not be
greater than the accuracy θδ, which means that the points Pi,C

and Pi,N are pretty close together. Then, the direction vector
ntan, from point Pi,C to point Pi,N, is almost perpendicular to
both the vectors τi,C and τi,N, respectively. In addition, the
vector ntan is almost parallel to the tangent plane of the
checking surface at the point Pi,C. Then, the normal vector
ni,C should be perpendicular to the searching direction.
Therefore, the search direction vector ntan can be calculated
by Eq. 8. Here, the direction to the next point is used in this
algorithm.

ntan ¼ � ni;C � τi;C
� � ð8Þ

Under the condition of a given precision θδ, the rough step
lengthΔd can be calculated with Eq. 9 and will be adjusted as
needed in the search. Here, l is the distance d between the
points Pi,C and E.

Δd≈2l⋅sin
Δθδ
2

ð9Þ

Then, a point Pi near the target point Pi,N can be searched
from the given point Pi,C along the direction vector ntan with a
step length Δd, as shown in Fig. 9.

In the parameter domain of the checking surface, the point
Pi,C can be denoted as (ui,C,vi,C), while the search stepΔdwill
change into (Δu,Δv), whereΔu andΔv are the variations of
parameters from point Pi,C to point Pi,N and that should satisfy
Eq. 10.

Δu⋅nu þΔv⋅nvð Þ⋅ntan ¼ �j Δu⋅nu þΔv⋅nvð Þj⋅jntanj ð10Þ

where nu and nv are the directional derivatives along the
direction of u and v respectively at the point Pi,C. The param-
eters Δu and Δv are also the decomposition of the search
vector ntan in the direction of the vectors nu and nv. And at
least one parameter is not zero.

The process of searching adjacent critical point Pi,N is di-
vided into six steps, as shown below, where the method of
searching critical point in step 5 will be described in detail in
Sections 3.3 and 3.4.

Step 1 Set Δu or Δv to a small value, such as 0.001, and
calculate the other one with Eq. 10.

Step 2 Search the point Pi on the checking surface SC(u,v)
with the step (Δu, Δv).

Step 3 Calculate the ratio λd. Here, λd =Δd/ΔdP andΔdP is
the distance between points Pi,C and Pi.

Step 4 If 0.95 < λd < 1, the point Pi is considered to be near
the adjacent critical point Pi,N. Otherwise, let
Δu = λdΔu and Δv = λdΔv and turn to step 2 until
λd is satisfied. Here, the value 0.95 can be adjusted as
needed.

Int J Adv Manuf Technol (2019) 104:645–659 651



Step 5 Search the critical point Pi,N with the point Pi as the
starting point, and calculate the corresponding criti-
cal vector τi,N.

Step 6 Calculate the angle Δθ between the vectors τi,C and
τi,N. If Δθ ≤ θδ, let j = j + 1 and search for the next
adjacent critical point. Otherwise, let λθ = (Δθ-θδ)/
Δθ, Δu = λd λθ Δu, and Δv = λd λθ Δv. Then, up-
date the point Pi,0 and turn to step 5.

Step 7 All the adjacent critical points on one profile of the
checking surface can be searched one by one
through the search process described above.
During the search, the searched points and the cor-
responding critical vectors on the ith profile are
stored into set SPi in order.

3.3 Critical point identification

During the search of adjacent critical point in Section 3.2, the
point Pi near the target point has been found and the target
critical point needs to be searched. It is mainly divided into
two steps. First, determine whether the point is a critical point.
Then, if not, search a critical point near it. Here, the first part
will be solved in this section and the second will be described
in Section 3.4.

Suppose that the point Pi is a tangent point at where the
cutter and the checking surface are tangent. Then, it should be
a critical point only if the cutter and the machining surface are

at the point PM. And this can be determined by the distance
from the fixed point E to the axis of the cutter.

As shown in Fig. 10, the normal vector of the checking
surface at the point Pi is denoted as ni. And the point Fi is

Gi

Mi

τi

Fi

Pi

E

nM

PM SM(u,v)

SC(u,v)

ni

Fig. 10 The geometric relationship at the critical point

u

v Pi,s

Pi,e ni,C

A B

C

D

Pi,C

SC(u,v)

E

Gi,C

Mi,C

nM

PLi

r

PM

SM(u,v)

τi,CPi,N

Pi

ntan

Fig. 9 Search adjacent critical
point along the profile
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the intersection of the normal line passing through point Pi and
the axis of cutter. It can be calculated by Eq. 11. Here, Δs is
safety allowance.

