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Abstract
This paper addresses the use of two algorithms based on symbolic dynamics analysis of vibration signal for fault diagnosis
in gearboxes. The symbolic dynamics algorithm (SDA) works by subdividing the phase space described by the Poincare plot´
into several angular regions; then, a symbol is assigned to each region. The probability distributions generated by the set of
symbols are considered as features for classification of faults in a gearbox. The peak symbolic dynamics algorithm (PSDA)
is a variant that extracts a sequence of peaks from the vibration signals and then performs the phase-space subdivision
and symbol coding. A gearbox vibration signal dataset is analyzed for classifying 10 types of faults. Fault classification is
attained using a multi-class support vector machine. The highest accuracy attained using k-fold cross-validation is 100.0%
for load L3 with SDA and 100% with load L2 with PSDA. The accuracy considering all signals in the gearbox dataset is
99.2% with SDA and 99.8% with PSDA. The algorithms proposed have the advantage of being simple, accurate, and fast,
and they could be adapted for online condition monitoring.

Keywords Symbolic dynamics · Fault diagnosis · Rotating machines · Poincaré plots

1 Introduction

Gearboxes are mechanical components of rotating machines
that enable torque transmission. The configuration of such
components is complex and they comprise mainly gears,
bearings, and shafts. Faults in gearboxes can occur due
to several factors. In particular, strong plastic deformation,
lack of lubrication, wear, corrosion, and additionally design
errors represent another reason involved in fault develop-
ment. In consequence, several research efforts have been
performed with the objective of developing methods that
can detect faults in rotating machines with high accuracy
and reliability [7, 61]. Detection and diagnosis of faults
in gearboxes are tasks usually performed based on acqui-
sition and analysis of vibration signals [30]. The standard
method performs fault classification using machine learn-
ing techniques [42, 45]. Accomplishing this task requires
the extraction of useful features from the recorded signals
using classical signal analysis methods either in time [25]
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or frequency domains, and time-frequency representation
algorithms [1, 28, 57].

Data-driven fault detection and classification are
performed by using extracted features as inputs of
high-performance machine learning techniques [36]. For
instance, Li et al. [29] addressed the problem of fault
classification in gearboxes using vibration measurements;
they use a Gaussian-Bernoulli deep Boltzmann machine
that performs fault classification in gearboxes and bear-
ings using a statistical features set. Such features set is
estimated from different representations of the vibration sig-
nal including the original time-based representation, their
frequency representation, and even time-frequency repre-
sentations obtained using the Fourier transform or the
wavelet transform. He et al. [16] reported an application
concerning the diagnosis of faults in a gearbox transmis-
sion chain using an unsupervised approach known as deep
belief networks, where optimization of structural param-
eters is attained using a genetic algorithm; the approach
shows improvements with respect to other machine learning
techniques for classifying faults in gearboxes and bearings.
Cerrada et al. [8] developed a system that enables diagno-
sis of multi-class faults in spur gears; they considered a
selected set of features extracted from vibration signal using
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frequency and time based analysis. Ranking of such fea-
tures using genetic algorithms enables faults classification
with a random forest algorithm. Sanchez et al. [45] reported
a methodological framework for multi-fault classification
in rotating machinery using K-nearest neighbors and ran-
dom forest; the ten most relevant features are selected using
ranking techniques including chi-square, the ReliefF algo-
rithm, and the information gain algorithm. This method is
useful for online implementation as the extraction of fea-
tures is developed in time domain. Praveenkumar et al. [42]
used support vector machines (SVM) to classify faults in an
automobile gearbox; they extracted a set of statistical fea-
tures from the times series representation of the vibration
signal and used it for fault classification with SVM. More
recently, Medina et al. [32] also applied SVM with a differ-
ent approach; in this research, Poincaré plots are the source
of features enabling the classification of faults in gearboxes
with an error correcting output codes (ECOC)-based multi-
class SVM [12, 56]. Such application was inspired by the
work of Brennan et al. [4] and Piskorski and Guzik [40]. A
generalization of the Poincaré plot is considered where the
lag between samples took an arbitrary value; this had the
advantage of considering a time delay embedding system
useful for modeling chaotic time series [55].

The underlying assumption when using classical feature
extraction methods is that the source of acquired signals
corresponds to a linear system satisfying stationary and
periodicity properties [27]. Unfortunately, vibration signals
in rotating machinery include sub-harmonics, chaotic
features, and super-harmonics [9] due to the non-linear
properties of the mechanical system. Nonetheless, some
works in literature do use non-linear models; for instance,
in [35], the authors reported the non-linear dynamic model
for three bevel gears.

In rotating machinery where non-linear models are the
most accurate, the non-linear dynamics methods and chaos
theory are tools useful for analysis of vibration signals
[48, 59]. Previous research within this context has reported
investigations incorporating chaos and fractal approaches
aimed at the analysis of the recorded signals. As an
example, Sun [51] studied the evolution of faults in non-
linear rotatory mechanical systems by using the largest
Lyapunov exponent (LLE). Janjarasjitt et al. [20] reported
the utilization of the correlation dimension (CD) to show
the statistical differences of a brand new roller element
with respect to another roller element close to failure based
on the vibration signal analysis. More recently, Soleimani
and Khadem [48] addressed the use of phase space for the
analysis of gearboxes and ball bearings status; additionally,
authors also proposed to use several features aimed at
damage detection. They used features such as the largest
Lyapunov exponent, the correlation dimension, and the
approximate entropy.

