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Abstract
The decision on polishing operation stopping time when employing a robot-assisted polishing machine is a critical issue for the
full automation of the polishing process. In this paper, a machining learning approach based on artificial neural networks was
developed using multiple sensor monitoring data to realize an intelligent system capable to determine the state of the polishing
process in terms of target surface roughness achievement. During the experimental tests, surface roughness measurements were
performed on each polished workpiece and the acquired sensor signals were analyzed and processed by applying two kinds of
feature extraction procedures: statistical features extraction and principal component analysis. By feeding diverse types of feature
pattern vectors to artificial neural networks, a highly accurate classification of the polishing process state was obtained using the
principal component feature pattern vectors.

Keywords Machine learning . Artificial neural networks . Robot-assisted polishing . Multiple-sensor monitoring . Principal
component analysis . Sensor fusion

1 Introduction

Polishing is an abrasive process performed in multiple phases
in order to finish a workpiece with the desired surface quality.
For each polishing phase, a specific level of scratches is
achieved using a dedicated tool until the required degree of
surface roughness is obtained. Decision making on the exact
time to move to the next polishing phase, where a different
tool with finer abrasive grit size needs to be used, is a critical
issue. As a matter of fact, if the running polishing phase con-
tinues for too long, the occurrence of over-polishing can result
in leaving undesired marks on the workpiece surface. On the
other hand, if the tool is changed too early, the current phase
cannot adequately remove the scratches left on the polished
surface in the preceding phase [1]. Generally, the tool needs to
be changed when a steady state is reached during the polishing

process and the additional material removal no longer im-
proves the surface roughness. In this case, the curve of the
surface roughness versus time/number of passes becomes flat
and its slope approaches zero [2].

In current industrial practice, a polishing process requires
an expert operator to manually polish the workpiece, which
makes the process laborious and time-consuming. Recently, a
new type of polishing station, employing a robotic arm, has
been proposed for process automation: robot-assisted
polishing [3].

To ensure a fully automated polishing job, it is necessary to
build a predictive system that can monitor in real time the state
of the polishing process in order to reach the surface quality
target, reduce the unnecessary polishing steps and increase the
level of safety. A reliable in-process polish monitoring system
can transform the manufacturing environment from manually
operated production machines to unsupervised robotic mate-
rial removal operations [4].

The application of sensor monitoring for the detection of
abrasive process state was demonstrated in several research
works. Chang et al. [5] utilized an acoustic emission setup for
in-process material removal monitoring in lapping. In [6], a
process-machine interaction model using a multi-sensor fu-
sion approach was proposed and experimentally tested to pre-
dict surface roughness in cylindrical plunge grinding. In [7],
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methods for in-process sensor monitoring of jet conditions in
abrasive waterjet machining were tested, discussed, and clas-
sified. The types of sensors for process monitoring in abrasive
processes were extensively discussed in [8]. As regards robot-
assisted finishing, Dieste et al. [9] investigated the parameters
influencing grinding and polishing processes in order to de-
velop an automatic system based on a spherical robot.

Despite the numerous scientific papers on abrasive process
monitoring, studies on the improvement of polishing

technologies using multiple sensors are quite few. An intelli-
gent polishing system using acoustic emission sensors to im-
prove the surface quality of sculptured die surfaces on a five-
axis polishing machine was proposed by [10]. Pilný and
Bissacco [11] developed a monitoring and control strategy
for automatic detection of process end point in robot-assisted
polishing. In [12], a computer-based monitoring of polishing
processes was developed in the LabView environment for
online calculation of mechanical, chemical, and thermal indi-
cators, allowing for the analysis of the polishing behavior of
various work materials.

The main goal of this paper is the detection of the right time
for tool change, defined as end-point detection (EPD), in
robot-assisted polishing (RAP) in order to obtain the desired
finished part characteristics and quality, including the

Fig. 3 Experimental polishing test

Fig. 1 Scheme of the in-process
surface roughness prediction

Fig. 2 Polishing phases
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achievement of the target surface roughness level. A multiple-
sensor monitoring approach for polishing process control can
be a solution for EPD allowing for automatic process termi-
nation and/or tool change, with significant reduction of the
polishing cycle time while complying with the specified geo-
metrical tolerances by avoiding excessive material removal.

In this work, a multiple sensor monitoring system compris-
ing three different sensing units (acoustic emission, strain and
current sensors) was set up and utilized to collect in-process
data in order to determine the polishing process state and the
achievement of the target surface roughness by making use of
sensor fusion technology merging information from sensor
signals of different nature [13, 14] and machining learning
paradigms based on artificial neural networks (ANNs) [15,
16]. During the experimental polishing tests, surface rough-
ness measurements were carried out on the polished surfaces
after different numbers of polishing passes. The detected sig-
nals were pre-processed and analyzed by applying two types
of feature extraction procedures: statistical feature extraction
and principal component analysis (PCA). PCA is an advanced
feature extraction methodology that allows to reduce the di-
mensionality of sensorial features, thus lowering the number
of data sets. The selected principal components and the calcu-
lated statistical features were utilized to develop machine
learning paradigms, based on ANNs, for surface roughness
assessment in order to predict the end point of the polishing
process when the target surface roughness is achieved.

