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Abstract
A still current challenge of paramount importance for manufacturing metrology is the industry and laboratories’ increasing
demand for faster inspection and verification measuring procedures to determine the conformance of products to dimensional
or functional requirements. Within this context, a measuring system group that has gained great importance in the field of high
precision dimensional verification are the portable coordinate measuring machines (PCMMs) such as articulated arm coordinate
measuring machine (AACMM). Nevertheless, an important drawback of these type of instruments are the time-consuming,
tedious, and expensive tasks inherent to their verification and kinematic parameter identification procedures. In this work, a
kinematic parameter identification procedure of anAACMMbymeans of an indexedmetrology platform is presented.Moreover,
the kinematic modeling of the AACMM is developed, and the optimization of the arm kinematic parameters to minimize the
measurement error is carried out in terms of eight objective functions. Finally, a comparison between the optimized parameters
and the nominal parameters is discussed, showing the advantages of using the indexed metrology platform (IMP) in the
optimization procedure.

Keywords Manufacturing metrology environment . Portable coordinate measuring machine . Indexed metrology platform .
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1 Introduction

In recent years, the rapid progress of manufacturing processes
along with the requirement to meet tighter dimensions and
tolerances of finished products have played an important role
in the development of the dimensional metrology field for the
quality control and assurance in the manufacturing production
environment. Within this field, an important group of measur-
ing instruments that have increased their application in the

automobile, aerospace, machine tools, metal processing, as-
sembling industries, etc. is that of the portable coordinate
measuring machine instruments, such as articulated arm coor-
dinate measuring machines (AACMM) and laser trackers
(LT), among others. Their growing popularity resides mainly
in their flexibility to carry out complex measurements in
places where environmental conditions, such as temperature
and humidity, are not easy to control and affect negatively the
reliability of the measurements. However, the kinematic pa-
rameters of these type of instruments require periodical cali-
bration, optimization, and verification procedures which be-
come a drawback because of the techniques applied to per-
form them. Currently, the ASME B89.4.22-2004, VDI guide-
line 2617 9:2009 and ISO/CD 10360-12 standard [1–3] are
the standards used as guide for the performance evaluation of
AACMMs. The objective of these standards is to evaluate the
measuring capability of the AACMM throughout its measur-
ing volume using calibrated artifacts such as reference lengths.
The inconvenience of this procedure is the inherent time-con-
suming, tedious, and expensive tasks [4, 5] that the industries
are not always capable or willing to assume, even more if we
take into account the emergence of industry 4.0, which
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demands to industries faster inspection processes while main-
taining the quality and reducing production costs [6, 7]. This
drawback is a consequence of the necessity of locating a cal-
ibrated gauge object, such as a ball bar gauge, successively in
various predetermined positions, so that most of the instru-
ment measuring volume is covered. In every position, a sup-
port is used to rigidly fix the gauge object at different heights
and orientations with respect to the measuring instrument. For
the aforementioned reasons, continuous research in this area is
still of paramount importance within the coordinate metrology
research community.

Research studies within this field are usually approached in
two different ways: (1) the use of gauge artifacts to evaluate
the performance of AACMM and (2) the development of new
calibration and verification methods to reduce the measure-
ment error committed by this instrument.

For example, in the first group, Santolaria used a ball bar
gauge and a self-centering active probing technique to opti-
mize the parameters of an AACMM based on the Denavit-
Hartenberg kinematic model parameters [8]. Piratelli present-
ed a gauge consisting of virtual spheres of two groups of
conical holes used for the evaluation of AACMM. This con-
ical holes served a kinematic seats to limit the degrees of
freedom of the arm probe in order to determine points of
two spherical surfaces; these points are fitted to spheres using
computational algorithms, and the distance between the
spheres’ centers is calculated and compared to the nominal
distances measured with a coordinate measuring machine
[9]. The same author developed a virtual spheres plate for
the assessment of an AACMM. The plate consisted of 16
group of conic holes placed on an aluminum plate used to
determine 16 virtual spheres. The distance of the virtual
sphere centers was compared to the ones measured with a
CMM [10]. In [11], Zhao et al. presented a 3D artifact for
the calibration of an articulated arm coordinate measuring
machine. The 3D artifact consists of 14 reference points with
three different heights that allows the materialization of 91
reference lengths to evaluate the AACMM volumetric perfor-
mance. Cuesta presented a virtual circle gauge to evaluate the
performance of an AACMMby comparing the mean values of
the virtual circles to the ones measured [12]. Cuesta also de-
veloped a new gauge in order to ensure the reliability of an
AACMM. The gauge consisted of several physical geome-
tries, and it included conical holes at the ends in order to
materialized virtual spheres for the evaluation of AACMMs
[13]. In a subsequent work, Cuesta analyzed the influence of
the operator in the reliability of AACMMs measurements by
developing a contact force sensor [14]. Also, the influence of
the measuring force on the equivalent diameter of the probe is
studied in [15], and a mathematical model is developed to
compensate the equivalent diameter error caused by the mea-
suring force. In recent research, El Asmai et al. proposed in
[16] a simple methodology to estimate the uncertainty in

length measurements within a limited zone of the AACMM
using a tetrahedral artifact.

