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Abstract
Effective maintenance policies can support companies to deal with process interruptions and consequently, to prevent
significant profit losses. Moreover, the proliferation of structured and unstructured data due to production plants validates
the application of knowledge discovery in databases techniques to increase processes’ reliability. In this paper, an innovative
maintenance policy is proposed. It aims at both predicting components breakages through association rule mining and
determining the optimal set of components to repair in order to improve the overall plant’s reliability, under time and budget
constraints. An experimental campaign is carried out on a real-life case study concerning an oil refinery plant. Finally,
numerical results are discussed considering different blockage categories and number of components and by varying some
significant input parameters.

Keywords Predictive maintenance · Association rules · Integer linear programming · Knowledge discovery in databases ·
Industry 4.0

1 Introduction

Production efficiency plays a key role in the development
of any company. It depends also on the reliability of
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the company’s plants for which the implementation of
an effective maintenance policy becomes crucial. In fact,
any interruption of the production flow may have negative
effects on the whole system and therefore, on profits [32].
The more complex the system, the higher the number of
components potentially subject to breakage is.

In the Industry 4.0 era, sensors are used by companies to
gather a huge amount of data related to production, main-
tenance events, and components’ breakages, for instance.
Knowledge discovery in databases (KDD) techniques can
significantly support the automatic extraction of valid, useful,
and unknown relations from data [22]. In particular, the use
of KDD techniques can successfully support a maintenance
policy, especially in the case of process industries. Indeed,
several variables, i.e., flow rates, liquid level, chemical prop-
erties, have to be measured and controlled. Consequently, a
large amount of data has to be managed, making it suitable
for the KDD techniques’ application. The main contri-
butions of this work can be summarized as follows:

– A predictive optimization-based maintenance policy,
under the assumption that a component fails, based on:

1. The definition of association rules (ARs) aimed
at describing relationships among components’
breakages
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2. The formulation of an integer linear programming
model aimed at selecting the set of components to
repair in order to improve the overall robustness
to breakages of the plant, respecting both the total
repair time available and the budget given

– An experimental campaign carried out on a real case
study of an oil refinery

– A detailed sensitivity analysis on some parameters of
the mathematical model

The remainder of the paper is organized as follows.
Section 2 overviews the contributions presented in the liter-
ature with reference to both AR mining and mathematical
optimization for maintenance policies. Section 3 describes
the solution approach proposed in this study, while Section 4
presents the case study. In Section 5, numerical results
are discussed and a detailed sensitivity analysis is pre-
sented varying some significant input parameters. Section 6
concludes the paper and draws future research directions
worthy of investigation.

2 Literature review

2.1 Association rule mining in production
management

All the activities of any company, e.g., production schedul-
ing and operations monitoring, generate data to analyze
during the decision-making phase. Thus, KDD, an inter-
disciplinary process for extracting knowledge from huge
amount of data [19], can support companies throughout
the transformation of data into value. In particular, AR
mining is a valuable research area of KDD and can be
successfully used for effectively representing relationships
among data [56]. According to Wang [51], it can be
considered for performing a predictive data analysis, since
it relates a specific variable to others included in the same
dataset. As stated by Buddhakulsomsiri et al. [11], in fact,
extracting the ARs allows deducing attribute-value infor-
mation contained in a dataset but not immediately identi-
fiable due to the amount of data. Intuitiveness is one of
the AR strengths, together with its applicability to several
fields. In fact, a variety of applications exists, ranging from
customers’ buying habits to product design specifications,
as well as production process control [16]. For instance,
Rygielski et al. [44] indicate AR mining as a valuable
methodology for behavior description in retail, banking,
telecommunication, and marketing fields, while Chen [14]
applies it for group-technology cell definition, presenting
quality results in both small- and large-sized instances.
Agard and Kusiak [2] apply AR mining with the aim of
analyzing the most convenient sub-assemblies to produce

in advance on the basis of the orders previously received
from customers. Bevilacqua and Ciarapica [8] propose an
AR-based methodology for the evaluation of human-related
practices on high-risk situation in an oil refinery plant.
Wang et al. [53] use AR mining in manufacturing process
planning combining it with variable precision rough set and
fuzzy clustering.