In-process surface roughness prediction has the following
advantages (Fig. 1):

& It indicates if and when the target surface roughness is
reached in the polishing process.

& In case the surface roughness evolution deviates from the
reference trend, the process can either be shortened or
prolonged till the target surface roughness is achieved.

& Even if the target surface roughness is not achievable for
some reason, it still signals the right time to change the
tool in order to avoid the occurrence of over-polishing.

2 Materials and methods

The polishing process investigated in this paper is carried out
using a RAP machine where a motorized arm is utilized in
substitution of the human operator. Generally, the phases of a
polishing operation are the following (Fig. 2):

1. Setting up the machine and the tool and clamping the
workpiece. Moreover, the main polishing parameters
are set: spindle rotational speed, cutting speed, cutting
force, stroke length, and pulse rate.

2. Executing the polishing sessions. The polishing process is
carried out based on the amount of material to be removed
to achieve the target surface roughness, the workpiece
material type, and the initial surface roughness value.

3. Stopping the polishing process for inspection and evalu-
ation of the workpiece state using measurement devices.

4. Based upon the inspection assessment, either:

& continue with the current polishing step
& change to the next polishing step
& consider the part as finished
& scrap the part if it is damaged

The polishing process monitoring approach developed in
this paper involves the use of multiple sensors, signal process-
ing, sensor fusion, and machine learning paradigms in order to
realize a predictive system capable to decide on the next
polishing step to be performed, instead of following the tradi-
tional method previously described.

2.1 Experimental set-up

The experimental campaign was carried out on four cylindri-
cal bars made of tool steel hardened to 57–58 HRC (Hardness
Rockwell C), with Ø 40mm and 100 mm length, finish turned
to a surface roughness of approximately Sa = 0.3 μm.

A silicon carbide polishing stone with #800 grit size was
used as polishing tool with the following parameters: 9 N
contact force, 1000 pulses/min oscillation frequency with 1-
mm stroke length, 200 rpmworkpiece rotational speed, 1 mm/
s feed rate (Fig. 3).

The polishing tests were performed in six steps (Fig. 4): for
every workpiece, six surface bands, each of 17 mm width,
separated by 3 mm spacing, were progressively polished by
4, 6, 10, 20, 30, and 40 passes with unidirectional axial tool
travel (Table 1).

Fig. 4 Cylindrical workpiece with six surface bands of 17 mm width,
separated by 3 mm spacing: each band was subjected to 4, 6, 10, 20, 30,
or 40 polishing passes

Table 1 Polishing tests

Surface band 1 2 3 4 5 6

No. of passes 4 6 10 20 30 40

Int J Adv Manuf Technol (2019) 103:4173–4187 4175



A polishing pass, defined as the path of the polishing tool to
go from one end of the desired length to be polished to the
other extremity, had a length of 17 mm equal to the surface
bands width. The duration of each polishing session, covering
the 40 polishing passes, was approximately 11.6 min
(Table 2). As each single pass corresponded to 17 mm and
the utilized feed rate was 1 mm/s, one pass required about 17 s
to be completed.

2.2 Multiple-sensor monitoring system

The in-process multiple-sensor monitoring system utilized for
signal acquisition comprised three different sensing units: an
acoustic emission (AE), a strain gage, and a current sensor
[17–19].

The AE sensor was mounted on the tool holder, as close as
possible to the polishing stone to minimize the signal loss and
achieve a good signal-to-noise ratio, and possessing the fol-
lowing characteristics: resonant frequency (kHz). 300 ± 20%,
sensitivity dB (0 dB = 1 V/m/s): 115 ± 3, temperature range
(°C): − 20~ + 80. The AE signals were pre-amplified and
high-pass filtered with a 50 kHz cut-off frequency. The am-
plified signal output was directly connected, via coaxial cable,
to a multifunction data acquisition board with a sampling fre-
quency of 1 MHz and 16-bit resolution. The high sampling
frequency of 1 MHz was chosen to ensure suppression of
signal aliasing and possible loss of signal amplitude due to
any high frequencies present.

The strain gage sensor was located between the tool holder
and the robotic arm to detect the three components of the
polishing force which were digitized with sampling rate
2 kS/s. The detected force components are: Fx = friction force
in the tool oscillation direction, parallel to the workpiece axis;
Fy = friction force in the workpiece rotation direction,

tangential to the cylindrical bar; Fz = normal contact force in
the radial workpiece direction.

The current sensor was mounted in the electrical cabinet of
the RAP machine to detect the current signals, related to the
motor power absorbance, which were digitized with sampling
rate 2 kS/s.

The sensor signals were digitalized using a DAQ board and
were sent to a PC for processing and analysis. The number of
samplings for each detected sensor signal file depends on the
sampling rate utilized during signal acquisition and is reported
in Tables 2 and 3 for the 40 polishing passes of each test. For
sensor signals detected with sampling rate 2 kS/s, one
polishing pass corresponds to about 34,100 samplings. For
AE sensor signals detected with sampling rate 1 MS/s, a total
number of 1409 files (WP1 = 446, WP2 = 335, WP3 = 347,
WP4 = 281) were obtained, each containing 500,000 sam-
plings (Table 3). The total number of AE files for each work-
piece was divided by the number of passes (40 passes) in order
to obtain an approximate number of AE files per pass.

