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Abstract

Tool wear is an important consideration for Computerized Numerical Control (CNC) machine tools as it directly affects ma-
chining precision. To realize the online recognition of tool wear degree, this research develops a tool wear monitoring system
using an indirect measurement method which selects signal characteristics that are strongly correlated with tool wear to recognize
tool wear status. The system combines support vector machine (SVM) and genetic algorithm (GA) to establish a nonlinear
mapping relationship between a sample of cutting force sensor signal and tool wear level. The cutting force signal is extracted
using time domain statistics, frequency domain analysis, and wavelet packet decomposition. GA is employed to select the
sensitive features which have a high correlation with tool wear states. SVM is also applied to obtain the state recognition results
of tool wear. The gray wolf optimization (GWO) algorithm is used to optimize the SVM parameters and to improve prediction
accuracy and reduce internal parameters’ adjustment time. A milling experiment on AISI 1045 steel showed that when comparing
with SVM optimized by commonly used optimization algorithms (grid search, particle swarm optimization, and GA), the
proposed tool wear monitoring system can accurately reflect the degree of tool wear and achieves strong generalizability. A
set of vibration signals are adopted to verify the presented research. Results show that the proposed tool wear monitoring system
is robust.

Keywords Tool wear monitoring - Feature selection - Support vector machine - Parameter optimization

1 Introduction cutting process online and recognize tool wear state. With

such systems, machining parameters can be timely adjusted

Batch precision machining stimulated by high productivity
levels and inexpensive high-quality products is competitive
in manufacturing industries. Cutting tools are important com-
ponents of machining that affect processing efficiency and
product quality. As such, the development of tool condition
monitoring (TCM) systems is desirable so as to monitor the
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to extend tool life and preserve product quality in mass
production.

Over the last few decades, a few studies on machining
process monitoring have been conducted [1, 2]. Two types
of techniques, namely, direct and indirect sensing methods,
can be used to measure tool wear. Direct sensing techniques
use digital cameras (e.g., toolmaker’s microscope) to measure
tool conditions (e.g., flank wear width). However, direct mea-
surements can only be employed in intermittent operations.
On the contrary, indirect sensing techniques can continuously
measure auxiliary in-process signals (e.g., cutting force [3, 4],
vibration [5, 6], acoustic emission [7], and motor current [8])
to infer tool wear because in-process signals can be measured
in real time; thus, indirect sensing techniques are suitable for
real-time monitoring [9]. In indirect methods, signal features
extracted from the original collected data of measurable sig-
nals include the time domain (TD) [10], frequency domain
(FD) [11], time—frequency domain (TFD) [12], and fusion
features [13].
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However, each signal feature is not always correlated with
tool wear. A subset of features that best predicts tool wear
must be selected instead. The feature selection methods for
tool wear can be divided according to whether they are related
to subsequent tool wear model features. Specifically, feature
selection methods may be filter and wrapper or embedded
methods. Filter methods are independent of the subsequent
tool wear model. Such techniques also use the statistical per-
formance of all training data to directly evaluate and select
features. Principal component analysis is a common filter
method [14]. Model-independent feature selection methods
are computationally fast, but a large deviation exists between
feature evaluation and the performance of the tool wear mod-
el. Therefore, such a performance may not be optimized.
Features can be selected by wrapper or embedded methods
that consider the tool wear model [15]. Wrapper approaches
generally employ optimization algorithms (such as genetic
algorithm (GA) [16] and ant colony algorithm [17]) to search
for optimal features with high correlation with the tool model.
In the present study, GA, which is generally effective for the
rapid global search of large, nonlinear, and poorly understood
spaces [18], is used for the further selection of input features
that are relevant to tool wear states. Similarly, Kaya et al. [19]
employed GA to reduce the dimensionality of a feature set by
selecting the features that correlate best with tool conditions,
and they also demonstrated efficacy experimentally.