A non-linear dynamical system can be analyzed by
studying symbolic dynamics attained by phase-space
topological partitions [5, 14]. In particular, symbolic signal
processing is a method useful for transforming the recorded
signals into sequences of symbols to enhance the features,
discarding unnecessary details. Gupta and Ray [15] applied
symbolic dynamics techniques for anomalies detection;
they proposed a wavelet-based partitioning approach of
the phase-space for extracting symbol sequences from the
recorded time series. They performed the wavelet analysis
after a careful selection of the necessary parameters. The
resultant wavelet coefficients are represented as a one-
dimensional signal at selected time and shift position. This
scale series is used for generating the symbol sequence
using a maximum entropy partition approach. The method
is known as symbolic dynamic filtering (SDF) and one
of the applications is early detection and prognosis of
anomalies in several systems. Rao et al. [43] compared
SDF with other methods for anomalies detection; in this
research, the analytic signal is processed for extracting the
symbol sequence and the scheme for space partitioning
is extended to bi-dimensional data in order to generate
symbolic representations of images. Space partitioning of
the analytic signal relies on the application of the Hilbert
transform. A D-Markov machine, operating as a finite state
automata, is used for representing statistics of the symbol
sequence. The 2D methodology for pattern detection using
SDF is also applied to 2D wavelet coefficient datasets
for anomaly detection. Further details of the approach
using SDF are reported in [49]. An additional application
of SDF was reported by Subbu et al. [50], where the
evolution of fatigue damage is detected and quantified by
using 2D SDF on images representing the surface of test
specimens made of a polycrystalline alloy; they compared
these results with respect to a similar analysis performed
on 1D ultrasound signals simultaneously recorded from the
same specimen, showing close agreement. Akintayo and
Sarkar [2] reported a modification of the SDF method,
corresponding to an algorithm for hierarchical symbolic
dynamics filtering (HSDF) that is useful for modeling time
series that are non-stationary.

Applications of symbolic dynamics have been reported
for different research domains, as addressed by Daw
et al. [11] which includes works in fields such as
astrophysics, chemistry, geophysics, mechanical systems,
biology, and telecommunications. For instance, Sanjith
et al. [46] addressed fault detection of bearings using
vibration signals; the time series vibration signal is
converted into a symbolic sequence, and then, by using
the generated symbolic data, a dictionary is constructed.
The vibration signal for the no-load case is used as a
reference for detecting the bearing in healthy or faulty
condition. The comparison with respect to the reference

Int J Adv Manuf Technol (2019) 104:2195–22142196



data is estimated using the Common Signal Index. The
classification accuracy varies from 91.5 to 97.1%. de Paula
et al. [39] used symbolic dynamics for flow patterns
identification in a bank of tubes; the symbolic dynamics of
the turbulent cross flow over tube banks can be useful for
identifying patterns contained within the data. The symbolic
dynamics approach was performed on the experimental time
series, by using histograms according to a binary alphabet.
The turbulent cross flow over a tube bank of five rows of
circular cylinders placed in an aerodynamic channel was
studied for validating the proposed approach. Considering
more complex systems, Xu and Beck [58] performed an
investigation of share price returns using a simple symbolic
description. The approach considers two and four symbols
for coding the signals. The sequence of symbols is analyzed
using the spectrum of Rényi entropies. The share price
returns showed a non-Markovian evolution in time.

An important number of applications of symbolic
analysis have been reported in the neuro-science and
cardiovascular physiology literature [41]. Kurths et al.
[26] used symbolic dynamics to study the variability of
heart rate intervals extracted from electrocardiographic
signals; authors used the symbolic dynamics for quantifying
the possibility of suffering ventricular arrhythmia and
eventually sudden cardiac death. The symbolic description
uses four symbols for representing the amplitude of
beat-to-beat intervals. The symbols series are analyzed
using generalized Rényi entropy [44]. Valencia et al. [54]
studied whether symbolic transformations of time series
extracted from electrocardiographic signals (RR and QT
time series) could be useful for separating ischemic dilated
cardiomyopathy (IDC) patients with respect to control
(HC) subjects. The method attained an accuracy of 80%
for separating both compared groups. Kim et al. [23]
used the subdivision of the Poincaré plot in the context
of electrocardiogram signal processing aimed at detection
of cardiac abnormalities; in this application of symbolic
dynamics, the goal is the detection of neurocardiogenic
syncope after the analysis of heart rate signals extracted
from electrocardiograms acquired during the head-up tilt
test. The Poincaré plot is subdivided using lines parallel
to the identity line y = x. The subdivision considers six
regions and each region is assigned a symbol. The symbol
sequences generated are analyzed using the approximated
entropy showing their usefulness for abnormality detection.

In this work, a gearbox vibration signal dataset is
acquired in a test rig under different conditions of load,
motor speed, and faults related to the normal class and nine
different fault configurations considering tooth breakage,
wear, crack, and chafing. Some faults were configured in
the pinion, other ones in the gear, and one both combined.
Additionally, balanced data is considered, that is, the dataset
has the same amount of samples for different loads and

motor speed under normal or fault condition. Then, these
data are analyzed with the goal of attaining the multi-class
classification of such faults. Two methods for extracting
features from vibration signals in gearboxes by using SDA
and PDSA on the Poincaré plot are proposed. The extracted
features are used for gearbox faults classification with
a multi-class SVM [12, 56]. Both methods exploit the
non-linear nature of the gearbox mechanical system [35]
for representing their symbolic dynamics aimed at faults
classification. The Poincaré surface of section [5, 14] is
obtained by plotting the measured vibration signal in a
phase space of lagged coordinates. We have considered
a modification of the method reported by Kim et al.
[23]; in particular, the symbol sequence is obtained by
partitioning the phase space of lagged coordinates into a
set of angular regions. Each of the regions is identified
with a symbol extracted from the available alphabet. The
probability distribution generated by data from each symbol
is used for attaining the classification with the ECOC-SVM
algorithm. The proposed methods are simple and highly
accurate for classification of faults in gearboxes attaining
classification accuracies higher than 99.0%.