2.3 Surface roughness measurements

The main surface quality indicator of a machined workpiece is
its surface roughness. Mechanical devices with a stylus probe
are widely utilized to measure surface roughness with good
accuracy. However, the main disadvantages of these contact
systems are represented by low measuring speed and surface
damage by the stylus probe, particularly for soft materials
[20]. These problems can be overcome by utilizing non-
contact methods, usually optical, which allow to measure the
height variations on surfaces with high precision using the
wavelength of light as the ruler [21, 22].

Generally, surface roughness is evaluated through 2D
profilometry parameters such as the roughness average, Ra,

Table 2 Fx, Fy, Fz, and Current
sensor signal data files for the four
workpieces

Workpiece Column 1-2-3-4-5 # of samplings Time (min) Sampling rate (kS/s)

WP1 Time, Fx, Fy, Fz, Current 1,416,000 11.8 2

WP2 Time, Fx, Fy, Fz, Current 1,392,000 11.6 2

WP3 Time, Fx, Fy, Fz, Current 1,408,000 11.7 2

WP4 Time, Fx, Fy, Fz, Current 1,395,000 11.6 2

Table 3 AE sensor signal data
files for the four workpieces Workpiece From To # of samplings Sampling rate Number of files/pass

WP1 AE_
0001

AE_
0446

500,000 1 MHz 11.2

WP2 AE_
0001

AE_
0335

500,000 1 MHz 8.4

WP3 AE_
0001

AE_
0347

500,000 1 MHz 8.7

WP4 AE_
0001

AE_
0281

500,000 1 MHz 7.0
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defined as the arithmetic average of the absolute values of the
profile heights over the evaluation length and given by Eq. (1):

Ra ¼ 1

L
∫L0 jy xð Þj dx ð1Þ

where L is the sampling length and y is the coordinate of the
profile curve.

In 3D optical profilometry, surface roughness is specified
through areal measurements. The ISO 25178 norm specifies
the terms, definitions, and parameters to determine the surface
texture by areal methods (https://www.iso.org). In particular,
the surface area roughness parameter, Sa, is defined as the
arithmetic mean of the absolute of the ordinate values within
a definition area A and given by Eq. (2):

Sa ¼ 1

A
∬A jz x; yð Þj dxdy ð2Þ

Moreover, the root mean square roughness parameter, Sq, is
mathematically evaluated over the complete 3D surface by
EQ. (3):

Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∬a Z x; y;ð Þð Þ2dxdy
q

ð3Þ

The areal surface roughness parameters Sa and Sq represent
an overall measure of the surface texture: Sq is typically used
to specify optical surfaces and Sa is mainly utilized for ma-
chined surfaces (https://www.iso.org).

To specify the polished surface texture, areal surface rough-
ness measurements were carried out on each surface band
using a confocal microscope with 50× magnification, a verti-
cal resolution of 3 nm, and a measurement time > 3 s. The
selected areal surface roughness parameter was Sa as the
workpieces under investigation are not characterized by opti-
cal surfaces but by machine-polished surfaces. The measure-
ments were performed off-line before and after polishing on
five random locations on each surface band. In Table 4, the
five measured Sa values and their average are reported for the

Table 4 Five measurements of
areal surface roughness parameter
Sa and their average values for
each of the six surface bands of
each of the four workpieces

Meas. # Sa [nm] for WP1 Sa [nm] for WP2

Ini. B1 B2 B3 B4 B5 B6 Ini. B1 B2 B3 B4 B5 B6

1 370 68 83 62 38 41 45 374 129 57 51 48 47 42

2 345 64 67 62 44 45 42 284 75 79 63 49 45 42

3 326 74 63 73 43 41 43 351 77 67 47 49 45 41

4 379 86 121 46 51 40 41 265 96 64 54 80 39 39

5 312 77 109 58 51 47 48 257 85 65 36 42 43 35

Avg. 346 74 88 60 45 43 44 306 92 66 50 54 44 40

Meas. # Sa [nm] for WP3 Sa [nm] for WP4

Ini. B1 B2 B3 B4 B5 B6 Ini. B1 B2 B3 B4 B5 B6

1 346 143 91 78 89 63 70 365 108 61 55 50 39 44

2 396 68 105 67 55 59 56 414 89 70 52 51 45 32

3 348 80 75 59 65 73 44 312 96 66 61 61 58 66

4 250 63 70 55 55 47 37 381 74 68 69 40 46 36

5 326 168 50 52 48 49 44 391 82 60 45 34 38 34

Avg. 333 104 78 62 62 58 50 373 90 65 56 47 45 43

Fig. 5 Average values of the areal surface roughness parameter, Sa,
plotted versus the number of polishing passes for the four workpieces
WP1, WP2, WP3, and WP4

Table 5 Number of samplings for each segmentation step

Workpiece # of samples for the
raw Fx, Fy, Fz and
Current sensor
signals

# of samples for the
truncated (head and tail)
Fx, Fy, Fz and Current
sensor signals

# of
samples for
each
polishing
pass

WP1 1,416,000 1,364,000 34,100

WP2 1,392,000 1,363,379 34,084

WP3 1,408,000 1,366,639 34,166

WP4 1,395,000 1,365,499 34,137
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four workpieces WP1, WP2, WP3, and WP4. In Fig. 5, the
average values of areal surface roughness parameter Sa are
plotted versus the number of polishing passes for each of the
four workpieces. The figure shows that the trend of the four
curves displays a high decrease of average surface roughness
during the first ten passes of the polishing process for all four
workpieces. Further polishing passes provide only minor im-
provements of the polished surface. Therefore, the completion
of the first ten polishing passes can represent the right time to
terminate the polishing process.