Using selected signal characteristics as inputs, a predictive
model can be built, and tool wear must be estimated in real
time. Data-driven approaches use learning algorithms, and
experimental data build predictive models so that an in-
depth understanding of underlying physical processes is not
a prerequisite. Artificial neural network (ANN) [20, 21] and
support vector machine (SVM) [22, 23] are the most widely
applied data-driven approaches for tool wear monitoring.
Relative to ANN, SVM is a powerful learning model that is
free from the three problems of training efficiency, testing
efficiency, and overfitting [24-26]. Besides, researchers can
apply these models on different products obtained in different
batches because the insensitive region of SVM absorbs small-
scale random fluctuations in random response [24]. The inter-
nal parameter values of SVM greatly affect predictive model
accuracy. Certain optimization algorithms are used to opti-
mize SVM parameters and thereby obtain the best parameter
combination and reduce parameter adjustment time. Garcia
proposed a particle swarm optimization (PSO)-SVM-based
model and successfully used it to predict tool flank wear
[27]. Liand Zhang used GA to optimize internal SVM param-
eters. The experimental results indicated that GA—SVM can
effectively track the tool wear trend and achieve tool wear and
tool life monitoring [28, 29]. Zhang et al. proposed a pattern
recognition approach for intelligent fault diagnosis of rotating
machinery by using the SVM optimized by the ant colony
algorithm. The simulation results revealed that the model
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has strong generalizability and high prediction accuracy
[30]. The gray wolf optimization (GWO) algorithm is an
emerging group intelligent optimization method that mimics
the leadership level and hunting mechanism of gray wolves in
nature. GWO also has a simple structure, easy implementa-
tion, and good global performance, all of which are beneficial
to engineering implementation [31]. However, GWO algo-
rithm has never been employed to optimize internal SVM
parameters for tool wear monitoring through a complex and
stochastic process. Therefore, SVM optimized by the GWO
algorithm (GWO-SVM) is developed in the current work to
build a prediction model of tool wear.

In this work, a TCM system is developed by using an
indirect measurement method that is based on GWO-SVM.
First, the cutting force signal of the machining process is col-
lected via a cutting process test. Second, the main TD, FD, and
wavelet domain features of the signal samples that must be
evaluated are extracted. In addition, feature selection (dimen-
sionality reduction) is performed by GA, which avoids the
processing complexity of high-dimensional nonlinear feature
data and weakens the noise component characteristics of the
signal. GWO-SVM is employed to evaluate the dimensional-
ity reduction features and obtain the tool wear grade.
Moreover, the robustness of the tool wear monitoring system
is further validated with the vibration signals from ref. [32].

2 Methodologies

The tool wear monitoring system used in this study is illus-
trated in Fig. 1. The input is the cutting force signal of a real-
time milling process, and the output is the wear state of the
milling cutter (initial, normal, and severe wear). The specific
implementation process is divided into three modules: feature
extraction, feature selection, and tool wear state classification
modules. Their details are introduced in the following
subsections.

2.1 Feature extraction module

During the process of machining, the dynamic cutting force
data generated are always large. Such huge data can affect the
calculation speed, and the online wear monitoring system
must reflect the result quickly. To improve the calculation
speed, the feature extraction module significantly reduces
the dimension of raw data (in TD and FD). The module also
aims to maintain the relevant information about tool wear
conditions in the extracted features. Signal characteristics
are extracted using TD analysis, FD analysis, and four-
layer wavelet packet decomposition. Table 1 presents the
28 corresponding feature values extracted, of which
S401-S416 represent the 16 corresponding proportions
of wavelet energy.
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Fig. 1 Tool wear state recognition model
2.2 Feature selection module

Multiple types of features extracted through feature extraction
module can result in many potential choices. Thus, combining
them into a classification module is not efficient. For such a

reason, GA is used for feature selection. The GA process in-
cludes replication, hybridization, mutation, competition, and
selection. Its advantages are simplicity, randomness, and com-
patibility with other algorithms. Detailed descriptions of the GA
feature selection can be found in [32]. The fitness function set in

Table 1 Statistical parameters and mathematical expressions in the TFD
Feature Description Feature Description
Mean - U Waveform factor U
x:%le, S:xms/i_zl\xﬂ
= =
Root mean square n Peak factor C = Xpeak/X,
q! Yems = % Z xlz peak/Arms
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GA feature selection module is fitval = 1 —|r|, and the closer the
value of “fitval” is to 0, the higher the correlation between the
feature and the tool wear. r is the Pearson correlation coeffi-
cient, and the expression is as follows:

% () (9)

r= — (1)

5 6m) £ 6r9)

In Formula (1), » represents the correlation coefficient be-
tween variables x and .