In the second group of research works, Ostrowska devel-
oped a virtual articulated arm coordinate measuring machine
based on three different metrological models in order to deter-
mine which of the metrological models obtained better results.
Moreover, the author used a verification method for assuring
the correct functioning of the virtual articulated arm coordi-
nate measuring machine by means of a multi-feature check
standard [17]. In [18], Lin proposed a scaling method to mod-
ify the length parameters of the AACMMkinematic model by
scaling factor k. Ibrahim applied a stochastic-based optimiza-
tion technique to identify kinematic parameters of a measuring
arm to improve its measurement accuracy [19]. A modeling
and error compensation method for AACMMs based on BP
Neural Networks is proposed by Gao [20] with the
AACMM’s joint angles generated by Monte-Carlo simula-
tion. The same author presented in [21] a constructive param-
eter identification approach for AACMMs and in [22] focused
on a decoupling method of AACMM parameters to be used in
identification parameters procedures based on a study of
strong non-linear couplings in AACMMs. In [23], a multi-
level Monte Carlo method was developed by Romdhani
et al. in order to characterize the behavior of an AACMM
during the measurement process and quantifying the uncer-
tainty on the considered measurand. In [24], a least squares
methodology based on the Gauss-Helmert least squares anal-
ysis to calculate the parameters of the AACMM kinematic is
shown. The work proposed an alternative methodology to the
well-known VDI/VDE and ASME B89.4.22 AACMM stan-
dards. In [25], Batista describes a mathematical model based
on the use of quaternions for the computation of forward ki-
nematics of an AACMM.

Finally, in previous works, the use of the IMP has been
already validated in verification procedures of AACMMs ap-
plying a new virtual distance methodology [26] and using a
laser tracker as a reference instrument in combination with the
IMP [27], being the measurement uncertainty of the platform
assessed in [28].

The main goal of this work is to present the kinematic
parameter identification procedure of an articulated arm coor-
dinate measuring machine by means of an indexed metrology
platform. The metrological behavior of an AACMM depends
on many factors, but the correct identification of the mathe-
matical model parameters will determine the final measure-
ment error [29]. Additionally, a brief explanation of the math-
ematical model that links the AACMM reference system and
the IMP global coordinate reference system is given.
Furthermore, a discussion of the four proposed quality param-
eters to evaluate the error of the AACMM during the iteration
process in the optimization procedure as well as the develop-
ment of eight objective functions in terms of the quality pa-
rameters to optimize the error made by the AACMMusing the
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IMP is included. Finally, the advantage of using the IMP in the
kinematic parameter identification procedures of AACMM’s
over the traditional methodologies is shown. This advantage
resides in the reduction of the time, physical effort, and space
required to carry out these procedures. This reduction is ac-
complished by inverting the roles of the calibrated gauge ob-
jects and the AACMM in the changing of their relative posi-
tion, that is, the calibrated object remains fixed and the mea-
suring arm moves around it, contrary to the usual method the
standard follows, where the calibrated object is moved around
the AACMM.

2 AACMM kinematic model and integration
with IMP mathematical model

A calibration of a measuring instrument is understood as a
technique to establish a relationship between the instrument’s
data and the values obtained by a traceable gauge object. This
relationship makes it possible to determine mathematical cor-
rection models with the purpose of minimizing the measuring
instrument’s error [4].

The first step in our process is the development of the
AACMM kinematic mathematical model that corresponds
to the configuration of the arm. In this work, the configu-
ration of the arm used is a seven-degrees-of-freedom (DOF)
Platinum series from FARO with a typical 2-2-3 configura-
tion and an a-b-c-d-e-f-g degree rotation (Fig. 1), according
to ASME B89.4.22-2004, with a nominal value of 2σ =
0.030 mm and ± 0.043 mm reported in the single point
articulation and volumetric performance tests, respectively.
The kinematic model of the arm was established based on
the Denavit-Hartenberg (D-H) algorithm [30] due to the
mechanical similarities between AACMMs and robot arms.
In Fig. 1, we define the AACMM initial position and the
seven coordinate reference systems associated to each of
the joints, starting from a global coordinate reference sys-
tem (CSglobal) defined as (X0, Y0, Z0) and finishing with the
seventh coordinate reference system attached to the arm
probe (X7, Y7, Z7) or (Xpalp, Ypalp, Zpalp).

The mathematical model is represented by four geometrical
parameters in each of the arm articulations joints (distances di,
ai, and angles αi, θi). According to the D-H algorithm, these
parameters are used to determine the homogenous transforma-
tion matrices between frames i and i − 1 that depend on the
four mentioned parameters, given in Eq. 1,

i−1Ai ¼ Tz;dTz;θTx;aTx;α

¼
cosθi −cosαisinθi sinαisinθi aicosθi
sinθi cosαicosθi −sinαicosθi aisinθi
0 sinαi cosαi di
0 0 0 1

0
BB@

1
CCA; ð1Þ

Then, the transformation matrix that allows to express the
coordinates of the probe center with respect to the AACMM
global coordinate reference systems is obtained by the follow-
ing equation:

0T 7 ¼ ∏
6

i¼1

i−1Ai � 6A7; ð2Þ

where 0 represents the global fixed coordinate reference sys-
tem and 7 the coordinate reference system that moves solidary
with the rotation of the last articulation. Once the coordinate
reference systems are defined, the initial nominal parameter
values of the AACMM kinematic model are determined.
These values must be as close as possible to the physical real
values in order to obtain good results during the calibration
procedure. In our case, the initial values were measured with a
coordinate measuring machine. The initial values of the kine-
matic model are shown in Table 1.