3 Sensor signal processing and analysis

3.1 Signal pre-processing

The acquired sensor signals (Fx, Fy, Fz, Current, and AE) were
subjected to a pre-processing phase consisting of sensor signal
conditioning and segmentation.

A first segmentation of the Fx, Fy, Fz, and Current sensor
signals was carried out to remove the transient conditions not
related to the regime polishing process: the head and tail of the
sensor signals, which correspond to the beginning and the end
of the polishing process, were removed. Then, the segmented
Fx, Fy, Fz, and Current signals were subdivided into 40

portions to obtain the number of signal samplings correspond-
ing to each single pass (Table 5). In Fig. 6, the red vertical
lines represent the cut off of the head and the tail of the Fx, Fy,
Fz, and Current signals for workpiece WP1 (40 passes).

As regards the AE signals, the utilized AE sensor generated
an electrical offset whichmade the AE signals oscillate around
a non-zero value representing a signal bias that had to be
removed. Thus, a signal shifting procedure was applied: the
signal mean value was calculated and subtracted from each
complete signal to obtain a typical AE raw signal oscillating
around zero. In Fig. 7, an example of shifted AE signal, com-
prising 500,000 samplings, is reported for WP3.

Then, the AE shifted signals were subjected to the same
signal segmentation procedure applied to the force and current
signals in order to remove the transient phases of the polishing
process. The number of AE files for each polishing pass de-
pends on the polishing tests (Table 3). In particular, for WP1
the number of files for each polishing pass is equal to 11.2, for
WP2 is 8.4 files/pass, forWP3 is 8.7 files/pass, and forWP4 is
7.0 files/pass. Therefore, for each workpiece, a group of AE
sensor signal files ranging from 7 (WP4) to 11 (WP1) was
obtained. Only the central portion of these groups, corre-
sponding to three equal subgroups of 500.000 samplings,
was considered for features extraction to avoid too large AE
data size while keeping the core data.

Fig. 7 Shifted AE sensor signal
for WP3 (40 passes)

Fig. 6 Fx, Fy, Fz and Current
sensor signal segmentation for
WP1 (40 passes)
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3.2 Signal feature extraction procedures

Diverse techniques are available for feature extraction from
sensorial data [23]. The main advantage of these methodolo-
gies is the size reduction of sensorial data input to knowledge-
based models [24] allowing for less complex learning para-
digms based on small and robust datasets [25].

In this paper, two feature extraction methods were applied
to the pre-processed sensor signals: (a) principal component
analysis and (b) statistical feature extraction. The extracted
features were employed to construct different feature pattern
vectors, including the application of sensor fusion technology.

3.2.1 Principal component analysis for feature extraction
and pattern vector construction

The advances in information and communication technolo-
gies, embedded computers and networks, and sensorial phys-
ical systems allow for the detection and storage of “big data”
obtained from measurements carried out on manufacturing
processes. These measured data are a rich source of informa-
tion which, when usefully exploited, can greatly enhance the
manufacturing process performance. The knowledge embed-
ded in the data can be effectively extracted to construct accu-
rate models able to describe, summarize, and predict the pro-
cess behavior [26].

Principal component analysis (PCA) is an advanced multi-
variate data analysis technique utilized to extract information
from data by relating its variables. It transforms interrelated
variables by rotating their axes of representation retaining as
much as possible of the variation of the original variables in a
lower dimension space. The new axes of rotation are repre-
sented by the projection directions or principal component
loadings. The obtained principal components (PCs) are uncor-
related and ordered so that the first few retain most of the
variance present in all of the original variables [27–30].

The PCA procedure implemented in this paper was applied
to the five statistical feature vectors extracted in Section 3.2 in
order to find the principal components for each Fx, Fy, Fz,
Current, and AE sensor signals for each of the four workpieces
WP1, WP2, WP3, and WP4.

The PCA algorithm receives as input an n × jmatrix, where
n is the number of the polishing passes, equal to 40, and j is the
number of statistical features, equal to 5 (40 × 5 matrix). The
PCA returns the principal component scores (a representation
of the data matrix in the principal component space) where the
rows correspond to the observations and the columns corre-
spond to the components; a vector (latent) containing the ei-
genvalues of the covariance matrix of the input matrix; a j × j
matrix where each column contains the coefficients for one
principal component. Five principal components, PC1, PC2,
PC3, PC4, and PC5, were generated. The criterion for selecting
the number of suitable principal components is based on the

evaluation of the covariance matrix or “latent roots” [31, 32].
The latter represent the amount of variance explained by each
principal component; they are required to decrease monoton-
ically from the first to the last principal component and are
represented by a scree plot. A scree plot is a simple line seg-
ment plot that shows the fraction of total variance in the data
as explained or represented by each principal component.
Such a plot, when read from left to right across the abscissa,
can often show a clear separation in the fraction of total var-
iance where the “most important” components cease and the
“least important” ones begin. The point of separation is often
called the “elbow”. In the PCA literature, the plot is called a
“scree” plot because it often looks like a “scree” slope where
rocks have fallen down and accumulated on the side of a
mountain [31, 32].