2.3 Tool wear state classification module
2.3.1 SVM classification algorithm

SVM is a common method of classification and pattern rec-
ognition. Proposed by Vladimir N. Vapnik and Alexey Ya,
SVM aims to transform a signal into a high-dimensional fea-
ture space and then solve a binary problem in a hyper plane
[33].

Taking the soft edge problem as an example to illustrate the
SVM classification calculation method, this study provides
the specific calculation formula. When the input data are lin-
carly separable (hard edge problem), they can be solved by
taking a small A value. The specific calculation method is as
follows:

{n IZ max(O 1 y,(wx,—b))} +7\HWH2. (2)

The initial calculation is to change Formula (2) into a
constrained optimization problem with a differentiable objec-
tive function. For i € {1, ..., n}, variable (;=max (0,1 —y-
{wx; — b)) is introduced. (; satisfies y,(wx;—b)>1—(; and is
the minimum non-negative number. Thus, the optimization
problem becomes

1 n 2
minimize- > G+ ||| (3)

i=1

The given constraint is y{wx; —b)>1—(; and (;>0.
The given Lagrangian dual problem is solved by the fol-
lowing simplification:

minimize f(cy,...,¢,) =
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The dual maximization problem is a quadratic function
problem of the ¢; linear constraint. This problem can be effec-
tively solved by the quadratic programming algorithm. Thus,
¢; has the following definition:

W= an¥, (5)
i=1

When X; is on the correct side of the edge line, ¢; = 0; when
x; is on the edge line, 0 < ¢; < (21]7\) . Given the definition, W
can be written as a linear combination of support vectors.
Offset b can also be calculated by X;.
yi(Wff—b) = leb = WXy, (6)
wherey;= 1 andy; ' =y,

Nonlinear problems can be transformed into linear prob-
lems in a high-dimensional space by nonlinear function map-
ping and processing. Suppose that a nonlinear classification
model must be trained. After mapping point X; to a high-
dimensional space on the model, the nonlinear classification
model can be changed into a linear model, that is, Yi)—np (7,))
Then, a kernel function can be defined.

k(%,%) = o®ex (7)

The classification vector W in the converted space can be
expressed as follows:

W =3 ayie(¥). (8)

where ¢; can be solved by the following formula.

minimize f(c;...c,)

Coefficient ¢; can be solved according to the aforemen-
tioned method. b can also be solved according to the point ¢
(x7) on the edge line in the transformed space.

b=Wog (ﬂ) -y, = Lél 9 372%) <X_k>> @(Z})} Vi

! (10)
- Lz] ok (¥, 73)] >,
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¢; and b are two important SVM parameters. This study uses a
radial basis function as a kernel function, which is presented
below.
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This study focuses on the optimum combination of penalty
factor ¢ and nuclear parameter g of the final model [34].

2.3.2 GWO-SVM

To improve the prediction accuracy of SVM, this study uses
the GWO algorithm in optimizing penalty factor ¢ and nuclear
parameter g in SVM. Mirjalili (2014) first proposed GWO,
which is a relatively new algorithm [35]. The GWO algorithm

simulates the hunting behavior process under the gray wolf
hierarchy. The algorithm can be divided into three stages:
encirclement, pursuit, and attack. The mathematical model is
described as follows.

(1) Surround

The first step in the hunting process is the encirclement of
prey, which can be described as follows:

D = [C*X, (1)-X (1)

|
X(t+1)= X, ()-A*D,

(13)

+

—= — D . — .
where D and A are the weighting coefficients, X, is the
position vector of the prey, ¢ is the number of iterations, and
g . .o .

X is the position of the wolf.

In Formula (13), coefficients A and C are respectively
updated as follows:

vy e I i
A =2ad*r—a,

(14)
C =27,
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where |@| is a linearly decreasing constant and | @’|€(2,0);
1, are constants, and 1,7, € (0, 1).

(2) Hunt

Gray wolves can identify the position of their prey and
surround it. The hunting process is usually dominated by «,
and {3 and 0 are responsible for the assistance. In an abstract
space, the best position of the prey is unknown. Thus, when
simulating the hunting behavior of gray wolves in mathemat-
ics, the position of « is assumed to be the best candidate
solution. Moreover, (3 and 6 can further understand the poten-
tial of the prey. In terms of location, the three best solutions
that are currently available should be prepared. Other search
units (including w) can also be asked to update their location
by search. The formula is expressed as follows:

— — — =, — — — =
D, = [C*X,-X|, Dy = |C*Xs-X]|,

— = i T I e S e

Dy = € XX X7 = X4 (D)),

X; = Xg— A #(Dyg ), X3 = X5 Ay

where Y(t—i— 1) is the optimal solution for the current
iteration.