The next step is to develop a mathematical model linking
the AACMM and the IMP global coordinate reference sys-
tems. In other words, this model will allow us to find a ho-
mogenous transformation matrix (HTM) to express the
probed points by the measurement arm in the IMP global
coordinate reference system (Fig. 2). This mathematical mod-
el is based on the optimized geometric features calculated in
the calibration procedure of IMP and the capacitive sensor
readings obtained during the verification procedure for posi-
tion 1 [4]. The complete explanation of this procedure can be
found in [31], where the non-linear system of equations
allowing us to find the searched HTM is clearly illustrated.

The IMP consists of a mobile hexagonal upper platform
and a hexagonal fixed lower platform of dimensions
398.5 mm× 345 mm, respectively, designed in such way that
the upper platform rotates around the fixed lower platform and
descends every 60°, thus having six possible different posi-
tions with respect to the lower platform. To express the coor-
dinates of the measured data in the lower platform global
coordinate reference system (CSglobal) during the capturing
process of the optimization procedure, a geometric mathemat-
ical modeling, based on six capacitive sensors fixed to the
lower platform (Lion Precision Probe C5-E Compact Driver)
and their targets fixed to the upper platform, is needed [31].
Moreover, to cancel the degrees of freedom and to ensure a
good mechanical repeatability of the upper platform with re-
spect to the lower platform, an arrangement of spheres and
cylinders kinematic couplings was utilized. In the upper and
lower platforms, three pairs of spheres are located at 120°
between them and six cylinders are located at 60° between
them, respectively. To determine the upper platform and lower
platform reference systems, three characterization spheres are
located on the sides of the platforms. These spheres are of
great importance because they enable to express coordinates
of measured data in the fixed CSglobal during the optimization
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or verification procedures of portable coordinates measuring
machines such as AACMMs.

3 Identification parameters procedure

3.1 Data capture process and setup

The second step in the parameters’ identification of a kinemat-
ic model of an AACMM is the data capture process that will
be used to evaluate and minimize the measurement error made
by the measuring arm. This process consists of the capture of
the coordinate points measured by the measuring arm along

with the rotation angle joint values for each of the captured
points from each evaluated position. The measuring error in a
given position will be calculated by comparing the AACMM
measured point with the real value of the point obtained from a
calibrated artifact. These real values are considered the set of
nominal coordinates that will be used in the calibration proce-
dure. An important aspect to consider is the propagation of the
errors from the calibrated gauge artifact to the results of the
parameter identification procedure. To this end, it is extremely
important to verify that the precision of the artifact used in the
data capture process is at least an order of magnitude higher
than that of the measuring arm to be calibrated. In this work, a
calibrated ball bar gauge is used to materialize the calibrated
distances; see Fig. 3. The ball bar gauge of 1.5 m long com-
prises a carbon fiber profile and 15 ceramic spheres of 22 mm
in diameter, reaching calibrated distances between the centers
with an uncertainty u0 for k = 2, in accordance with its calibra-
tion certificate, of (0.3 μm + 0.0000006 L), with L in
millimeter.

Another important aspect to consider in the data capture
process is the different positions of the ball bar gauge with
respect to the measuring arm and the distribution of the mea-
sured reference coordinate points which will be used to calcu-
late the arm’s measuring error. This calculated error will be
minimized in the optimization procedure. It must be noted
that, if the number of gauge positions and captured points

Fig. 1 Seven coordinate
reference systems of the
AACMM initial position
according to D-H algorithm

Table 1 Kinematic geometric parameters initial values for the
AACMM kinematic model

Joints θi (°) αi (°) ai (mm) di (mm)

1 0 90 50 75

2 135 90 0 0

3 0 − 90 30 590

4 90 − 90 30 0

5 180 − 90 30 590

6 135 − 90 30 0

7 0 0 0 215
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are not big enough, the adjustment of the parameters that
minimize the error in the captured data positions for the
AACMM parameter identification procedure might not be
generalizable to the rest of the AACMM working volume.
The reason for this is that the optimization procedure of the
geometric parameters from the captured data is obtained by a
least squares fitting using the Levenberg-Marquardt algo-
rithm. In the AACMM identification procedure, the objective
functions considered were subject to different combinations of
the following error quality parameters: (1) minimization of
distance error between sphere’s centers; (2) point repeatability
from different probe orientations and arm joint configurations;
(3) minimization of the single point coordinate error that rep-
resents the distance between the same point coordinates in
each of the six platforms positions expressed in the platform’s
global coordinate reference system; (4) minimization of the

difference between the calculated diameter of the upper plat-
form characterization spheres and their nominal value.

In the data capturing process of the ball bar gauge, a self-
centering passive probe was used. This probing system is
composed of three spheres of 6-mm diameter located at 120°
from each other as shown in Fig. 4. Moreover, with this prob-
ing system configuration, the centering of the probe direction
with respect to the sphere center is ensured, making this di-
rection cross it for any orientation of the probe, which allows
direct probing of the sphere center when the three spheres of
the probe and the sphere of the ball bar gauge are in contact.