Fi ¼ Pi þ RþΔsð Þ⋅ni ð11Þ

In addition, the point Gi is the intersection of the normal
line passing through point PM and the axis of cutter. Then,
there must be a plane, denoted by π, that goes through the
point Fi and has a normal vector as ni. And the axis of cutter
should be in the plane π. It is obvious that the distance be-
tween the point E and the axis of cutter is determined by the
position of Pi,j and the normal vector ni on the checking sur-
face. It should be equal to R-r if the cutter and the machining
surface are tangent at the point PM. Then, the corresponding
critical vector τi can be got with Eq. 12. Here, the point Mi is
the perpendicular foot from point E to the axis of cutter.

τi ¼ MiFi
���!
jMiFi
���!j

ð12Þ

Based on the above, the method for determining critical
point and calculating critical vector will be discussed below
in terms of whether the vectors ni,j and nM are perpendicular
or not.

(a) The vectors ni and nM are not perpendicular. In this case,
the point where the normal line PME intersects the plane
π is point Gi, because it is on the axis of the cutter, as

ni

Pi

Fi

τi (π)

ni

Fi(Pi)

τi

E

Gi

plane π

SC(u,v)
SM(u,v)

PM

(a) (b)

Mi

E

nM

Fig. 11 The plane π passes
through the point E

ni+1

Gi

Gi+1

Mi

Mi+1

τi

Fi+1

τi+1

Fi

Pi+1

Pi

Ci

Bi+1

M0

E

nM

PM

SM(u,v)

SC(u,v)

ni

Fig. 12 Search critical point around the starting point
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shown in Fig. 9. Therefore, the coordinates of the point
Gi can be solved with Eq. 13. Here, a is non-zero.

ni⋅GiFi
��! ¼ 0

GiFi
��! ¼ PMFi

���!−PMGi
���!

PMGi
���! ¼ a⋅nM

8><
>: ð13Þ

Since the line EMi is perpendicular to the line FiGi, the
coordinates of the points Mi can be solved with Eq. 14.
Here, the parameter b is non-zero.

FiGi
��!⋅EMi

��! ¼ 0

EMi
��! ¼ FiE

��!−FiMi
���!

FiMi
���! ¼ b⋅FiGi

��!

8><
>: ð14Þ

The point Pi on the checking surface SC(u,v) is the critical
point only if the solution to Eq. 11 is a > 0 and the distance
from the point E to the axis of cutter is equal to R-r, which
makes the cutter tangent to the machining surface at point PM.

(b) The vectors ni and nM are perpendicular. In this case, the
vector nM is parallel to the plane π. Then, the normal line
PME can intersect the tool axis of the cutter which is in
the plane π only if the plane π passes through the pointE,
as shown in a in Fig. 11. It can be identified with Eq. 15.
Here, the point Fi can be got with Eq. 11.

EPi
�!���

���2 ¼ Pi; j Fi
���!���

���2 þ EFi
��!���

���2 ð15Þ

If the point Pi makes Eq. 15 true, there must be a point Mi

on the axis of cutter in the plane π that makes the cutter

tangent to the machining surface at the point PM, as shown
in b in Fig. 11. And the pointMi can be calculated with Eq. 16.

EMi
��!⋅FiMi

���! ¼ 0

jEMi
��!j ¼ R−r
EMi
��!⋅ni ¼ 0

EMi
��!⋅nM≥0

8>>><
>>>:

ð16Þ

3.4 Search critical point

In this part, a critical point will be searched around the point Pi
if it is not a critical point. In fact, even if it is not on the profile,
the deviation is small, which is obvious from the search in
Section 3.2. And a new point can be searched by a local
adjustment which can make it true. As shown in Fig. 12, it
is obvious that, when the position of Pi is adjusted, the normal
vector ni also changes accordingly. Then, the distance from
the point E to the axis of cutter will change accordingly too.
The method of searching the critical point is described as
shown below.

Step 1 Calculate the average curvature at the point Pi on the
checking surface SC(u,v) and the radius of curvature
Rsp. Then, the center Ci of the curvature circle can be
found.

Step 2 Select a point M0 on the line EMi which makes the
distance between the pointsM0 and E is equal to R-r,
where, if the solution from Eq. 12 is a > 0, the point
M0 will be taken in the positive direction of the vec-
tor nM. Otherwise, it will be taken in the opposite
direction.