(3) Attack

Table 2 Basic information of workpiece material

Material grade AISI1045

Material name High quality carbon steel
Hardness HRC30

Size 80 x 50 x 40 (mm)

Performance A commonly used steel with good

plasticity, toughness, and high strength

The attack is the last step in the hunting process. The pur-
pose is to capture the target, that is, to complete GWO.

According to the formula, A = 23@*7—a. When @ is lin-

early descending from 2 to 0, X is decremented, that is, Xe

(—2a,2a). The judgment condition is |X| When |X| <1, the
attack is initiated (GWO finds the optimal solution); when

’X‘ > 1, the wolf group diverges (seeking the new optimal

solution).

The process of using GWO to optimize the SVM algorithm
is depicted in Fig. 2.

The specific steps are as follows.

Step 1 Initialization: The parameter @ of the GWO algo-

rithm and the constant vectors A and C are initially
assigned. The range of values is also agreed upon.
Parameters ¢ (penalty factor) and g (nuclear parame-
ter) of SVM are used as the 2D coordinates of the
individual positions of the wolves.

The SVM model is trained through the training set
samples to calculate the fitness. The ranks of the
wolves («, {3, , and w) are classified according to
the fitness values. The formula for calculating the
fitness value is as follows:

Step 2

Step 3

Fit=1-— 2 (16)
Yi+Yr

Table 3  Level of machining variable values

Cutting amount Symbol Unit Value
Spindle speed Vv m/min 47.12
Feed rate f mm/r 0.2
Axial depth of cut ap mm 1.0
Radial depth of cut ae mm 5.0
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Table 4 GA parameter

settings Parameter Value
Population size 28
Elite count 2
Crossover rate 0.8
Mutation rate 0.001

where y;, is the correct number of classifications and yyis the
number of classification errors.

Step 4 The position of the wolves is updated by the position
update formula.

The fitness update of individuals is calculated, and
the optimal fitness value of the current algebra is
recorded as Fit _best. If Fit,,, > Fit, (the fitness
of «), then Fit, is updated to Fit,,., and the corre-
sponding position is recorded. If Fitg < Fityes < Fity,
then Fity. is assigned to (3. The corresponding po-
sition is also updated to 3. If Fits < Fify,es < Fitg, then
Fity.s; and the corresponding position are updated to
8. The position of « is the optimal position for the
population that must be iterated to the current
algebra.

Whether the number of iterations reaches the set
threshold or the global optimal position meets the
minimum limit is determined. If the condition is sat-
isfied, then the loop is terminated, and the optimal
parameters bestc and bestg are returned. Otherwise,
the process returns to Step 4.

SVM classification models are established through
bestc and bestg.

Step 5

Step 6

Step 7

3 Milling experiment and feature selection
3.1 Experimental design

This experiment uses VDL-600A CNC machining center, JR-
YDCL-III05B piezoelectric three-measurement system, and a

Best: 0.294887 Mean: 0.294887
0.2948882

Best: 0.282641 Mean: 0.282641

metallographic microscope to build a test platform (Fig. 3).
The tool is a two-flute tungsten carbide-coated solid carbide
milling cutter with a diameter of 10 mm. The material of the
workpiece is carbon steel (AISI 1045). AISI 1045 has a good
processing performance and wide application range. AISI
1045 is also mainly used to manufacture moving parts with
high strength and high surface quality, such as turbine impel-
lers and compressor pistons. The basic information of AISI
1045 is presented in Table 2.

Table 3 shows that the cutting parameters in the exper-
iment are fixed and that the flank wear value (VB) is mea-
sured after a complete 200-mm cutting distance using a
metallographic microscope. The average VB of the two
blades of the milling cutter is considered the tool wear
value. The sampling frequency of the force gauge is set
to 20,000 Hz, and the cutting force data generated in the
first 50 mm distance are collected during each pass. The
cutting force signal includes three directions: X, ¥, and Z. A
total of 108 sets of data are obtained.