2 Theoretical background

2.1 Poincaré plot

The Poincaré plot is formally the intersection of a periodic
orbit of a continuous dynamical system, in the state space,
with a subspace of lower dimensions [53]. Such Poincaré
section is the projection of the data in the plane spanned
by the vectors defined by [x(t), x(t + τ)] that allows
to obtain the Poincaré map or plot of the dynamical
system [9]. In vibration signal analysis, the Poincaré plot
is obtained by plotting each sample versus the next. The
Poincaré plot can be generalized by setting an arbitrary
lag τ between samples. The Poincaré plot has been mainly
used as a graphical tool for describing the mechanical
dynamics of chaotic nature in gearboxes and bearings, either
in normal operation or in faulty conditions [10, 37, 38].
However, in applications concerning the detection of heart
diseases based on electrocardiographic signal analysis, the
Poincaré plot has been used for extracting useful features
for abnormalities detection [24].

2.2 Support vector machines

The usual approach for data-driven fault classification
involves three stages: the first stage is devoted to feature
extraction. The second stage is optional and it is related
to features selection; the fact is that some features have
low sensitivity to fault evolution, and in consequence, these
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Fig. 1 Graphical representation of the phase space partitioning
showing the obtained symbolic dynamics. Given the partitioning p =
{P1, P2, P3, P4}, the trajectory (x0, x1, x2, x3, x4, ...) is represented by
the symbol sequence (s0, s1, s1, s3, s2, ...) = (1, 2, 2, 4, 3, ...)

features could become irrelevant or redundant for fault
detection and diagnosis and features selection could be a
necessary stage [34]. The third stage is fault classification
using machine learning algorithms such as SVM [21, 60]
and artificial neural networks (ANN) [36].

SVMs are machine learning algorithms useful for binary
classification where an optimal hyper-plane between classes
is estimated [31]. Multi-class versions of SVMs are also
available to construct the decision functions simultaneously
for all classes [56]. An alternative solution consists in sub-
dividing the problem of multi-class classification in order to
solve instead several simple binary classifications. Combi-
nation of such binary classifiers using the ECOC approach
[12] enables multi-class classification. Discrimination of
one class against the rest corresponds to the one-versus-all
ECOC strategy. However, other strategies are also available.
In particular, the one-versus-one method improves the per-
formance of classification in problems with several classes.

2.3 Symbolic dynamics

Reconstruction of chaotic systems from noisy signals using
a symbolic approach is a feasible method as shown in [52].

According to this theory, a dynamical system denoted f :
Q→Q with time evolution (x0, x1, ...) can be described by
a sequence of symbols. This type of dynamical description,
requires introducing a partition p = {P1, P2, ..., Pr}
subdividing the state space Q into r disjoint sets. Each
subset is represented by a symbol si ∈ {1, 2, ..., r} = S.
An orbit in the state space is represented by the sequence
of visited symbols s = {s0, s1, ...}; this is shown in Fig. 1.
The symbol sequence is considered as a transform for
the input data that is able to retain important temporal
information [11]. The symbolic dynamics is related to
Poincaré maps where a multi-dimensional phase-space
trajectory is intercepted with a plane to represent the simple
Poincaré map [17]. The heuristical idea behind the symbolic
representation is introducing a coarse re-sampling of the
Poincaré map. Therefore, any interception of the phase-
space trajectory located within a sub-region of the Poincaré
map is known as “a cell” and it is assigned the same
symbol; this is illustrated in Fig. 2 where in (a), the phase-
space trajectories for the Lorenz attractor [13] intercept
a plane for constructing the Poincaré plot. In (b), the
Poincaré plot is shown. As the plane space can be arbitrarily
discretized into several “cells,” the points of the Poincaré
plot located in each “cell” can be represented by the same
symbol.

Even when the symbolic dynamics has a well established
theoretical basis, in practice, the generation of partitions
of the Poincaré plot for attaining a trajectory in phase
space associated with a unique symbol sequence is only
feasible for certain systems [52]. In consequence, practical
applications of symbolization have been mainly heuristic
and empirical.

3Methodology

The test rig for signal acquisition is located at the Rotating
Machinery Laboratory of Universidad Politécnica Salesiana

Fig. 2 a The phase-space trajectories for the Lorenz attractor are intersected with a plane for obtaining the Poincaré map. b The intersection points
between the phase-space trajectories and the plane are represented by the discretized Poincaré plot
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Fig. 3 Vibration analysis
laboratory at Universidad
Politécnica Salesiana, Cuenca,
Ecuador

from Cuenca, Ecuador. Such a test rig is shown in Fig. 3.
An induction motor model Siemens 1LA7 090-4YA60, 2
Hp for 1.1 kW is powered by three-phase electric line
of 220 V at 60 Hz. This motor is used for providing
rotational motion. The nominal speed of this motor has
been set to 1650 rpm. The mechanical motion produced
by the motor is transferred to one-stage gearbox where
several gear faults are incorporated. A magnetic brake
system connected to the output of the gearbox through a
pulley is used for loading the motor. A diagram showing the
components of the test rig used in this research is presented
in Fig. 4.