As observed by Harding et al. [27], data mining
techniques, in general, are often applied to breakages and
malfunctioning detection. For example, Chen et al. [15]
propose a defect detective model based on ARs, aiming at
discovering the relations between machines and products’
flaws. In Da Cunha et al. [17], an application of AR
mining to discover the sequences causing breakages in an
assembly process is presented, showing that the method
leads to a product quality improvement. Also, Kamsu-
Foguem et al. [30] use AR mining for extracting information
on fault causes in a drilling process. In Martı́nez-de Pisón et
al. [41], it is shown that applying AR-based algorithms can
guarantee a significant improvement from a production rate
point of view. Djatna and Alitu [21] apply AR mining in a
total productive maintenance strategy, considering a wooden
door manufacturing industry. This way, an increment of
both the time and the cost effectiveness of the company can
be guaranteed.

2.2 Mathematical optimization-based approached
for planningmaintenance activities

Defining the best maintenance policy can become complex
and, at the same time, significant for improving the per-
formances of any company. In this sense, the application
of mathematical optimization-based approaches is partic-
ularly interesting since it can contribute to both a cost
reduction and a utilization level increment [18]. Moreover,
optimization methods can be applied in solving problems
where a large amount of data is used and/or requiring real-
time decisions [9]. For example, Alkamis and Yellen [3]
formulate an integer linear programming (ILP) model for
preventive maintenance in oil refineries aiming to maximize
its utilization level although they do not use AR mining.
Pistikopoulos et al. [42] propose a mixed integer linear
programming (MILP) model for the simultaneous design,
production, and maintenance planning. Similarly, Goel et
al. [24] develop a MILP model integrating design, pro-
duction, and maintenance plan, focused on improving the
operational availability at the design stage through the selec-
tion of a more reliable equipment. As noted by Alrabghi
and Tiwari [5], scientific contributions exist in the literature
in which simulation-based optimization approaches have
been successfully applied to maintenance policies in sev-
eral application fields. For example, Allaoui and Artiba [4]
apply a simulation-optimization approach for a flow shop
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scheduling problem subject to maintenance constraints,
due dates, and system availability. Moreover, simulation-
optimization approaches can be also applied to deal with
both the inventory control and the maintenance planning
[43, 45]. The combination of preventive maintenance and
the statistical process control can also be addressed through
simulation-optimization approaches as in Cassady et al.
[12], as well as maintenance scheduling and production con-
trol [23]. The use of combining simulation techniques with
optimization ones is also investigated in Nedić et al. [38]
in which the hydraulic systems used in forestry equipment
are analyzed. Tagaras [49] formulates a combined model
for process control and maintenance activities, under the
hypothesis of a Markovian distribution deterioration. More-
over, the analytical hierarchy process is combined with the
goal programming for centrifugal pumps maintenance in a
refinery plant [7]. Lee et al. [33] propose a model to opti-
mize the jobs scheduling in a multi-machine environment.
The aim of the model is to define the optimal due date of
each job, minimizing the total earliness and tardiness costs,
and the optimal timing for maintenance activities. Kenné
et al. [31] develop a near-optimal policy using numerical
techniques for production planning and corrective mainte-
nance interventions scheduling in a manufacturing system.
The work of Vilarinho et al. [50] aims at finding the optimal
replacement interval through the integration of the analy-
sis of components’ reliability and an optimization model
for total cost (e.g., preventive replacement cost and failure
replacement cost) minimization. Similarly, Mokhtari et al.
[35] solve a maintenance and production scheduling prob-
lem through the formulation of a MILP model, whose objec-
tive is the minimization of the total unavailability of the sys-
tem. Irawan et al. [29] formulate an optimization model for
routing and scheduling offshore wind turbines maintenance
aiming at the total cost minimization. For this purpose, they
propose a solution approach based on the optimization of a
MILP model. The minimization of maintenance costs and
systems interruptions are frequently analyzed together. In
Marseguerra et al. [34], for example, a genetic algorithm is
applied to identify the optimal degradation level for main-
tenance execution in a multi-component system, in order
to simultaneously minimize the cost and maximize the sys-
tem’s reliability. Laggoune et al. [32], instead, formulate a
model for the reduction of the whole system down-times
and maintenance costs through the preventive replacement
of groups of components. Xia et al. [55] develop a main-
tenance procedure to reduce the total maintenance costs of
the production system, scheduling the optimal time win-
dows for periodic interventions, while in Chalabi et al. [13],
a particle swarm-based optimization approach is applied
aimed to the minimization of the total maintenance cost
and the maximization of the process availability. The use of
meta-heuristics for controlling complex systems, especially