The main objective during the data capture process is to
cover the maximum measuring working volume of the
AACMM. The ability of the platform to rotate to six different
positions with respect to a global coordinate reference system
allows us to virtually increase the number of positions of the
gauge artifact with respect to the measuring instrument and
therefore to capture more data without having to generate
physically new gauge positions. For this reason, the ball bar
gauge used was located at two angular positions of 45° within
the AACMMworking volume (Fig. 5b). These positions were
n a m e d a s D i a g 4 5 U pw a r d _ O r i e n t a t i o n a n d
Diag45twoUpward_Orientation, in which four spheres were
probed for each position (spheres 3/5/7/9), materializing six
distances between spheres centers as it can be observed in Fig.
5a. The two gauge positions are based on the volumetric per-
formance test positions stated in ASME B89.4.22-2004 stan-
dard [1] and were also used in the verification of the arm. The
selection of the minimum number of testing positions is a
complex process which implies significant data capture and
a further analysis of the influence of the testing position

Fig. 2 Coordinate reference
systems of the AACMM, upper
platform, and IMP global
coordinate reference system

Fig. 3 Calibrated ball bar gauge artifact used in the AACMM
identification procedure
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captured on the final error, discarding the less influencing
testing positions [32].

3.2 Evaluation methods of the error and quality
parameters

As stated earlier, four error quality parameters were defined to
evaluate the error throughout the iteration process in the pa-
rameter identification procedure and to select the AACMM’s
parameters that minimize the defined quality parameter.

& Evaluation of distance error

Since we have the information of the nominal distances
materialized for the calibrated ball bar gauge calculated from
the calibrated nominal centers, it is possible to evaluate the

error committed by the measuring arm in these distances. The
center of the sphere was calculated as the mean of all the
measured points with the arm for every sphere, expressing
the captured coordinates in the global coordinate reference
system of the IMP.

In each of the two ball bar testing positions, six nom-
inal distances were materialized between the probed
sphere centers. The nominal distances calculated from
the ball bar gauge were compared to the ones measured
by the AAMCC, where the result was the distance error
committed by the measuring arm. In total, six distance
errors were evaluated for every ball bar position, in the
two positions of the ball bar for every position of the IMP
in all six platform positions, having a total of 72 distances
and their corresponding distance errors. The Euclidean
distance between two spheres, from the calculated mean

Fig. 5 a Center distance between
measured spheres. b Ball bar
positions at 45°

Fig. 4 Capturing data process
with a passive kinematic self-
centering probe
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points that correspond to the sphere center, is expressed
by the following equation:

Dhijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X hij−X hik

� �2
þ Yhij−Yhik

� �2
þ Zhij−Zhik

� �2
r

; ð3Þ

where Dhijk represents the Euclidean distance between
spheres j and k in position i of the ball bar gauge and in
the h position of the platform. The coordinates in the
latter equation correspond to the mean of the captured
points for the sphere j and k as shown in the following
equations.

X hij ¼
∑nhij

m¼1X mð Þhij
nhij

; ð4Þ

Yhij ¼
∑nhij

m¼1Y mð Þhij
nhij

; ð5Þ

Zhij ¼
∑nhij

m¼1Z mð Þhij
nhij

; ð6Þ

where nhij corresponds to the number of captured points for
the j sphere, in the position i of the ball bar gauge and in the h
position of the platform. Similar observations hold for sphere
k. This way, consideringDnjk as the nominal distance between
spheres j and k obtained by the calibration data, it is possible to
calculate the distance error made by the measuring arm be-
tween spheres. This error corresponds to the deviation be-
tween the nominal distance of the ball bar gauge and the mea-
sured distance between the probed spheres.

EDhijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dhijk−Dnjk
� �

2
q

: ð7Þ

& Evaluation of the measurement repeatability

Once the coordinates of the captured points and the mean
values are determined for each sphere, it is possible to evaluate
the repeatability of the measuring arm by calculating the stan-
dard deviation for each of the coordinates of the probed points
expressed in the IMP global coordinate reference system. An
example of this calculation for the X coordinate of sphere j, in
position i of the ball bar gauge and in the h position of the
platform, for the nhij number of captured points in sphere j is
shown in Eq. 8. An analogous calculation applies for coordi-
nates Y and Z.

σXhij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑nhij

m¼1 X mð Þhij−X hij

� �2

nhij−1

vuut ð8Þ

A combined standard deviation is introduced in the objec-
tive functions as a parameter that includes the quadratic sum

of the standard deviations obtained for each coordinate, as it is
observed in Eq. 9. Six platform positions were considered, to
calculate the standard deviations, as well as two orientations
of the ball bar gauge and four spheres of the ball bar measured
in each gauge orientation with 6 to 8 probed points for each
sphere.