Fig. 4 Schematic of the experimental test bed for simulation of faults
in rotating machinery

For this research, different break loads were implemented
using the magnetic brake. Such loads were 0.83 Nm (L1),
4.19 Nm (L2), and 7.54 Nm (L3). Hence, a set of three
variable speeds (720–1080 rpm, 300–720 rpm, and 480–900
rpm) and three different constant speeds (480, 720, and 900
rpm) were generated using a variable-frequency drive. The
length of each recorded signal was acquired during 10 s at a
sample frequency of 50 kSamples/second. The acquisition is
performed with 24-bit resolution after processing the signals
with an anti-alias filter. Ten different fault modes were
configured in the gearbox components including the healthy
condition as described in Table 1. Each fault mode included
up to a pair of faulty elements. The configured faults for
the gearbox elements are shown in Fig. 5. The healthy
(normal) condition is denoted as P1. Incipient faults are
denoted as P2 and P3. A fault is considered incipient when
symptoms of malfunction are just starting to appear; the
diagnosis of incipient faults is very important in industry for
reducing costs and risks for human operators. Four moderate
faults are denoted as P4, P5, P7, and P9. Two severe faults
are also included: P6 and P8, and finally P10 is a multi-
fault. Several combinations of test-rig operation parameters

Table 1 Gear fault conditions

Label Pinion, Z1 Gear, Z2

P1 Normal Normal

P2 Chafing tooth Normal

P3 Tooth wear Normal

P4 25% tooth breakage Normal

P5 50% tooth breakage Normal

P6 100% tooth breakage Normal

P7 Normal 25% crack

P8 Normal 100% crack

P9 Normal 50% chafing

P10 25% tooth breakage 25% crack
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Fig. 5 Simulated faults a 25% tooth breakage (P 4), b 50% tooth breakage (P 5), c 100% tooth breakage (P 6), d 25% gear crack (P 7), e 100%
gear crack (P 8), f tooth wear (P 3), g tooth chaffing (P 2), h 50% tooth chaffing (P 9), and i gear set with simulated faults

were considered for acquiring 900 vibration signals in total.
Each fault condition includes 90 signals where each load is
represented by 30 vibration signals.

3.1 Feature extraction

3.1.1 Phase map and lagged Poincaré plot

In non-linear dynamical systems, the intersection of the
state space trajectories with the Poincaré section is known
as the phase map [9]. In the case of the test rig described
previously, the observation measurement is the vibration
signal represented by time series x(t) that measures the
instantaneous displacement in the horizontal direction. A
fragment of the vibration signal for a healthy gearbox (P 1)
is shown in Fig. 6a. The phase map is a plot of the time
derivative dx(t)/dt in function of x(t) and the gearbox per-
forms a quasi-periodical motion. In consequence, the phase
map forms a closed curve as time evolves. Such a close
curve is shown in Fig. 6b representing a fragment of
signal shown in Fig. 6a. In Fig. 6c, a fragment of signal
extracted from a faulty gearbox from the class P10 with
faulty pinion Z1 and faulty gear Z2 is shown. In Fig. 6d, the

phase map for the signal representing the faulty class P 10 is
shown.

In several applications, the Poincaré plot is obtained
by plotting the sample x(t + 1) versus x(t) [4, 22, 40].
In this research, a generalization of the Poincaré plot is
considered; hence, rather than plotting two consecutive
samples of x(t), we are plotting the sample x(t + lag) as
a function of x(t), where lag ≥ 1 is a lag in samples
(known as lagged Poincaré plot [24]). In this application,
the parameter lag enables a non-linear warp of the phase
map. This is shown in Fig. 7a where the phase map shown
in Fig. 6b appears rotated and deformed using a lag value
lag = 11 samples. As we are interested only in the location
of points within the Poincaré plot, the trajectory of points
can be ignored and we obtain the Poincaré plot shown
in Fig. 7b and d. The Poincaré plot is shown considering
lag = 11. The Poincaré plot for the healthy class P 1 is
different with respect to the class P10. This suggests that the
shape and location of points (Figs. 6 and 7 in the Poincaré
plot) can be useful for fault detection. Selection of the lag
parameter for optimal separation between fault classes has
been previously reported [32]. The lag parameter should be
greater than 10 samples and it can be chosen as the lag
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Fig. 6 Phase maps. a Vibration signal from a gearbox of the healthy class P 1. b Phase map for the vibration signal from class P 1 obtained by
plotting dx(t)/dt versus x(t). c Vibration signal from a gearbox of the faulty class P 10. d Phase map for the vibration signal from class P 10

representing the first zero-crossing for the auto-correlation
sequence of x(t). In particular, for this gearbox dataset, the
optimal value for this parameter is lag = 24.

3.1.2 Peak detection

One of the stages of the peaks symbolic dynamics algorithm
is the peak detection as shown in Fig. 8. The goal is to detect
the peaks separated by at least a lagpeak samples. With this
goal, the following steps are performed:

1. The absolute value for the vibration signal time
series ‖x(t)‖ is analyzed and the peaks satisfying the
condition of being separated by at least lagpeak samples
are retained. This stage generates a sequence of samples
denoted as peaks signal vp(t) that has a smaller size
than the original signal. The sequences of peaks for
signals of the healthy class P 1 and the faulty class
P 10 are shown in Fig. 9a and c. The peak signal is
shown overlaid on the original signal. A portion of 1000
samples of the original signal is shown. The peaks on

the original signal that are not selected do not satisfy
the requirement of being separated from the previous
peak by at least lagpeak samples. This stage enables
the compression of signals by reducing its length to
the size of a vector including only the peaks detected.
The parameter lagpeak defines the minimum distance
between peaks extracted from the vibration signal. This
parameter can be set as the lag, where the first zero-
crossing of the auto-correlation sequence is located.
The selected value lagpeak = 24 is used for extracting
the sequence of peaks.