Step 3 Connect the points Fi and M0 by the straight line
FiM0. The vertical line to straight line FiM0 is made
by passing the point Ci, and the foot is denoted by
Bi+1. Then, the vertical line to the checking surface

(a) (b)

Fig. 13 Critical vector mapped
into two-dimensions
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SC(u,v) is made by passing the point Bi+1, and the
foot is denoted by Pi+1.

Step 4 Verify whether the point Pi+1 is a critical point. If not,
let i = i + 1 and turn to step 1 until Pi+1 is a critical
point.

However, it is difficult in the search to make the distance
between the point E and the axis of the cutter is definitely
equal to R-r. Of course, this is not necessary. In order to in-
crease the robustness of the algorithm and improve the effi-
ciency by reducing the number of iterations, it can be slightly
modified and replaced by Eq. 17. Here, the introduced param-
eter μ is called the deviation which is a small positive real
number and d is the distance between the point E and the axis
of the cutter.

−μ≤d− R−rð Þ≤μ ð17Þ

Then, there will be a deviation ε between the cutter and the
checking surface around the point Pi,j, which can be calculated
with Eq. 18, where the angle between vectors ni,j and the line

EMi
��!

is represented by ni; j;EMi
��!D E

. And obviously, ε is not

greater than μ. In order to avoid the cutter from interfering

with the checking surface, the maximum deviation ε can be
taken into account when designing the safety allowance Δs.

ε ¼ μ⋅cos ni;EMi
��!D E

ð18Þ

In addition, for the convenience of data processing in
Section 4, it is necessary to find a tool posture which must
be in the subinterval collision-free region. This special tool
posture is represented by the identification vector τi,t. It can
be obtained in this way. First, a searched critical point roughly
in the middle of the profile PLi is selected as the starting point.
Then, a special critical point which can be searched with the
safety allowance Δs in Eq. 11 is replaced by a bigger one. And
the corresponding critical vector is the right one.

4 Algorithm to solve collision-free regions

In this part, the searched sample critical points and corre-
sponding vectors will be processed to construct the subinter-
val collision-free regions in two-dimensions. And the
collision-free regions of the channel will be solved as the
intersection of those subinterval regions.

4.1 Data processing

In order to describe the data processing process more clearly,
the critical vector is uniformly expressed in terms of τi,j,
whether the searched corresponding critical point is on the
boundary or on the profile of checking surface. Those critical
vectors are mapped into the polar coordinate system E(α,β).
As shown in Fig. 13, α is the angle between the vector τi,j and
the zm axis, and 0 ≤α ≤ π/2. In addition, β is the angle between
the projection of the vector τi,j in the plane xmym and the xm
axis, and 0 ≤ β < 2π. Correspondingly, the critical vector τi,j in
polar coordinate system E(α,β) becomes a point Pτi,j.

Fig. 14 Subinterval collision-free
region in two-dimensions

Fig. 15 The position relation between three points
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In the two-dimensions, the mapped points associated with
the ith profile are connected into a curve PPLi in the order.
And the subinterval collision-free region Ωi is the inner or
outer region surrounded by the curve PPLi if it is closed.
Otherwise, there will be a closed area which is surrounded
by the curve PPLi together with the diameters at the two ends
of the curve and the arc of α equal π/2, as shown in Fig. 14.
The direction of counterclockwise walking along the bound-
aries of the region is defined as positive direction. Thus, the
interior of the region is located to the left of the boundaries
when walking along the positive direction.

However, any curve PPLi just splits the area inside the
circle of α equals to π/2 into two disjoint parts, as shown in
Fig. 14. It needs to be distinguished by the position relation
between a point Pτi,t and the curve PPLi. Here, the point Pτi,t
is called the identification point and it is mapped by the iden-
tification vector τi,t, which has been covered in Section 3.4.

Among all points of the curve PPLi, there are two points
closest to the point Pτi,t which are denoted as Pτi,a and Pτi,b,
respectively. The regionΩi can be identified by the position of
the point Pτi,t relative to the points Pτi,a and Pτi,b, as shown in

Fig. 14. The region is determined as long as the sequence of
passing through the points Pτi,a and Pτi,b is determined.