Figure 8 shows the scree plot reporting the variance ex-
plained versus the principal components for the Fx force com-
ponent in the case of WP1. It can be observed that the elbow
occurs between the 2nd and 3rd principal components indicat-
ing that two components are sufficient to describe the variance
of the data.

A visual analysis of each generated scree plot was per-
formed showing the same behavior of Fig. 8. Therefore, the
two obtained principal components (PC1, PC2: energy and
mean, respectively), in terms of score matrix, for each sensor
signal (Fx, Fy, Fz, Current, AE) and each workpiece (WP1,

Fig. 8 Scree plot of the eigenvalues for the Fx force component in the
case of WP1

Table 6 Extracted statistical features

Fx Fy Fz AE Current

Mean FxMean FyMean FzMean AEMean CurMean

Variance FxVar FyVar FzVar AEVar CurVar
Skewness FxSke FySke FzSke AESke CurSke
Kurtosis FxKur FyKur FzKur AEKur CurKur
Energy FxEn FyEn FzEn AEEn CurEn
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WP2,WP3,WP4) were used to construct diverse PCA feature
pattern vectors for machine learning paradigm development:

& Two-element PCA feature pattern vector composed of the
two principal components for each sensor signalFx, Fy, Fz,
Current, and AE. For example, in the case of Fx, the 2-
element PCA feature pattern vector is: [1st PCAFx, 2nd
PCAFx].

& Six-element PCA feature pattern vector consisting of the
two principal components calculated for the Fx, Fy, and Fz
sensor signals: [1st PCAFx, 2nd PCAFx, 1st PCAFy, 2nd
PCAFy, 1st PCAFz, 2nd PCAFz].

& Eight-element PCA feature pattern vector consisting of the
two principal components obtained for the Fx, Fy, Fz and
Current signals: [1st PCAFx, 2nd PCAFx, 1st PCAFy, 2nd
PCAFy, 1st PCAFz, 2nd PCAFz, 1st PCACurr, 2nd PCACurr].

& Ten-element PCA feature pattern vector corresponding to
the two principal components for all the sensor signals:
[1st PCAFx, 2nd PCAFx, 1st PCAFy, 2nd PCAFy, 1st
PCAFz, 2nd PCAFz, 1st PCACurr, 2nd PCACurr, 1st
PCAAE, 2nd PCAAE].

The six-, eight-, and ten-element PCA feature pattern vec-
tors represent sensor fusion feature pattern vectors because
they combine the information provided by sensor signals of
diverse nature.

3.2.2 Statistical features extraction and pattern vector
construction

A statistical feature extraction technique was applied to each
Fx, Fy, Fz, Current, and AE signal in the time domain

calculating five statistical features: mean, variance, skewness,
kurtosis, and energy (Table 6).

With the extracted statistical features, diverse statistical fea-
ture pattern vectors were built to be used in machine learning
paradigms:

& Five-element statistical feature pattern vector consisting of
the five statistical features extracted for each sensor signal.
For example, in the case of Fx, the five-element statistical
feature pattern vector was: [FxMean, FxVar, FxSke, FxKur,
FxEn].

& 15-element statistical feature pattern vector combining the
five statistical features extracted from the three force com-
ponent signals Fx, Fy, Fz: [FxMean, FxVar, FxSke, FxKur, FxEn,
FyMean, FyVar, FySke, FyKur, FyEn, FzMean, FzVar, FzSke, FzKur,
FzEn].

& 20-element statistical feature pattern vector combining the
five statistical features extracted from Fx, Fy, Fz, and
Current signals: [FxMean, FxVar, FxSke, FxKur, FxEn, FyMean,
FyVar, FySke, FyKur, FyEn, FzMean, FzVar, FzSke, FzKur, FzEn,
CurMean, CurVar, CurSke, CurKur, CurEn].

& 25-element statistical feature pattern vector combining the
five statistical features extracted from all sensor signals:
[FxMean, FxVar, FxSke, FxKur, FxEn, FyMean, FyVar, FySke,
FyKur, FyEn, FzMean, FzVar, FzSke, FzKur, FzEn, CurMean,
CurVar, CurSke, CurKur, CurEn, AEMean, AEVar, AESke,
AEKur, AEEn].

The 15-, 20-, and 25-element statistical feature pattern vec-
tors represent sensor fusion feature pattern vectors because
they combine the information provided by sensor signals of
different nature.