2. Construction of the Poincaré plot using the time series
vp(t). The Poincaré plot is constructed with the set
of points defined by each pair of consecutive peaks
detected. The Poincaré plot for class P 1 is shown in
Fig. 9b and the Poincaré plot for the faulty class P 10
is shown in Fig. 9d. The lag used for the Poincaré plots
is lag = 1. The shape and distribution of points in the
2D space of the Poincaré plot are different for both
classes.
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Fig. 7 Lagged Poincaré plots. a Poincaré plot obtained by plotting
x(t+lag) versus x(t) for a lag value set as lag = 11. The plot represents
a vibration signal from a gearbox of the healthy class P 1. The plot also
shows the trajectories followed by points as time evolves. b Poincaré

plot showing only the location of points. c Lagged Poincaré plot for the
vibration signal extracted from class P 10 showing the temporal tra-
jectories of points. d Lagged Poincaré plot for signal from class P 10
showing only the location of points

3.1.3 Symbolic dynamics algorithm

A simple method known as symbolic dynamics algorithm
(SDA) for feature estimation is proposed (see Fig. 8). The
algorithm includes the following steps:

1. The first step consists in plotting the Poincaré map
using a lag value of 24 as shown in [32].

2. The phase-space spanned by the Poincaré plot is
subdivided into 12 angular regions as shown in Fig. 10.

3. Each region is assigned a symbol represented by integer
numbers {0, 1, 2, 3, ..., 11} as shown in Fig. 11.

4. The symbolic representation of the vibration signal is
processed for obtaining the histogram. This is simply
done by counting the number of points on each region.

Fig. 8 Two proposed algorithms
are shown. The upper part shows
the peaks symbolic dynamics
algorithm. The lower part in
solid line shows the symbolic
dynamics algorithm. The PSDA
includes an additional stage
corresponding to the peaks
detection
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Fig. 9 Peaks extraction and Poincaré plots for the peaks sequences. a
Peaks sequence overlaid on the original vibration signal extracted from
healthy class P 1. b Poincaré plot for the peaks sequence extracted
from a signal of the class P 1. The lag used for the Poincaré plot is

lag2map = 1. c Peaks sequence overlaid on the original vibration signal
extracted from faulty class P 10. d Poincaré plot for the peaks sequence
extracted from a signal of the class P 10. The lag used for the Poincaré
plot is lag2map = 1

Fig. 10 Poincaré plot. The
phase-space is subdivided into
12 angular regions

Int J Adv Manuf Technol (2019) 104:2195–2214 2203



Fig. 11 Discretization of the
phase-space. Each of the angular
regions is assigned a symbol
between 0 and 11

An example of the symbol histogram for a vibration
signal is shown in Fig. 12.

5. All 12 elements in the histogram are considered as
features for fault classification.

3.1.4 Peak symbolic dynamics algorithm

A variant of this algorithm is also implemented based on the
Poincaré plot of the sequence of peaks extracted from the

vibration signal. The algorithm is known as peak symbolic
dynamics algorithm (PSDA) (see Fig. 8). The rest of this
algorithm includes the same steps of SDA.

3.2 Gearbox faults classification

The classification was performed in Matlab using multi-
class ECOC-SVM. The features considered for each signal
are the 12 elements in the histogram obtained using either

Fig. 12 Symbol histogram for a
gearbox vibration signal
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the SDA or the PSDA. Selection of SVM parameters
was performed using an empirical method. First, the
kernel type was selected as the one that provided higher
classification accuracy considering the rest of parameters
as default. The Gaussian or RBF kernel was selected
and for this type of kernel, the scale parameter (σ ) is
necessary. For selecting this parameter, an interval centered
at the default scale parameter calculated by the Matlab
software was considered. The scale parameter was varied
and the value retained provided the maximum classification
accuracy within this interval. Parameter C also known
as Box Constraint is a regularization coefficient that
controls the maximum penalty imposed on margin-violating
observations, and prevent overfitting. The default value for
this parameter is 1.0 and several values were considered;
however, there was not any improvement in classification
accuracy with respect to the default value. The Standardize
option was set to true such that the software function centers
and scales each column of the predictor data.

The k-fold cross-validation procedure was used to
accomplish the phases of training and testing of the SVM
based model. The use of this procedure is well proved to
obtain less biased models and, in consequence, more robust
models regarding the generalization capability, than other
methods such as a simple train/test split.

Two experiments for faults classification were per-
formed:

1. Experiment 1: the first experiment was performed
considering all vibration signals available in the dataset.
During the first classification experiment, the group
of 900 vibration signals was randomly partitioned into

10 equal sized subsets (10-fold) including 90 signals.
From the 10 subsets, one is considered as the test-set
for validating the trained model. The training set is
constructed with the rest of subsets. This training and
validation process is repeated 10 times performing the
validation each time with a different subset. The multi-
class SVM was trained using a Gaussian kernel with
σ = 0.87.

2. Experiment 2: in the second experiment, the classifica-
tion was performed considering the signals acquired at
a constant load: L1, L2, and L3. In this case, the dataset
at constant load included 300 vibration signals, includ-
ing 30 signals for each class. A 10-fold cross-validation
was performed.