According to the feature extraction method of the statis-
tical signal and wavelet packet analysis in the TFD, the
number of extracted features is up to 28 x 3 = 84 (the force
has three directions). In addition, the extracted feature di-
rectly used as an input can cause a dimensional disaster,
and the calculation amount is large. The obtained mathe-
matical models often fail to meet the target requirements at
the same time. Therefore, obtaining a wear state recogni-
tion model with good calculation performance requires the
selection of the most relevant feature signals from the
model.

3.2 Feature selection based on GA

This study uses MATLAB GA toolbox for feature selection.
The specific GA parameters are set and are shown in Table 4.

According to the parameter settings in Table 4, the force
signals in the three directions of x, y, and z are selected. When
GA reaches the termination condition, the selected feature
index value and the optimal and average fitness values are
returned.

Best: 0.216916 Mean: 0.216916
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o Mean fitness
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Table 5  Selected features by GA (force signals)

Signal Signal features

Fx o 402 S410 S413 S416
Fy o* S402 S406 S410 S416
Fz o’ S413 S414 S416

Figure 4a, b, and c represent the feature selection pro-
cess of Fx, Fy, and Fz by GA, respectively. In Fig. 4a, the
cycle is terminated when the iteration is 40. Here, the op-
timal and average fitness values are 0.295. The correlation
between the selected features and the wear amount is high,
and the absolute value of the Pearson coefficient is close to
0.7. Figure 4b illustrates that the average fitness value is
0.283 after 10 iterations from 0.56 and that the whole cycle
is terminated when iterating to the 40th generation of the
population. The final optimal fitness value is 0.283, which
indicates that the Pearson coefficient value |r| between the
selected Fy eigenvalues and the tool wear is also above 0.7.
In Fig. 4c, the average and best fitness values converge to
the optimal in the 27th generation. Both values equal to

x10°

0.217, that is, the correlation between the selected feature
and the wear value is above 0.78.

The feature selection program is repeated 30 times in the
repeatability test to find the features related to tool wear and
avoid large random errors in a single operation. The features
with high frequency of occurrence are selected from Table 5.
The number of signal features selected is 14, which is signif-
icantly lower than the previous number of 84 feature vectors.

3.3 Feature correlation analysis

To verify the validity of the GA feature selection, this
study plots the correlation between the feature and the wear
value (Fig. 5). The abscissa is the tool wear value, and the
ordinate is the corresponding feature value. Given the
space limitations, only 3 of the 14 features selected on
the basis of GA are used. The correlation of these features
with wear is illustrated in Fig. 5a, c, and e. Figure 5b, d,
and f present the correlations between the feature and wear
values that are not selected by GA.

Among the characteristic signals of Fx, Fig. 5a is the
correlation diagram between the characteristic Fx_o”2
(variance of the Fx signal) and the wear value selected by

x10°
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Fig. 5 a—f Analysis of the correlation between the features and tool wear
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(a) VB=0.174mm

Fig. 6 Wear process of cutting tool

GA. In the diagram, Fx 0”2 increases significantly as the
wear value increases. The correlation is evident. The graph
in Fig. 5b presents the correlation curve between the
Fx_max (maximum Fx signal) and the wear value that is
not selected by GA. When the wear value increases, no
evident variation law of Fx max exists. The correlation
of Fx_max with the wear value is not as great as that of
Fx_ 072 (selected feature).

The correlation between the eigenvalue of Fy signal and the
wear value is illustrated in Fig. 5c and d. Figure 5c presents the
selected feature Fy s402 (the ratio of the energy of the s402 band
to the total energy after reconstructing the wavelet packet decom-
position of the Fy signal), which increases as the wear value
increases. By contrast, Fig. 5d shows that the unselected feature
Fy FC (FC of the Fy signal) exhibits random fluctuations when
the wear value changes. Such fluctuations are minimal.

Among the Fz signal characteristics, the selected and un-
selected features are displayed in Fig. Se and f, respectively.
The selected feature Fz_s406 has a significant positive corre-
lation with wear value, whereas Fz mean and Fz signal are

500 ‘ ‘

WA
. N
300 s X: 87 1
2 R Y:329.5
o
g 200 X: 16 1

Y: 2135
100 ]
() L L L L L
0 20 40 60 80 100 120

number of cutting

Fig. 7 Wear state division (108 sets)

(b) VB=0.265mm

(c) VB=0.330mm

average (not selected). The characteristic has no obvious reg-
ular change trend when wear value increases. Therefore, the
correlation between Fz_mean and wear value is not large.