for the gain tuning, is not new. For example, the particle
swarm optimization-based approach of Nedic et al. [36], the
firefly algorithm proposed by Nedic et al. [37], the param-
eter search scheme based on the bat algorithm designed
by Stojanovic et al. [47], and the parameter search scheme
based on the cuckoo algorithm of Stojanovic et al. [48] are
used to improve the tracking accuracy. Wang and Liu [52]
address both the minimization of production makespan and
the unavailability of the production process formulating a
multi-objective optimization model and solving it through
an adaptation of the non-dominated sorting genetic algo-
rithm II. Similarly, Hadjaissa et al. [25] concentrate on
both the scheduling of the maintenance activities and the
makespan minimization. They apply a genetic-based algo-
rithm to a hybrid renewal power system. In addition, Shafiee
and Sorensen [46] propose a cost-effective maintenance
strategy for both reducing the interruption of systems oper-
ating conditions and limiting the maintenance costs. In the
literature review proposed by Ding and Kamaruddin [20],
it is remarked that the focus of the studies is often on the
certainty degree of maintenance policies. In particular, they
distinguish among the models assuming future events cer-
tainty, those that assign a risk-level to possible future states
and the ones under uncertainty that specifically assume a
probability of the occurrence of future events. For exam-
ple, Xia et al. [54] formulate a condition-based predictive
maintenance model for cost and availability optimization,
incorporating the uncertainty related to the components’
degradation. The optimization model formulated by Ilgin
and Tunali [28], instead, takes into account the risk cate-
gory. Indeed, they adopt a simulation-optimization approach
based on the genetic algorithm, estimating the crossover
probability through a factorial analysis.

Although integrating data mining techniques with those
provided by operations research and specifically, by
mathematical programming, is not a new topic (e.g., [40]
and [39]), to the best of our knowledge, our work represents
the first contribution in which they are combined to each
other for defining a predictive maintenance policy.

3 Solution approach

In this section, we describe the solution approach proposed
for defining a new predictive optimization-based main-
tenance policy. For this purpose, we firstly describe the
methodology applied for deriving the ARs used in the main-
tenance policy (Section 3.1). Then, we introduce the math-
ematical model formulated with the aim of selecting the
components to be maintained, minimizing the breakages’
probability, under budget and time constraints (Section 3.2).
In Section 3.3, we provide an overview of the solu-
tion approach, validated in Section 3.4. The predictive
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maintenance policy proposed is mainly based on the inte-
gration of AR mining and optimization techniques. Indeed,
our proposal is aimed to define the optimal maintenance
plan of a set of components in a plant. In fact, in large pro-
cess industry, the plant production capacity is often affected
by the blockages that can occur and that can be caused by
several causes, e.g., scheduled interruptions, safety issues,
or components’ breakage. Given the plants’ complexity,
after repairing a blockage and restarting the operation, some
other components may fail due to the changes of the work-
ing conditions (e.g., from a full load operation, the system
switches to a blockage, then to a transient phase before
switching back to full load operation). Furthermore, in
industry, a productive plant is often implemented through
a sequence of activities performed by specific sub-plants
(refer to Section 4). Without loss of generality, hereafter,
we focus on a sub-plant at a time. In fact, our solution
approach is based on the idea of individuating correlations
between sub-plant blockages and subsequent components’
breakages. Therefore, on the basis of available historical
data, we aim at discovering the correlations among com-
ponents’ breakages after a sub-plant blockage (using AR
mining) in a given time interval. These rules can be applied
for determining the components that can be predictively
maintained given a component’s breakage. The decision
on which components have to be selected for a predictive
maintenance depends on both the time available for main-
tenance planning and their repair cost. To this purpose, a
mathematical model is formulated with the aim of select-
ing the optimal set of components to predictively maintain
under time and budget constraints, maximizing the overall
plant’s reliability (i.e., minimizing the probability of future
breakages).