σCombhij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σXhij

� �2 þ 2σYhij

� �2 þ 2σZhij

� �2q
ð9Þ

& Evaluation of single point error

One of the main characteristics of the indexed metrol-
ogy platform is its ability to generate point coordinates
expressed in a global coordinate reference system. For
the evaluation of the single point error, the distance be-
tween the center coordinates of the same sphere,
expressed in the global coordinate reference system for
two different platform positions, was calculated with the
scheme shown in Table 2. In total, there are 15 error
points for sphere and gauge orientation, having 120 error
points evaluated. The coordinates of a point measured by
the arm in different platform positions expressed in the
global coordinate referencev system theoretically should
be the same, since the platform should not contribute with
any variation to the results. The error between the mean
points of all the calculated values was considered as a
parameter to evaluate.

In the way described, it is possible to calculate the
error point of the center of sphere j, in the position h of
the ball bar gauge and in the k position of the platform, as
the difference between the coordinates expressed in the
IMP global coordinate reference system for the sphere
center in position h of the gauge and those of the center
of the same sphere in position k-1 of the platform, as
presented in Eq. 10.

EPhjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X h; j;k−X h; j;k−1

� �2
þ Yh; j;k−Yh; j;k−1

� �2
þ Zh; j;k−Zh; j;k−1

� �2
r

h ¼ 1; 2; j ¼ 1; :::; 4; k ¼ 2; :::; 6:
ð10Þ

Table 2 Scheme of the calculation of the point errors per sphere 3/5/7/9
and gauge positions/orientations

Platform position 2 3 4 5 6

1 1–2 1–3 1–4 1–5 1–6

2 2–3 2–4 2–5 2–6

3 3–4 3–5 3–6

4 4–5 4–6

5 5–6
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& Evaluation of the diameter error of the upper platform
characterization spheres

The last error considered in the kinematic parameter iden-
tification procedure of the AACMM is the error committed by
the arm in the measurement of the upper platform characteri-
zation spheres. Themeasurement of the center of each of these
spheres is necessary for the determination of the upper plat-
form coordinate reference system and the calculation of the
HTM that links the AACMM coordinate reference system
with the IMP upper platform coordinate reference system.
The measurement error in the diameter of the characterization
sphere i is defined by Eq. 11, as the difference between the
nominal calibrated diameter, dcal (20 mm), and the diameter,
di, obtained by the Gaussian sphere associated to the measure-
ments of the sphere points probed by the measuring arm.

ERi ¼ abs di−dcalð Þ; for i ¼ 1; :::; 3: ð11Þ

3.3 Kinematic parameter optimization procedure

In the parameter identification procedure of the AACMM, we
need to determine the parameter values that minimize the final
error of the AACMM in all the captured positions. In this
work and given the non-linear nature of the arm kinematic
model, a non-linear least square approximation by the
Levenberg-Marquardt method is used as an optimization al-
gorithm. The mathematical model of the AACMM can be
described, for any arm position, by means of Eq. 12, based
on the measuring arm kinematic model described in Sect. 2.1.

p ¼ f ai; di; θi;αið Þ; for i ¼ 1; :::; 7; ð12Þ
where p = (x,y,z), are the coordinates of the measured point
with respect to the global coordinate reference system of the
arm. Therefore, there are a total of 28 kinematic parameters to
optimize in this identification procedure, whose initial values
are shown in Table 1, according to the D-H kinematic model
of the AACMM.

In this case, not only the AACMM kinematic model but
also the indexed metrology platform mathematical model is
included in the objective function, since the error terms in the
case of the evaluation of the distance error, single point error
or measurement repeatability, will be carried out for points
captured by the arm but expressed in the IMP global coordi-
nate reference system throughout the IMP mathematical mod-
el. For this reason, it is necessary to calculate the homoge-
neous transformation matrices (HTM) that allow to link the
AACMM coordinate reference system to the IMP upper plat-
form and the HTM that links the IMP upper platform coordi-
nate reference system to the IMP global coordinate reference
system located in the fixed lower platform. A complete expla-
nation of this procedure can be found in [31].

The HTM that allows the change from the AACMM coor-
dinate reference system to the IMP upper platform coordinate
reference system needs to be calculated in each iteration with-
in the optimization procedure from the captured data of the
upper platform characterization spheres by the AACMM,
whose centers allow determining the associated coordinate
reference system. From the saved joint angles, θ1–θ7, during
the measurement of the characterization spheres by the
AACMM, we obtained the coordinates of the sphere centers
through the AACMM kinematic model and also the transfor-
mation matrix that links the AACMM and IMP upper plat-
form coordinates systems by means of the three sphere cen-
ters. Therefore, the AACMM’s optimized parameters obtain-
ed during the identification procedure will affect this matrix
and the calculation of the coordinates and diameters of the
characterization spheres that are used as a quality parameter
in the optimization procedure.

The HTM that allows the change from the IMP upper co-
ordinate reference system to the IMP global coordinate refer-
ence system is calculated along the optimization procedure for
each captured point based on the capacitive sensor readings,
and it will be independent of the optimized parameters.

Once the optimized points are expressed in the IMP upper
coordinate reference system, the next step is to proceed with
the calculation of the different error quality parameters ex-
plained in Sect. 2.3 for all the spheres (3/5/7/9), positions of
the ba l l ba r gauge (Diag45Upwar_Or ien ta t ion ,
Diag45twoUpwar_Orientation), and the six rotating positions
of the IMP. For this purpose, we need to define the objective
function to minimize, which is usually the sum of the squared
components of the considered error. In this work, we defined
eight objective functions, including the different error quality
parameters, explained in Sect. 2.3, that are expressed individ-
ually or combined.