Table 7 PCA feature input
pattern vectors and ANN
configurations

PCA feature input pattern vector ANNs configurations

Two-element consisting of the two principal components
for each sensor signal Fx, Fy, Fz, Current, and AE

2-2-1 2-4-1 2-8-1

Six-element combining the two principal components
calculated for the Fx, Fy, and Fz sensor signals

6-6-1 6-12-1 6-18-1

Eight-element combining the two principal components
obtained for the Fx, Fy, Fz and Current signals

8-8-1 8-16-1 8-24-1

Ten-element combining the two principal components
for all the sensor signals

10-10-1 10-20-1 10-30-1

Table 8 Statistical feature input
pattern vectors and ANN
configurations

Statistical feature input pattern vector ANN configurations

Five-element consisting of the five statistical features for
each sensor signal Fx, Fy, Fz, Current, AE

5-5-1 5-10-1 5-15-1

15-element combining the five statistical features extracted
from the Fx, Fy, Fz sensor signals

15-15-1 15-30-1

20-element combining the five statistical features extracted
from Fx, Fy, Fz, and Current sensor signals

20-20-1 20-40-1

25-element combining the five statistical features extracted
from all sensor signals

25-25-1 25-50-1

4180 Int J Adv Manuf Technol (2019) 103:4173–4187



4 Machine learning based on artificial neural
networks for polishing end-point prediction

Machine learning paradigms based on artificial neural net-
works (ANNs) [15, 16] were employed for surface roughness
assessment in order to obtain the end-point prediction (EPD)
of the polishing process. The intelligent prediction of surface
roughness allows to make a decision on the appropriate stop-
ping time during the polishing process so as to avoid over-
polishing and the consequent potential defects in the work-
piece. ANNs are intelligent computing systems trained to per-
form specific functions. In particular, they are employed for
pattern recognition–based decision making for mapping pro-
cedures through which points in the input space are associated
with corresponding points in the output space on the basis of
designated attribute values, of which class membership can be
one [33].

In this paper, three-layer cascade-forward backpropagation
ANNs were built with diverse configurations using as input
either the obtained PCA feature pattern vectors or the calcu-
lated statistical feature pattern vectors and as output the sur-
face roughness level for each polishing pass obtained by in-
terpolating the average areal surface roughness values report-
ed in Section 2.3 for every workpiece. A growing number of
hidden layer nodes was selected in order to find the ANNs
configuration with the highest performance. As a matter of
fact, the most common approach to find the optimal size of a

ANN configuration is to try different architecture with differ-
ent hidden nodes [16, 34]. For ANNs training, a Levenberg-
Marquardt optimization algorithm [33] was chosen as training
function and the mean square error was used as objective
function, while the tan-sigmoid was selected as transfer func-
tion. The number of epochs was set equal to 1000 and the
minimum performance gradient was set to 1 × 10–7. The
ANNs testing was performed through the leave-k-out method
with k = 1 [35]: one homogeneous group of k patterns, extract-
ed from the full training set, was held back in turn for testing
and the rest of the patterns was used for training.

4.1 ANNs using PCA feature pattern vectors

In the case of the PCA feature pattern vectors, the three-layer
feed-forward back-propagation ANNs had the following ar-
chitecture (Table 7):

– Two-, six-, eight-, or ten-element PCA feature pattern
vectors were utilized at input layer

– the number of hidden layer nodes varied between two and
30 depending on the number of input layer nodes;

– the output layer had only one node

Each ANNs training set consisted of 40 input feature pat-
tern vectors, i.e., one input feature pattern vector per polishing

Fig. 10 ANN MAPE results for
the two-element PCA feature
pattern vector for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of WP2

Fig. 9 ANN MAPE results for
the two-element PCA feature
pattern vector for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of the WP1
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pass, and each of these input feature pattern vectors was asso-
ciated with the interpolated value of the average areal surface
roughness for the corresponding polishing pass. According to
the leave-k-out method, at each step, one feature pattern vector
was removed in turn from the original training set of 40 feature
pattern vectors in order to be used for ANNs testing, while the
remaining 39 feature pattern vectors were used for training.
This procedure was repeated for all the 40 feature pattern
vectors in the training set.

4.2 ANNs using statistical feature pattern vectors

The five-, 15-, 20-, and 25-element statistical feature pattern
vectors, constructed with the five statistical features extracted
from each sensor signal for every workpiece (Section 3.2.2)
were inputted to the ANNs with the configurations summa-
rized in Table 8. The ANNs type, training, and testing had the
same characteristics employed for the PCA input feature pat-
tern vectors.

Fig. 12 ANN MAPE results for
the two-element PCA feature
pattern vector for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configurations in
the case of WP4

Fig. 11 ANN MAPE results for
the two-element PCA feature
pattern vector for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of WP3

Fig. 13 ANN MAPE results for
the six-element PCA feature
pattern vector [1st PCAFx, 2nd
PCAFx, 1st PCAFy, 2nd PCAFy,
1st PCAFz, 2nd PCAFz] for each
ANN configuration and each
workpiece
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5 ANNs results and discussion

The performance of the trained and tested ANNs was estimat-
ed in terms of mean absolute percentage error (MAPE), i.e.,
the absolute differences between target surface roughness
values (yt) and ANNs predicted values (ŷtÞ divided by the
actual value:

MAPE ¼ 100%

n
∑
n

t¼1
j yt−ŷ̂t

yt
j

5.1 ANNs MAPE results for the PCA feature pattern
vectors

In Figs. 9, 10, 11, 12, the ANNsMAPE results (%) are report-
ed for the two-element PCA feature pattern vectors for each
sensor signal (Fx, Fy, Fz, Current, AE) and each ANN config-
uration in the case of workpiece WP1 (Fig. 9), WP2 (Fig. 10),
WP3 (Fig. 11), and WP4 (Fig. 12). Figures 13, 14, 15 show
the ANNs MAPE results (%) for each workpiece and each
ANN configuration for the six-, eight, and ten-element PCA
feature pattern vectors.