Evaluation of the classification ability of the trained clas-
sifier considered several metrics [18]. The discriminator
metrics were based on the confusion matrix [47]; in par-
ticular, the accuracy or error rate is the evaluation metric
commonly used in practice for evaluating the generalization
capability of the classifier. In the case of binary classi-
fication, the correctness of a classification is evaluated
by calculating the number of instances correctly classified
(true positives (TP)), the number of instances that do not
belong to the class and were correctly recognized (true
negatives (TN)), and the instances that either were incor-
rectly assigned to the class (false positives (FP)) or were
not recognized as instances belonging to the class (false
negatives (FN)). These four calculated quantities are the
elements of the confusion matrix for the binary classi-
fier. In this research, however, we are dealing with multi-
class classifiers. The confusion matrix for the multi-class

Table 2 Metrics calculated
from the multi-class confusion
matrix

Metrics Formula Metrics description

Accuracy (acc) acci = tpi+tni

tpi+tni+fpi+f ni
Ratio of correct predictions over

the total number of instances evaluated

Error rate (err) erri = fpi+f ni

tpi+tni+fpi+f ni
Ratio of incorrect predictions over

the total number of instances evaluated

Sensitivity (sn) sni = tpi

tpi+f ni
Fraction of positive instances

that are classified correctly

Specificity (sp) spi = tni

tni+fpi
Fraction of negative instances

that are classified correctly

False negative rate(f nr) f nri = f ni

f ni+tpi
Fraction of positive instances

that are classified as negatives

False positive rate(fpr) fpri = fpi

fpi+tni
Fraction of negative instances

that are classified as positives

Precision(p) pi = tpi

tpi+fpi
Ratio of positive instances correctly predicted

over the total predicted instances of the positive class

F1-score(F1 − s) F1 − s = 2∗pM∗snM

pM+snM
Average harmonic mean

between precision and sensitivity
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classifier is a generalization of the binary case [47]. In the
case of M classes, each of them is denoted as Ci where
i ∈ {1, 2, ..., M} and it has the associated true positive
denoted tpi , false positive fpi , false negative f ni , and true
negative tni counts. Details of the calculation are presented
in [47]. In particular, from the multi-class confusion matrix,
several measures are calculated for each class. A set of cal-
culated metrics is presented in Table 2. Calculation of the
average metrics considering all classes can also be estimated
as shown in [18, 47].

The receiver operator characteristic (ROC) curve has
been used for evaluation of machine learning algorithms [3,
19]. In particular, the area under the ROC curve denoted
AUC is the metric commonly used as a measure of classifier
performance. The AUC has been shown by Huang and Ling
[19] that is a better metric than accuracy. The ROC was also
considered as a metric for analyzing the SVM performance
as a classifier.

4 Results

4.1 Cluster structure for the symbolic dynamic
algorithm

The analysis of the cluster structure, generated with the
estimated features extracted directly from the symbolic rep-
resentation obtained from the input signal, was developed
using the SDA, considering all vibration signals and also for
each of the recorded loads. The best results were obtained
considering each of the loads recorded separately. In partic-
ular, the best results are obtained with loads L2 or L3. In
this case, the load L3 was chosen for analyzing the clus-
ter structure. Visualization of the cluster structure is attained
by selecting only three features from the set of 12 fea-
tures. Considering n = 12 and taking combinations of three
elements provides 220 possible combinations; testing all
these combinations is very time consuming. However, as the

Fig. 13 Cluster structures comparison for load L3 of the gearbox
dataset. Class P 1 (the healthy class) is shown in light dots and faulty
class is represented using dark dots. a Cluster structures for classes P 1

and P 2. b Cluster structures for classes P 1 and P 3. c Cluster struc-
tures for classes P 1 and P 4. d Cluster structures for classes P 1 and
P 5
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Fig. 14 Comparison of cluster structures for load L3 of the gearbox
dataset. The class P 1 (healthy class) is shown in light dots and the
faulty class is shown in dark dots. a Cluster structures for classes P 1

and P 6. b Cluster structures for classes P 1 and P 7. c Cluster struc-
tures for classes P 1 and P 8. d Cluster structures for classes P 1 and
P 9

primary goal is to provide clues about the generated cluster
structure, in this case, only a few combinations were tested
for showing the cluster structure. Features 4, 5, and 8 were
selected and the scatter plot was used for comparing the
faulty classes P 2 to P 10 with respect to healthy class P 1.
The faulty classes are represented using dark dots while the
class P 1 is represented using light dots. The comparison
between class P 1 and P 2 is shown in Fig. 13a; the clus-
ter structure shows that class P 2 can be separated from the
normal class in the space generated for only three features.
The separation could be attained with a single surface. Sim-
ilarly, in Fig. 13b, the comparison between classes P 1 and
P 3 is shown; clearly, the class P 3 can be separated from
normal class P 1. Comparison of class P 1 with respect to
classes P 4 and P 5 is shown in Fig. 13c and d. The separa-
tion of clusters in the parameter space for both faulty classes
is apparent. However, separation is better between class P 5
and the normal class P 1.

In Fig. 14a and b, the comparison between class P 1 and
classes P 6 and P 7 is shown. The normal class has a cluster
well separated with respect to clusters for the faulty classes.
Similarly, the comparison between the normal class P 1 and
classes P 8 and P 9 is shown in Fig. 14c and d. Separation
between the clusters P 8 and P 9 with respect to the normal
cluster P 1 is evident. Finally, comparison of a combined
fault corresponding to class P 10 with respect to normal
class P 1 is shown in Fig. 15. A single surface could be
useful for separating the faulty clusterP 10 with respect to
the normal class P 1.

4.2 Results of experiment 1 with SDA

The first experiment concerning the fault classification was
performed considering all vibration signals. The average
accuracy obtained during the cross-validation was 99.2%
using a Gaussian kernel with σ = 0.87. The resultant
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Fig. 15 Comparison between
classes P 1 and P 10 using three
features considering load L3 of
the gearbox dataset

confusion matrix for this experiment, considering all signals
in the dataset, is presented in Fig. 16. Table 3 shows the
metrics values measuring the classification performance
associated to each class. The formulas for calculating these
metrics were presented in Table 2. The column 1 represents
the false negative rate (f nr); classes P 3, P 4, P 5, P 6, and
P 9 attain the higher values for f nr that are, in all cases
lower than 3.7%. The fpr metric is shown in column 2;

Fig. 16 Confusion matrix representing the results of faults classifica-
tion using SDA considering all signals in the dataset

classes P 5, P 6, and P 9 attain the higher values for this
metric. However, they are lower than 3.3%. The sensitivity
(sn) is shown in the third column; class P 6 attained the
lowest sensitivity with a value of 96.7%. The highest
sensitivity is 100%. The specificity (sp) is also shown.
Class P 5 attained the lowest specificity with a value of
99.6%.