The captured data in the parameter identification procedure
will be evaluated through the defined objective functions that
are explained in the following. The scheme of the optimiza-
tion procedure is shown in Fig. 5. The stopping criteria of the
optimization algorithm was programmed based on the detec-
tion of the objective function convergence, as illustrated in
Fig. 6.

The first objective function, objective function 1, quantifies
the distance error of the AACMM for each considered dis-
tance according to Eq. 7, including the terms of the distance
error for the four captured spheres, two positions of the ball
bar gauge, and six platform positions. The quadratic sum of
the 72 distance errors evaluated in the optimization procedure
is defined as objective function 1 that is developed according
to Eq. 13.

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2q

; ð13Þ
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with p = 2 gauge positions, q = 4 measured spheres per plat-
form positions (spheres 3/5/7/9), and r = 6 platform positions.

The second objective function, objective function 2,
includes as an additional error term to the distance error,
the diameter error of the upper platform characterization
spheres described in Sect. 2.3 according to Eq. 11. In this
way, we included in the optimization the minimization of
the error made by the arm in the measuring process of the
three characterization spheres of the upper platform. Its
expression as the quadratic sum of the diameter errors
carried out by the arm in the measuring of the three char-
acterization spheres is presented in Eq. 14, together with
the distance error.

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ ER1

2 þ ER2
2 þ ER3

2
q

; ð14Þ

with p = 2 gauge positions, q = 4 measured spheres per
platform positions (spheres 3/5/7/9), and r = 6 platform
positions.

As mentioned before, through the IMP mathematical
model and the capacitive sensor readings, the HTM that
links the coordinate reference system of the IMP upper
platform with the global coordinate reference system of
the platform for each measured point and position of the
platform can be obtained. By doing so, a point should
have the same coordinates expressed in the global coor-
dinate reference system, regardless of the platform posi-
tion, and the point error can be calculated as the differ-
ence of a point coordinates between two positions of the
platform, expressed in the IMP global coordinate refer-
ence system (see Eq. 10). The inclusion of the single
point error term in the objective function together with

Fig. 6 Scheme of the
optimization procedure
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the distance error results in the expression of objective
function 3 as shown in Eq. 15.

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ EPi; j;l

2
q

; ð15Þ

with p = 2 gauge positions, q = 4 measured spheres per
platform positions (spheres 3/5/7/9), and r = 6 platform
positions.

The last quality error parameter to be included in the ob-
jective functions of the optimization procedure is the com-
bined standard deviation of the captured points of all the
spheres, the gauge, and the platform positions, expressed in
the IMP global coordinate reference system. This term allows
to evaluate the measurement repeatability. Therefore, the ob-
jective function 4 is formulated combining a minimization of
the distance error between spheres centers expressed in the
platform GCS and a reduction of the combined standard de-
viation. This function evaluates the behavior of the arm in
both, its volumetric precision and point repeatability, accord-
ing to Eq. 16.

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ σCombijl

2

q
: ð16Þ

Other possible objective functions included in the parame-
ter optimization procedure, shown in Eqs. 17 to 20, combine
the different error quality parameters presented in Sect. 2.3.
For all the defined objective functions, the optimization pro-
cedure will be carried out with p = 2 gauge positions, q = 4
measured spheres per platform positions (spheres 3/5/7/9),
and r = 6 platform positions.

Objective function 5

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ EP2

i; j;l þ ER2
1 þ ER2

2 þ ER2
3

q
ð17Þ

Objective function 6

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ σ2Combijl þ ER2

1 þ ER2
2 þ ER2

3

q
ð18Þ

Objective function 7

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ EP2

i; j;l þ σ2
Combijl

q
ð19Þ

Objective function 8

Φ ¼ ∑
r

l¼1
∑
p

i¼1
∑
q

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di; j;k;l−Dn; j;k;l
� �2 þ EP2

i; j;l þ ER2
1 þ ER2

2 þ ER2
3 þ σ2Combijl

q
ð20Þ

The results obtained for the evaluation quality parameters
corresponding to the application of the identified parameters
over the gauge positions used in the procedure by the eight
objective functions shown in Eqs. 13 to 20 are presented in
Table 3.

Reviewing the quality parameter values obtained for the
evaluation of the different objective functions (1–8), it is clear-
ly observed that the optimization procedure minimizes the
distance error in all the objective functions since it is included
as an error term to be minimized in all of them. The best
results for the mean distance error are observed for the objec-
tive functions 1, 3, 5, and 7 with values of 0.004080 mm,
0.006353 mm, 0.006946, and 0.006901 mm, respectively.
These values can be considered good since the volumetric
precision indicated by the manufacturer of the arm Faro
Platinum is ± 0.043 mm. Additionally, for the objective func-
tions 3, 5, and 7, the best results for the point error values were
obtained: 0.028136 mm for objective function 3,
0.030079 mm for objective function 5, and 0.028391 mm
for objective function 7. The same case was observed for the
results of the standard deviation in the coordinates X, Y, and Z
with values 0.044889 mm, 0.042732 mm, and 0.033180 mm
for objective function 3; 0.036564 mm, 0.041649 mm, and
0.027507 mm for objective function 5; and 0.041649 mm,
0.038958 mm, and 0.030951 mm for objective function 7, in
which the repeatability value provided by the manufacturer
was 0.030 mm. The greater values of the standard deviation
are observed in the X coordinate, and the lower values were
obtained in the Z coordinate. Although the combined standard
deviation was not included in objective function 3 and point
error was not included in objective function 5, it is noteworthy
to highlight that the values for the quality parameters obtained
were good in both cases, despite not being considered in the
optimization.