Fig. 14 ANN MAPE results for
the eight-element PCA feature
pattern vector [1st PCAFx, 2nd
PCAFx, 1st PCAFy, 2nd PCAFy,
1st PCAFz, 2nd PCAFz, 1st
PCACurr, 2nd PCACurr] for each
ANN configuration and each
workpiece

Fig. 15 ANN MAPE results for
the ten-element PCA feature
pattern vector [1st PCAFx, 2nd
PCAFx, 1st PCAFy, 2nd PCAFy,
1st PCAFz, 2nd PCAFz, 1st
PCACurr, 2nd PCACurr, 1st
PCAAE, 2nd PCAAE] for each
ANN configuration and each
workpiece

Fig. 16 ANN MAPE results for
the five-element statistical feature
pattern vectors for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of workpiece WP1
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From Figs. 9, 10, 11, 12, 13, 14, 15, a consideration
concerning the number of ANNs hidden nodes can be made.
From the results of all the ANN configurations for all evalu-
ated cases, it can be seen that increasing the number of hidden
nodes does not lead to a meaningful improvement in surface
roughness level assessment. This means that the smaller num-
ber of hidden nodes allows to effectively find the correlations
between input sensorial feature pattern vectors and output sur-
face roughness level, thus allowing to reduce the computation-
al effort and lower the processing time to determine the EPD
of the polishing process.

As regards the two-element vectors (Figs. 9, 10, 11, 12), it
can be noticed that Fx and Fy present very low ANNs MAPE
values, ranging from 6.3 to 8.9% (Fx) and from 4.2 to 7.2%
(Fy), displaying a performance in surface roughness assess-
ment for polishing EPD higher than 91.00%. Moreover, Fz,
Current, and AE provided interesting MAPE values ranging
from 10.9 to 13.9% (Fz), from 12.9 to 18.0% (Current), and
from 13.7 to 18.5% (AE), leading to a global ANNs perfor-
mance in surface roughness assessment for polishing EPD
higher than 81.00%.

As regards the sensor fusion PCA feature pattern vectors, it
can be noticed that:

& The six-element PCA feature pattern vector provided a
very favorable assessment of surface roughness level with
an average ANNMAPE value equal to 7.9%, correspond-
ing to an average performance of 92% in surface rough-
ness level assessment for polishing EPD (Fig. 13)

& The eight-element PCA feature pattern vector yielded a good
average ANNsMAPE value equal to 8.5% corresponding to
an average performance of 91.5% in surface roughness level
assessment for polishing EPD (Fig. 14)

& The ten-element PCA feature pattern vector presented the
best ANNsMAPE average value (7.5%) corresponding to
the highest average performance (92.5%) in surface
roughness level assessment for EPD of the polishing pro-
cess (Fig. 15)

5.2 ANNs MAPE results for the statistical feature
pattern vectors

In Figs. 16, 17, 18, 19, 20, 21, 22, the ANNs results, in terms of
MAPE (%), are reported for each workpiece and each ANN
configuration for the diverse constructed statistical feature pat-
tern vectors. In particular, Figs. 16, 17, 18, 19 report the ANN
MAPE results for the five-element statistical feature pattern vec-
tors for each sensor signal and each ANN configuration in the
case of workpieceWP1 (Fig. 16),WP2 (Fig. 17),WP3 (Fig. 18),
and WP4 (Fig. 19). Figures 20, 21, 22 show the ANN MAPE
results for each workpiece and each ANN configuration for the
15-, 20-, and 25-element statistical feature pattern vectors.

Also, in the case of the statistical feature pattern vectors, it
can be seen that increasing the number of hidden nodes does
not generate a meaningful advantage in the classification of
surface roughness level for polishing EPD. From Figs. 16, 17,
18, 19, 20, 21, 22, the following considerations can be made:

Fig. 17 ANN MAPE results for
the five-element statistical feature
pattern vectors for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of workpiece WP2

Fig. 18 ANN MAPE results for
the five-element statistical feature
pattern vectors for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of workpiece WP3
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& In the case of the five-element statistical feature pattern
vectors (Figs. 16, 17, 18, 19), the average ANNs
MAPE values calculated considering all four work-
piece is equal to 20.7% for force component Fx;
11.1% for force component Fy; 19.4% for force com-
ponent Fz; 17.0% for Current; and 16.7% for AE.
These results highlight that the force component Fy

provided the best ANNs classification of surface
roughness level for polishing EDP.

As regards the sensor fusion statistical feature pattern vec-
tors, it can be noticed that:

& The 15-element statistical feature pattern vector, obtained
by combining the five statistical features extracted from
the Fx, Fy, Fz signals, presented a minimum and maximum
ANNMAPE value equal to 13.2% and 18.8%, respective-
ly (Fig. 20)

& The 20-element statistical feature pattern vector, obtained
by combining the five statistical features extracted from
the Fx, Fy, Fz, and Current signals, showed a minimum and
maximum ANNMAPE value equal to 10.4% and 18.4%,
respectively (Fig. 21)

& The 25-element statistical feature pattern vector, obtained
by combining the five statistical features extracted from all
sensor signals, the minimum and maximum ANN MAPE
values are equal to 9.9% and 16.4%, respectively (Fig. 22)

Thus, the 25-element sensor fusion statistical feature pat-
tern vector presented the lowest ANN MAPE values, corre-
sponding to an average ANN MAPE of 86.8%, providing the
most effective assessment of surface roughness level for EPD
of the polishing process.