Comparing other selected features with the unselected fea-
tures also follows the same rules, which explain the validity of
the GA feature selection to a certain extent.

4 Experimental results and analysis

The tool wear state recognition model takes the signal feature
extracted in Section 3.3 as the input. The output is the corre-
sponding tool wear state.

During the milling process, 108 sets of data are obtained.
The tool wear process is presented in Fig. 6. Different wear
stages are divided by tool wear values. The first 16 sets are the
initial wear stage, the 17-87 sets are the normal wear stage,
and the remaining 21 sets are the severe wear stage. Figure 7
illustrates two marked points where the tool wear rate changes
from the previous data.

The fitness value

75

o
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H —%— gwo-svm

65® ga-pso-svm

—+— pso-svm

60 I 1 I 1 I I I 1 1 )
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Fig. 8 Iterative process comparison
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The training and test sets, including their data, are made
separate. To compare the effectiveness of the GA feature se-
lection method used in this study (Section 3 of this paper) and
the optimized SVM effects of PSO and GWO, we analyzed
the optimization process of the four algorithms and the accu-
racy of the classification results, as presented in Figs. 8 and 9,
respectively. The relevant parameters of PSO and GWO are
set, as presented in Table 6.

In Fig. 8, PSO-SVM represents a classification algorithm
that optimizes SVM parameters using PSO with all extracted
features as inputs. GWO-SVM represents a classification al-
gorithm that uses all extracted features as inputs and GWO to
optimize SVM parameters. GA-PSO-SVM is a classification
algorithm that optimizes SVM parameters by PSO and uses
the features selected by GA as inputs. After GA feature selec-

Table 6 Parameter settings of the optimization algorithms

Iteration Group cu, gu cl, gl Cl C2 vy
GWO 200 20 100,1000 0.1,001 - - -
PSO 200 20 100,1000 0.1,0.01 1.5 1.7 0.1-1000
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tion, GA-GWO-SVM uses the features as inputs, and GWO
optimizes the SVM parameters. The convergence speed and
final fitness value of GA-GWO-SVM are better than those of
GWO-SVM. However, the convergence speed of
GA-PSO-SVM and the fitness value on the training set are
worse than those of PSO-SVM. In addition, the optimization
effect of the GWO algorithm is higher than that of PSO.

In Fig. 9, the classification accuracy of the four algorithms
in the three wear stages of the test set is presented. The accu-
racy of the classification algorithm using GA feature selection
is greater than that of the classification algorithm with all
features as inputs, namely, GA-PSO-SVM > PSO-SVM,
GA-GWO-SVM > GWO-SVM. GWO-SVM has a better
effect than PSO-SVM and benefits from random walks and
few parameters. The accuracy of PSO-SVM is 81.48%, that
of GWO-SVM is 92.59%, and the accuracy of
GA-PSO-SVM is 90.74%.

The classification accuracy of GA-GWO-SVM is 96.29%.
Table 7 and Fig. 9 compare the classification effects of various
algorithms on the test set; here, GS stands for grid search.
SVM and GA-SVM divide the points of all test sets in the
second category (normal abrasion), and the classification ef-
fect is extremely poor. Among other classification algorithms,
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Table 7 Comparison of

Normal abrasion Intense wear Classification accuracy

classification methods (force Method Initial wear

signals)
SVM 0
GS-SVM 50.000%
GA-GS-SVM 75.000%
GA-SVM 0
GA-GA-SVM 62.500%
PSO-SVM 50.000%
GA-PSO-SVM 87.500%
GWO-SVM 87.500%
GA-GWO-SVM 100%

100% 0 64.815%
91.43% 81.82% 83.333%
97.140% 81.820% 90.741%
100% 0 64.815%
94.290% 81.820% 87.0370%
91.429% 72.727% 81.482%
97.140% 72.727% 90.741%
94.290% 90.900% 92.590%
94.290% 100% 96.296%

GA-GWO-SVM has the best classification effect, and the
classification accuracy rates in the three wear stages are
100%, 94.29%, and 100%. The final total classification accu-
racy is 96.30%, which can result in the superior effect of
online tool wear recognition.