Regarding the diameter errors in the measurement of the
upper platform characterization spheres of the arm, the
optimization procedure reduces the corresponding quality
parameter in the cases of the objective functions 2, 4, 6,
and 8, where they are included as a term in the function,
showing the best results in the case of the optimization
with the objective function 2. In this scenario, the diameter
error values of the characterization spheres 1, 2, and 3 of
0.011953 mm, 0.0103641 mm, and 0.008445 mm, respec-
tively, are compared to the initial values of 0.301191 mm
for sphere 1, 0.219957 mm for sphere 2, and 0.276728 mm
for sphere 3.

In objective functions 2, 4, 6, and 8, where the diameter
error of the spheres is reduced, such good results are not ob-
served for the rest of the mentioned quality parameters. Then,
it can be concluded that the objective functions that better
worked in the parameter identification procedure are functions
3, 5, and 7, which include combinations of distance error,
point error, and combined standard deviation, where objective
function 7, which includes all three error parameters, showed
a slight better behavior. The values of the identified kinematic
parameters for the objective function 7, based on the initial
values of Table 1 for all the captured positions, are shown in
Table 4.
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3.4 Evaluation of the identified parameters

The parameter optimization process concludes with an evalu-
ation of the behavior of the arm with the set of the identified
optimum parameters in one or several positions different from
the ones used in the optimization procedure. In this case, the
gauge Diag45Downward_Orientation (Fig. 7) for position 4
of the platform was chosen as our test position, since this is a
diagonal position (45°) that allows an overlap of the working
volume in two octants of the arm. For this position, 6, 7, or 8
points of the spheres 3, 5, 7, and 9 were probed, analogously
to the procedure performed in the optimization by turning the

Table 3 Quality parameters obtained from the optimization procedure for objective functions 1–8

Objective
function

n-iter Mean distance error (mm) Max distance error (mm) Min distance error (mm) Mean point error (mm) StdDev X (mm)

Initial value 1 16.925689 37.059498 0.932401 5.352900 10.985992

1 3104 0.004480 0.010466 0.000903 0.107532 0.221863

2 349 0.023040 0.046710 0.002468 0.367437 0.505831

3 552 0.006353 0.013552 0.000378 0.028136 0.044889

4 15,284 0.077099 0.137631 0.002994 0.047601 0.114761

5 320 0.006946 0.014993 0.000798 0.030079 0.036564

6 958 0.024820 0.069164 0.000340 0.209552 0.239164

7 494 0.006901 0.012825 0.002808 0.028391 0.042739

8 5308 0.079938 0.138188 0.005267 0.047135 0.113303

Objective
function

n-iter StdDev Y (mm) StdDev Z (mm) Error ER 1 Error ER 2 Error ER 3

Initial value 1 11.233169 11.179399 0.301191 0.219957 0.276728

1 3104 0.121318 0.162483 0.162725 0.104396 0.145396

2 349 0.712134 0.584222 0.011953 0.010364 0.008445

3 552 0.042732 0.033180 0.163009 0.105417 0.147457

4 15,284 0.116623 0.142431 0.093783 0.043371 0.018735

5 320 0.041649 0.027507 0.161034 0.103399 0.146935

6 958 0.376967 0.250960 0.024254 0.009155 0.001549

7 494 0.038958 0.030951 0.163325 0.105565 0.147043

8 5308 0.115127 0.135399 0.095449 0.044958 0.019288

Fig. 7 Test position Diag45Downward_Orientation used in the
evaluation process

Table 4 Identified values for the model parameters by L-M algorithm
(objective function 7)

Joints θi (°) αi (°) ai (mm) di (mm)

1 4.466953 89.954349 42.703906 233.681508

2 134.795225 89.755459 0.752060 1.261773

3 4.319706 − 90.136722 28.861675 591.412029

4 84.616967 − 89.525964 29.203858 0.898744

5 180.113957 − 89.943932 28.432982 591.443186

6 144.622085 − 88.283833 31.217075 − 6.423540
7 38.352903 0.000000 − 0.330134 243.816002
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platform to position 4. The quality parameters used in this test
position were equal to the ones used in the parameter identi-
fication procedure: distance error, single point error, standard
deviation, and diameter error of the upper platform character-
ization spheres.

The results of the quality parameters obtained for the set of
optimum parameters in the test position of the eight objective
functions according to Eqs. 13 to 20 are shown in Table 5.

As it can be observed in the results shown in Table 5, for
the evaluation of the test position, we obtained values in the
same order of magnitude that of those of the optimization
positions for the mean distance errors, point error, and stan-
dard deviation, for the objective functions that showed better
results in the optimization procedures 3, 5, and 7. Observing
objective function 7, we obtained values for the mean distance
error of 0.006101 mm, point error of 0.028691 mm, and stan-
dard deviation in the X coordinate of 0.042039 mm, Y coor-
dinate of 0.040158 mm, and Z coordinate of 0.031351 mm.
The maximum distance error in this objective function 7 was
0.012625 mm, which is below 0.012825 mm, the maximum
value obtained in the identification procedure.