5.3 Comparison

By comparing the number of ANNs input layer nodes for the
PCA and the statistical feature extraction procedures, in the
case of PCA feature pattern vectors, the number of input nodes
(2, 6, 8, and 10) was always smaller than for statistical feature
pattern vectors (5, 15, 20, and 25). This entails a lower com-
putational effort and consequent shorter data processing time.

By comparing the ANN MAPE results, it can be noticed
that:

& The ANNMAPE values obtained for PCA feature pattern
vectors are lower than those obtained for statistical feature
pattern vectors.

& The two-element PCA feature pattern vectors have a sim-
ilar behavior as the five-element statistical feature pattern
vectors, highlighting that the Fy force component provides
the best ANN MAPE results. In the case of the PCA fea-
ture pattern vector, the Fy force component provides the
best overall ANN MAPE results (4.2%).

Fig. 20 ANN MAPE results for
the 15-element statistical feature
pattern vector: [FxMean, FxVar,
FxSke, FxKur, FxEn, FyMean, FyVar,
FySke, FyKur, FyEn, FzMean, FzVar,
FzSke, FzKur, FzEn] for each ANN
configuration and each workpiece

Fig. 19 ANN MAPE results for
the five-element statistical feature
pattern vectors for each sensor
signal Fx, Fy, Fz, Current, AE, and
for each ANN configuration in
the case of workpiece WP4

Int J Adv Manuf Technol (2019) 103:4173–4187 4185



& The sensor fusion input feature pattern vectors displayed
lower ANN MAPE values for both PCA and statistical
feature pattern vector cases. In particular, the ten-element
PCA feature pattern vector had an ANN MAPE value
equal to 7.5% corresponding to a performance as high as
92.5% in surface roughness level assessment for polishing
EPD. This confirms the high efficacy of sensor fusion
technology in making full use of sensorial information
coming from signals of different nature.

6 Conclusions

A multi-sensor monitoring system, comprising an acoustic
emission, a strain gage, and a current sensor, was mounted on
a RAP machine to determine the right moment for polishing
tool change, defined as EPD, in order to obtain the desired
surface roughness level in the workpiece. During the experi-
mental tests, multiple sensor signals, Fx, Fy, Fz, Current, and
AE, were detected and surface roughness measurements (Sa)
were carried out on five generated surface bands of each tested
workpiece. The digitized sensor signals were pre-processed
and analyzed. Two types of feature extraction procedures were
applied: statistical feature evaluation and PCA. The latter is an
advanced feature extraction method that allows to reduce the
dimensionality of sensorial features by lowering the number of
data sets. In this work, two principal components obtained from

PCAwere proved to be sufficient to describe the variance of the
data.

The extracted statistical and PCA features were utilized to
construct diverse types of feature pattern vectors to be fed to
machine learning paradigms based on ANNs for surface
roughness assessment to be utilized for EPD of the polishing
process when the target surface roughness is achieved.

In particular, five-, 15-, 20-, and 25-element statistical fea-
ture pattern vectors were constructed, and two-, six-, eight-,
and ten-element PCA feature pattern vectors were built with
the two most relevant principal components (PC1, PC2).

By feeding diversely configured ANNs with the statistical
and the PCA input feature pattern vectors, a very accurate
classification of the polishing process state, in terms of surface
roughness level achieved, was accomplished using the PCA
feature pattern vectors. The predicted ANN surface roughness
values were very close to the measured surface roughness
values, with the best mean absolute percentage error equal to
4.2% for the two-element PCA feature pattern vector of the Fy
force component, and to 7.5% in the case of the ten-element
PCA feature pattern vector.

The proposed approach, involving multiple sensor moni-
toring, advanced signal processing, and machine learning
based on ANNs, was confirmed to be suitable for on-line
surface roughness assessment with the aim to determine the
appropriate stopping time of polishing processes. This entails
the improvement of the RAP machine performance through
avoidance of over-polishing and prevention of consequent

Fig. 22 ANN MAPE results for
the 25-element statistical feature
pattern vector: FxMean, FxVar,
FxSke, FxKur, FxEn, FyMean, FyVar,
FySke, FyKur, FyEn, FzMean, FzVar,
FzSke, FzKur, FzEn, CurMean,
CurVar, CurSke, CurKur, CurEn,
AEMean, AEVar, AESke, AEKur,
AEEn] for each ANN
configuration and each workpiece

Fig. 21 ANN MAPE results for
the 20-element statistical feature
pattern vector: [FxMean, FxVar,
FxSke, FxKur, FxEn, FyMean, FyVar,
FySke, FyKur, FyEn, FzMean, FzVar,
FzSke, FzKur, FzEn, CurMean,
CurVar, CurSke, CurKur, CurEn] for
each ANN configuration and each
workpiece
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workpiece defects, thus providing a substantial contribution to
the full automation of polishing processes.
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