The ROC curve is useful for visualizing classifiers
performance where sensitivity is plotted against 1-specificity
[3]. The ROC for the experiment using SDA with all vibration
signals in the dataset is shown in Fig. 17. As we are dealing
with a multi-class classification problem and the classification
accuracy is very high and similar for different classes, the
curves are overlaid. In this plot, the accuracy attained by
class P 5 is 96.7%. The accuracy attained by classes P 3, P 4,

Table 3 Confusion matrix results considering all signals and SDA for
feature extraction

Class f nr fpr Sensitivity Specificity

P1 0.000 0.000 1.000 1.000

P2 0.000 0.000 1.000 1.000

P3 0.012 0.000 1.000 0.999

P4 0.012 0.000 1.000 0.999

P5 0.037 0.022 0.978 0.996

P6 0.012 0.033 0.967 0.999

P7 0.000 0.000 1.000 1.000

P8 0.000 0.000 1.000 1.000

P9 0.012 0.022 0.978 0.999

P10 0.000 0.000 1.000 1.000
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Fig. 17 ROC curve for SDA considering all signals in the dataset

P 6, and P 9 is 98.9% and these classes are overlaid. The
remaining classes P 1, P 2, P 5, P 8, and P 10 attain a perfect
classification accuracy of 100% and they appear overlaid. In

Table 4 Confusion Matrix results considering all the signals and
PSDA for feature extraction

Class f nr fpr Sensitivity Specificity

P1 0.000 0.011 0.989 1.000

P2 0.000 0.011 0.989 1.000

P3 0.012 0.000 1.000 0.999

P4 0.000 0.000 1.000 1.000

P5 0.000 0.000 1.000 1.000

P6 0.000 0.000 1.000 1.000

P7 0.000 0.000 1.000 1.000

P8 0.000 0.000 1.000 1.000

P9 0.000 0.000 1.000 1.000

P10 0.012 0.000 1.000 0.999

general, the accuracy attained for all the classes is high and
the lower performance is attained by class P 5.

4.3 Results of the experiment 2 with SDA

The experiment concerning the faults classification using
SDA for vibration signals acquired at a particular load
provided a classification accuracy for load L1 of 97.7%,
100.0% for load L2, and finally 100.0% for load L3. The

Fig. 18 Confusion matrix
representing the results of the
experiment for faults
classification using the symbol
sequence extracted using PSDA
considering all signals in the
gearbox dataset
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Fig. 19 ROC curve for gearbox faults classification using PSDA
considering all signals in the gearbox dataset

best classification accuracy is attained for load L2 and L3.
A list of quantitative metrics for classification with SDA
is presented in Table 5; this algorithm shows excellent
accuracy either in Experiment 1 or Experiment 2.

4.4 Results of experiment 1 with PSDA

The PSDA was used for fault classification considering
all vibration signals in the dataset. The average accuracy
obtained during the validation was 99.8% using a Gaussian
kernel with a value of σ = 0.87. Figure 18 shows the
resultant confusion matrix considering all signals in the
dataset. The performance metrics associated to each class
are shown in Table 4. The false negative rate (f nr) is
presented in the first column. The classes P 3 and P 10
attained the higher values for this parameter which is lower
than 1.2%. The false positive rate (fpr)is presented in the

second column. Classes P 1 and P 2 attained the higher
value of 1.1%. The sensitivity (sn) or recall is presented
in the third column. In this experiment, classes P 1 and P 2
attained the lowest sensitivity with a value of 98.9% while
the rest of classes attained a valued of 100%. The specificity
(sp) is presented in the fourth column and classes P 3 and
P 10 attained the lowest value of 99.9%.

The ROC for PSDA, considering all signals in the
gearbox dataset, is shown in Fig. 19. In this multi-
class classification problem with classification accuracies
very high and similar for different classes, the curves
are overlaid. Classes P 3 and P 10 attained the lower
performance in terms of accuracy with a value of 98.9%
and both curves are overlaid. The remaining curves for
P 1, P 2, P 4, P 5, P 6, P 7, P 8, and P 9 attain a perfect
classification accuracy of 100% and they are overlaid in this
plot. However, in general, the PSDA is highly accurate for
gearbox fault classification.

4.5 Results of experiment 2 with PSDA

An experiment was performed and the features used for
classification were extracted with PSDA from the sequence
of peaks that comes from vibration signal. The accuracy
of classification using PSDA was calculated considering a
particular load. A classification accuracy of 98.7% for load
L1 is attained as a result for this experiment. The accuracy
obtained with load L2 was 100.0%, while the accuracy
for load L3 was 99.7%. Classification considering signals
acquired at load L2 provided the higher classification
accuracy. A list of quantitative metrics for classification
results with PSDA is presented in Table 5 where it is shown
that this algorithm is highly accurate.