4 Conclusions

In this work, the use of an indexed metrology platform for
the kinematic parameter identification procedure of an

articulated arm coordinate measuring machines was pre-
sented. The kinematic parameter optimization process
was carried out by the Levenberg-Marquardt method as
the optimization algorithm, which purpose is to determine
the parameter values that minimize the measurement arm
final error in all the captured positions. Moreover, the
Denavit-Hartenberg algorithm was used to model the kine-
matics of the AACMM and to deal with the developed
parameter identification procedure. After the definition
and measurement of the spheres in the captured positions
corresponding to two diagonal test positions and six rotat-
ing platforms positions, the determination of the quality
parameters and error terms to be included in the objective
functions was done. The objective functions that obtained
the best quality parameter values were 3, 5, and 7 where
the error terms to be minimized included the distance error,
the point error, and the standard deviation in X, Y, and Z
coordinates, in which these terms were used individually or
combined. In the case of the mean distance error, the
values obtained were 0.006353 mm (OFunction 3),
0.006946 mm (OFunct ion 5) , and 0.006901 mm
(OFunction 7), which are good values considering the vol-
umetric precision of ± 0.043 mm indicated by the manu-
facturer of the Faro Platinum Arm used in this research
work. In the same way in the case of the standard deviation
results in the X, Y, and Z coordinates with values of
0.044889 mm, 0.042732 mm, and 0.033180 mm for

Table 5 Evaluation results with the set of identified parameters from the optimization procedure for the test position of the ball bar gauge

Objective
function

n-iter Mean distance error (mm) Max distance error (mm) Min distance error (mm) Mean point error (mm) StdDev X (mm)

Initial value 1 16.560583 28.719948 0.076849 10.734906 9.607196

1 3104 0.004380 0.011066 0.000797 0.107732 0.221663

2 349 0.023240 0.047710 0.002561 0.366437 0.505731

3 552 0.005853 0.012452 0.000413 0.029036 0.044389

4 15,284 0.077999 0.138931 0.002991 0.047901 0.116461

5 320 0.005546 0.015693 0.000816 0.030179 0.035664

6 958 0.025320 0.069064 0.000183 0.210052 0.238664

7 494 0.006101 0.012625 0.002799 0.028691 0.042039

8 5308 0.079638 0.137988 0.005427 0.046235 0.112103

Objective
function

n-iter StdDev Y (mm) StdDev Z (mm)

Initial value 1 7.827397 7.827397

1 3104 0.121118 0.160983

2 349 0.711834 0.583822

3 552 0.044232 0.032980

4 15,284 0.116423 0.142731

5 320 0.040549 0.027207

6 958 0.378567 0.251360

7 494 0.040158 0.031351

8 5308 0.114927 0.134099
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objective function 3, 0.036564 mm, 0.041649 mm, and
0.027507 mm for objective function 5 and 0.042739 mm,
0.038958 mm, and 0.030951 mm for objective function 7,
where the repeatability value provided by the manufacturer
was 0.030 mm. The last quality parameter evaluated, the
error in the upper platform characterization spheres,
showed the best results values in the evaluation with the
objective functions 2, 4, 6, and 8 where it is included as an
error term. Nevertheless, the results with these objective
functions were not as good for the rest of the quality pa-
rameters, so their evaluation in the gauge test position was
not considered. The objective function 7 which includes
the three parameters of distance error, point error and com-
bined standard deviation is the function that showed the
best behavior, but not with much difference with respect
to objective functions 3 and 5.

To validate the results in this optimization procedure, the
AACMM optimum parameters obtained in the identification
procedure were evaluated with a gauge position different from
the ones used in the optimization. In this case, there were
observed values in the same magnitude order than those in
the optimization positions for mean distance errors, point er-
ror, and standard deviation for the objective functions 3, 5, and
7, which showed the best results in the optimization proce-
dure. Particularly, in objective function 7, we obtained values
of mean distance error of 0.006101 mm, point error of
0.028691 mm, and standard deviation in coordinates X
(0.0042039 mm), coordinate Y (0.040158), and coordinate Z
(0.031351 mm). The maximum distance error in objective
func t ion 7 was 0 .012625 mm, which i s be low
0.0122825 mm, the maximum value obtained in the identifi-
cation procedure. Therefore, the results obtained in this work
allow to validate the use of the indexed metrology platform in
the kinematic parameter identification procedure of articulated
arm coordinate measuring machines. Moreover, one of the
main advantages to be highlighted of the indexed metrology
platform is the ability to express points in a global coordinate
reference system, which enables the evaluation of a greater
working volume of the measuring arm without the need to
physically probing these points, thus reducing the time and
physical effort needed to carry out these types of procedures
without compromising the reliability of the results. Finally, the
time needed to carry out these types of verification or calibra-
tion procedures for AACMMs was reduced from approxi-
mately 1 day to only 3 h by eliminating the necessity of mov-
ing the support of the calibrated gauge object around the mea-
suring instrument.
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