Two vectors nab and nbt are constructed separately, as
shown in Fig. 15, where the vector nab is going from point
Pτi,a to point Pτi,b and vector nbt is going from point Pτi,b to
point Pτi,t, assuming the sequence of the points Pτi,a and Pτi,b
on the curve PPLi can be determined by distinguishing the
positions of vectors nab and nbt. If the solution of Eq. 19 is
Dt > 0, the three points are arranged counterclockwise, as
shown in Fig. 15, and the sequence of passing through the
points Pτi,a and Pτi,b is determined. Here, the vectors nab
and nbt are represented as a matrix with one row and two
columns, respectively.

Dt ¼ nab; 0½ �T � nbt; 0½ �T ⋅ 0; 0; 1½ �T ð19Þ

(a) (b)

Fig. 16 The intersection of two
subinterval collision-free regions

Fig. 18 Searched critical points in applicationsFig. 17 The position of adjacent points at the intersection
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4.2 Combine collision-free regions

The collision-free region of the channel can be solved with the
intersection of the subinterval regions which have been con-
structed in section. The solution to the intersection is to add
subinterval regionΩi on the basis ofΩ1 one by one and update
it.

First of all, calculate all the intersection points between the
boundaries of regions Ω1 and Ωi. The ordered intersection is
denoted by PCi, as shown in a in Fig. 16. Then, starting from
any intersection point, the boundary of region Ωi can be
pruned by intersection along the positive direction of the
boundary of regionΩ1. Judge whether the boundary of region
Ωi between two intersections is inside the region Ω1. If not, it
will be removed. Following the same procedure, the bound-
aries of region Ω1 will also be trimmed. Finally, the region of
the remaining curve is the common region of Ω1 and Ωi, as
shown in b in Fig. 16. Where,Ω represents the intersection of
two subinterval regions.

There are two keys to finding the intersection of two re-
gions. First, calculate the intersection of the boundaries of two
regions. This can be done with mature commercial software,
which is not described here. Second, determine whether the
boundary between the two intersections needs to be deleted.
This part gives a brief account of that.

On the boundary of region Ω1, there are two points adja-
cent to the intersection PCi denoted as PA1 and PA2 respective-
ly, as shown in Fig. 17. And on the boundary of regionΩi, the
two points adjacent to the intersection PCi are denoted as PB1

and PB2 respectively. If the point PB1 is to the left of the points
PA1 and PCi or to the left of the points PA2 and PCi, the bound-
ary of the region Ω1 that contains the point PB1 will be pre-
served. Otherwise, it should be removed. The judgment meth-
od has been introduced in detail in Section 4.1.

5 Algorithm verification

5.1 Applications

The proposed algorithm is applied to calculate the collision-free
regions for one channel of closed blisk. The blisk is 95.5 mm
high with 24 channels. The diameter of the outer hub is
585.5 mm, while the diameter of the inner hub varies from
290.3 to 370.6 mm. The cutter in applications is a filleted end
mill withR = 8mm and r = 2mm. The suction surfaces, pressure
surfaces, and part of hub surfaces are related to the channel of the
blisk. The milling point PM is on the inner hub surface in the
channel and is close to the side of pressure surface, where the
constraint is more serious.

The safety allowanceΔs is set to be 0.5mm.At the same time,
the small positive quantity μ in Eq. 17 is set to be 0.01 mm in
these applications. And the pre-set discrete accuracy θδ is set to
be 0.02°. The searched critical points are imported into the CAD/
CAM software UG/NX to show them in Fig. 18.

In this application verification, only part of the hub surfaces
related to the channel is selected. The tangent plane at point

(a) (b)

Fig. 19 Solved collision-free
regions of closed blisk

Fig. 20 Cutting simulation in UG/NX
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PM is represented by πM, where the inner hub surface is below
the plane πM at the milling point PM and there is no critical
point. And part of pressure surface and suction surface are
below the normal plane πM. The searched profiles are marked
with notations PL1–PL6 respectively.

The searched critical points are then mapped into PCL(α,β)
polar coordinate system and drawn in a in Fig. 19. Here, pro-
files PL1–PL6 in Fig. 18 are replaced by PPL1–PPL6 in a in
Fig. 19. The final collision-free regions solved with the pro-
posed method are shown in b in Fig. 19. There are two
collision-free regions for the closed blisk. This is due to the
constraint of the outer hub surface on the vector.

A point, which is denoted by Pτ2 is selected at the bound-
aries of the collision-free regions, as shown in b in Fig. 19, and
its corresponding vector is taken as the direction of the cutter.
Then, the cutting simulation is carried out in the CAD/CAM
software UG/NX and the result is shown as Fig. 20. Here, the
red part is the tool used for application verification. It can be
seen that the cutter is very close to the boundary of pressure
surface and there is no interference. And the position of the
nearest point is the same as expected. Here, the distance be-
tween the cutter and the checking surface is safety allowance
Δs, which is set to be 0.5 mm.