4.6 Results comparison

4.6.1 Comparison of algorithms proposed

Both algorithms (SDA and PSDA) are highly accurate for
fault classification in gearboxes. The classification accuracy
is 99.78% for the tests performed using all vibration signals

Table 5 Gearbox classification
accuracy for the proposed
algorithms (in percents)

Algorithm Load Accuracy Error rate Specificity Precision F1-score fpr

Algorithm SDA All 99.22 0.78 99.91 99.23 99.22 0.08

L1 98.33 1.67 99.81 98.43 98.33 0.19

L2 100.00 0.00 100.00 100.00 100.00 0.00

L3 100.00 0.00 100.00 100.00 100.00 0.00

Algorithm PSDA All 99.78 0.22 99.98 99.78 99.78 0.02

L1 98.33 1.67 99.81 98.45 98.34 0.19

L2 100.00 0.00 100.00 100.00 100.00 0.00

L3 99.67 0.33 99.96 99.68 99.67 0.04
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Table 6 Comparison with respect to other methods using the same dataset

Random MDSVC Poincaré Sparse Feature Symbolic

Forest [6] [30] SVM [32] Representations [33] Ranking [45] Dynamics

Accuracy (%) 98.0 97.1 95.3 95.1 99.3 99.8

in the dataset. An accuracy of 100% can be obtained
working at a particular load such as load L2 and L3.
The results for the faults classification experiments are
presented in Table 5. These results show that combination
of the lagged Poincaré plot with symbolic dynamics is
very efficient for extracting the features representing the
mechanical status of the gearbox.

4.6.2 Comparison with respect to other methods using
the same dataset

Comparison with other classification methods applied to
the same gearbox dataset shows that accuracy results are
higher considering both proposed algorithms. Results of
the comparison are shown in Table 6. The maximum
accuracy attained for each algorithm is presented. A
method using the same gearbox dataset has been reported
in [6]. A set of features is composed of time domain
statistical features, as well as frequency domain and time-
frequency domain features extracted from vibration signals.
A hierarchical unsupervised algorithm is used for extracting
representative features useful for fault classification. In
particular, the classification was performed based on 12%
of 811 features using several machine learning techniques,
and the algorithm attained a classification accuracy of
98% using random forest classifiers. The same dataset
was also analyzed in [30] using multimodal deep support
vector classification (MDSVC). In this research, nine
features were calculated from the time representation of
the vibration signal; these features were also calculated
from the frequency representation of the vibration signal.
Similarly, a set of features was also extracted from
the wavelet packet representation. A MDSVC composed
by three Gaussian-Bernoulli deep Boltzmann machine
(GDBM) was trained for classifying the faults of the
gearbox dataset. The algorithm attained a classification
rate of 97.08%. Another research with this dataset [32]
performed the classification using only three features
extracted from the Poincaré plot for feeding support vector
machines. The highest classification accuracy was 95.3%
considering vibration signals at constant load. Dictionary
sparse–based representations of vibration signals were also
used for extracting features for fault classification in this
gearbox dataset [33]. In that case, the best classification
accuracy was 95.1% and it was obtained at constant load.
Further results using this gearbox dataset were reported

in [45]. A total of 30 features are extracted from the
time-domain representation of the vibration signal. The
extracted features are ranked using ReliefF, chi-square,
and information gain methods. After applying feature
ranking methods, a selection of ten features was considered
for classification. The machine learning algorithms used
were K-nearest neighbors (KNN) and random forests.
The highest classification accuracy obtained was 99.3%.
In contrast, the maximum percent classification accuracy
attained by the proposed symbolic dynamics algorithms is
99.8%. Additionally, the proposed algorithm considers only
12 features that are extracted easily from the time-domain
representation of the vibration signal.

5 Conclusions

The problem of fault classification in gearboxes is solved
using two symbolic dynamics algorithms. The SDA extracts
the symbols histogram directly from the Poincaré plot
constructed considering the time samples from the vibration
signal, and the PSDA extracts the symbols histogram from
a Poincaré plot constructed with a peaks sequence obtained
from the vibration signal. The feature analysis showed a
cluster structure that could be useful for classification of
faults in gearboxes.

The result concerning the total accuracy was 99.2%
considering features extracted directly from the vibration
signal. Alternatively, when the symbol histogram is
extracted from the sequence of peaks from the vibration
signal, the accuracy obtained was 99.8%. In both cases, all
the signals in the dataset are considered.

Performing the classification of faults using only
signals acquired at a particular load could reduce slightly
the accuracy of classification for loads L1 using both
algorithms. However, for load L2, the accuracy of
classification is increased to 100%.

The analysis of the generated cluster structures shows
that even considering a reduction in the number of
features to only three elements of the histogram produces
configuration of instances in the feature space that could be
separated using the appropriate machine learning technique.

The experiments also showed that high accuracy
is attained when the classification considers features
from vibration signals acquired at a constant load. The
proposed feature extraction approach has the advantage
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of being simple because only 12 features are extracted
from the vibration signal. Moreover, their calculation
requires a low computational cost. Additionally, the fault
classification algorithms proposed are more accurate than
other previously reported methods using the same dataset.
This approach is also general as it could be useful for
extracting features for classification of faults, considering
other types of signals recorded from gearboxes or roller
bearings.

The proposed method is fast and can be adapted for real-
time condition monitoring. A trained SVM could be used for
classifying with low delay, a recorded portion of a vibration
signal as only 12 features are necessary and their calculation
and classification require a low computational cost. No
other variant of the SVM algorithm was considered as the
obtained performance was adequate. Future works could
address the comparison between different SVM algorithms
under the particular context of the available number of
features and samples of this case study.

The gearbox vibration signals dataset used in this
research includes a number of signals that enables the
machine learning technique to solve a multi-classification
problem that is balanced, since the number of instances
in each of the classes is similar. Further research is
still necessary for evaluating the efficacy of the feature
extraction algorithms in situations where there is no balance
among the considered classes. Furthermore, even when the
test rig considers classes which comprise combined faults in
the pinion and gear, there are more complex combination of
faults that would be necessary to study using the proposed
algorithms.
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