5 Method validation with vibration signals

The milling dataset from Ref. [32] is implemented to validate
the tool wear monitoring system. The data set has force, vi-
bration, and current signals in the milling data set. The vibra-
tion signals are selected to verify the robustness of the pro-
posed method. In the experiment, the stainless steel (HRC52)
is machined by a two-flute ball nose cutter in a high speed
milling machine (Réders Tech REM760) with a spindle speed
of up to 42,000 rpm. Three Kistler piezo accelerometers are
mounted on the workpiece to measure the machine tool vibra-
tions of the cutting process in the x, y, and z directions.

The 315 sets of tool wear values are divided into three
stages, namely, Stage I, Stage II, and Stage III (Fig. 10). The

250 T
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Fig. 10 Wear state division (315 sets)

tool wear rates differ in each stage. Based on the proposed tool
wear monitoring system in this paper, the vibration signals are
filtered by time domain, frequency domain, and Wavelet anal-
ysis, and the 84 features are obtained. Then 28 of the 84
features, which are show in Table 8, are selected by GA after
running the feature selection program 30 times. Finally, the
selected features are fed into GWO-SVM and other models to
recognize tool wear states.

The results of tool wear states recognition based on vibra-
tion signals are presented in Table 9. It is seen from Table 9
that the classification accuracy of the models with feature
selection by GA is higher than the models without feature
selection, and the running time of models with feature is less
than the models without feature selection except SVM model.
SVM model saves time at the expense of accuracy because its
parameters are not optimized. In addition, GA-GWO-SVM
and GWO-SVM have the highest classification accuracy.
Comprehensive consideration of classification accuracy and
running time, the proposed GA-GWO-SVM outperforms
other algorithms.

6 Conclusions

Efficiently and accurately monitoring tool wear state during
machining provides guidance for the adjustment of machining
parameters to ensure the stability of machining quality. In this
study, an automated tool wear condition monitoring scheme
for the milling process is developed using a cutting force sen-

Table 8  Selected features by GA (vibration signals)

Signal Signal features

Vx X o2 X Xrms Xpeak VF
Cs S402 S414 S415 S416

W o Xpeak Xrms X, K Cs
FC MSF S412 S415 S416

Vz o’ X Xems Xpeak S FC
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Table9  Comparison of classification methods (vibration signals)

Method Classification accuracy Running time (s)
GA-GWO-SVM 100% 13.736
GA-GS-SVM 99.3631% 7.327
GA-GA-SVM 98.7261% 24.560
GA-PSO-SVM 98.7261% 67.840
GWO-SVM 100% 22.705
GS-SVM 98.7261% 12.764
GA-SVM 98.0892% 31.151
PSO-SVM 98.0892% 111.171
SVM 97.4522% 2.052

sor. The scheme includes three modules, namely, feature
extraction, feature selection, and prediction. Feature ex-
traction is implemented by TD analysis, FD analysis, and
wavelet packet decomposition to obtain comprehensive
information. Feature selection employs GA to reduce
the complexity of the prediction model. The SVM model
optimized by GWO (i.e., GWO-SVM) for generalizabil-
ity is proposed to predict tool wear state.

GA searches the correlation between signal and wear fea-
tures and selects signal features that are highly correlated with
wear features from the extracted features by TD analysis, FD
analysis, and wavelet packet decomposition. GA greatly re-
duces the input dimension of the prediction model and im-
proves the prediction accuracy. In Table 7, the comparison
between the systems with and without feature selection based
on GA indicates a 4% increase in system accuracy because of
the use of GA. The results of the comparison of the proposed
method and the SVM model optimized by certain common
optimization techniques reveal the superiority of the GWO-
SVM model (Table 7). Therefore, the GWO-SVM model
outperforms other models (SVM, GA-GS-SVM, and GA-
PSO-SVM) in terms of prediction accuracy and time.

Vibration signals taken from Ref. [32] are used to verify the
robustness of the tool wear condition monitoring scheme.
Table 9 shows that the proposed tool wear monitoring scheme
maintains its superiority in prediction accuracy. Therefore, the
proposed tool wear condition monitoring scheme based on
GA-GWO-SVM technique is beneficial in improving recog-
nition accuracy of tool wear state, and provides an effective
guide for decision-making in the machining process.
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