5.2 Analysis

The proposed method is implemented in MATLABR2014a in a
64-bit operating system with an Intel(R) Core(TM) i5-3320M
CPU with 2.60-GHz processor. The total running time is
31.68 s, and the detailed results are shown in Table 1. The algo-
rithm to search critical points is the key part in the proposed

method. In the example, 15,458 points are searched in 4.23 s,
which is about 13.35% of the total running time. From the re-
sults, the most time-consuming part is the algorithm to find and
calculate intersection points for all segments. In general, the time
taken to compute the intersections increases rapidly as the num-
ber of critical points increases. What need to be noticed is that it
can be shortened because, by enlarging the distance accuracy μ.
the frequencies in the process of searching are reduced.And there
will be no interference.

The calculation errors are evaluated both in distance error and
angle error. One thousand pairs of random points are selected to
calculate the distance error and angle error. Firstly, the distance
errormeans that the deviation between the distance from a critical
point to the axis of the cutter and the theoretical distance. The
mean error, maximum error, and standard deviation are 3.8 ×
10−3, 9.5 × 10−3, and 1.2 × 10−3 mm, respectively. Secondly,
the angle error means the angle between the adjacent critical
vectors. The mean error, maximum error, and standard deviation
are 0.19, 0.02, and 0.009°, respectively.

5.3 Comparisons

In this part, the method proposed in this paper will be compared
with the algorithm in literature [4]. However, the latter is mainly
applicable to ball-end mill and hard to deal with the filleted end
mill. So, the ball-end cutter with the same diameter R = 8 is
selected for comparison in the method proposed in the reference
[4]. Under the condition of the roughly equal number of critical
points, the results of the comparison are shown in Table 2. Here,
the consistency is the ratio of the minimum and maximum angle
between two adjacent critical vectors.

Table 1 Results of the proposed method

Points (num.) Running time (s)

Inside surfaces On boundaries Searching points Combining regions Total

Suction surface PL1 1956 / 0.57 / /

PL2 / 3612 0.89 / /

Pressure surface PL3 1723 / 0.53 / /

PL4 1842 / 0.61 / /

PL5 / 2546 0.67 / /

Outer hub PL6 / 3779 0.96 / /

Total 5521 9937 4.23 0.22 31.68

Table 2 Comparisons of two methods

Points (num.) Searching time(s) Search mode Tolerance Allowance Δs Mean error Consistency

Reference 16,105 3.82 LS = 0.1 mm 0.001° / 0.000656° 15.5%

This paper 15,458 4.23 θδ = 0.02° 0.01 mm 0.5 mm 0.0035 mm 94.7%
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From the comparison results, the efficiency of the two
methods is basically equal. For the same checking surfaces,
the number of critical points searched in unit time in this paper
is about 87% of the algorithm in the literature [4]. However,
the consistency of the proposed method is significantly better
than that of the method in the reference.

The angle between the searched adjacent critical vectors is
always checked and adjusted in the presented algorithm. And
it is the reason for the better consistency. However, the con-
stant step length is used to search the adjacent critical points
on the boundaries and the profiles of checking surface in lit-
erature [4]. This saves some computing resources. But the
price is relatively poor consistency, which will be more sig-
nificant when the point PM is close to the critical points.

6 Conclusion and outlook

A detailed process of generating the collision-free regions of tool
postures in five-axis milling of blisk is presented in this paper. To
avoid the interference collision between the filleted end mill and
checking surface, the geometric relationships between the cutter
and the checking surface and themachining surface in the critical
state are discussed. The main contributions of this work can be
summarized as follows.

(a) A tool-surface tangent model is established. With the
model, the problem that the axis of the filleted end cutter
does not rotate around a fixed point when search the
critical point by adjusting the tool posture can be solved.

(b) An algorithm to search critical points associated
with the boundaries of collision-free regions with
a self-adapting step length is proposed.

(c) The angle between the adjacent critical vectors is taken to
control the distribution of critical points. So that the con-
sistency of mapping points in two-dimensional space can
be improved.

The proposed method has been verified to be efficient and
accurate. The future work will be dedicated to generalize the
method to be applicable to the cutter of any shape.
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