3.1 Association rule mining

The AR mining aims at individuating interesting and hidden
relations in wide datasets, in order to support decision-
making processes. The notation and the assumptions used
throughout the paper are introduced in the following. Let
D = {d1, d2, . . . , dn} be the set of n boolean data, called
items and T = {t1, t2, . . . , tm} be the set of m transactions.
Every transaction ti represents an item-set, i.e., a subset
of items, selected from D. In our scenario, an item is
a component of a plant and a transaction is the set of
components that have broken in a given time interval.

Definition 1 Given two item-sets Γ and Θ , such that Γ ⊆
D , Θ ⊆ D, and Γ ∩ Θ = �, an association rule is the
implication Γ → Θ where Γ and Θ are the body and the
head of the rule, respectively.

In order to asses about the AR quality, several metrics can
be applied. However, the most used ones are (a) the support
and (b) the confidence. In particular:

(a) The support of the rule Γ → Θ is computed as

sup(Γ → Θ) = |Γ ∪ Θ|
m

where |Γ ∪Θ| represents the number of transactions in
T containing the item-sets Γ and Θ . Then, the support
represents the probability of finding a transaction
containing both the item-sets Γ and Θ;

(b) The confidence of the rule Γ → Θ is computed as

conf (Γ → Θ) = sup(Γ → Θ)

sup(Γ → T rue)

It is the conditional probability of finding the item-set
Θ , given the occurrence of the item-set Γ . In other
words, it measures the rule strength.1

The procedure we use to discover ARs is given as follows:

1. Extract the frequent item-sets, i.e., item-sets that appear
more frequently in T with regard to a user-defined
threshold (i.e., a minimum support). To this end, we use
the FP-growth algorithm [26].

2. Define the ARs from the frequent item-sets. For each
frequent item-set F , all rules Y → Z are generated such
that Y ∪ Z = F .

3.2 An integer linear programming formulation
for an optimal maintenance planning

In this subsection, we describe the ILP model formulated
for defining the optimal maintenance plan for a given
set of components. In particular, it aims at selecting the
components with the highest breakage probability given
that the breakage of a component occurs. The notation
and the assumptions used throughout the paper are given
in the following and summarized in Table 1. C is the set
of components belonging to a plant under analysis. Each
component j is characterized by a repair cost RCj and a
repair time Tj , i.e., the duration of the maintenance activity,
expressed in minutes. It is worth noting that, for each
component, its repair cost also takes into account every
cost due to its breakage. Moreover, each component j is
characterized by the confidence cij = conf (i → j) that
expresses its breakage probability, given the breakage of

1The term sup(Γ → T rue) represents the number of transactions
containing the item-set Γ . With a slight abuse of notation, we refer to
sup(Γ → T rue) as the support of Γ .
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Table 1 Nomenclature of the input data

Parameter Meaning

C Set of components

cij Confidence of the rule i → j (breakage
probability of component j given the
breakage of component i)

RCj Repair cost of component j

Tj Repair time of component j

Tmax Maximum time allowed for maintenance
planning

B Maximum budget allowed for mainte-
nance planning

a component i, i.e., cij = P(j |i). The ILP formulation
is modeled by introducing the binary decision variable xj ,
equal to 1 if the component j is selected to be maintained, 0
otherwise. The maintenance planning is then optimized by
solving the following ILP model:

max
∑

j∈C

cij xj (1)

∑

j∈C

Tjxj ≤ αTmax (2)

∑

j∈C

RCjxj ≤ B (3)

xj ∈ {0, 1} ∀j ∈ C (4)

The objective function (1), to maximize, represents
the total confidence. Constraint (2) assures that the total
repair time, required for all selected components, does not
exceed a percentage (α) of the maximum time allowed
for maintenance planning (Tmax). In such a constraint,
the parameter α can be properly modified for a scenario
analysis. Constraint (3) imposes a maximum budget B that
can be used for maintenance. Finally, constraints (4) provide
the variable nature.

3.3 Maintenance policy definition

The predictive optimization-based maintenance policy
consists of the steps outlined in the following and it is briefly
schematized in Fig. 1.

INPUTS

– The set of components C of the plant
– The time interval (ΔT ), starting from the plant

blockage, during which the analysis is performed
– The minimum support threshold (minsup) for ARs’

extraction

Fig. 1 Main steps of the maintenance procedure

PROCEDURE

1. Find the set R of all ARs having a support greater
than minsup, where body and head are formed by the
components broken during ΔT after past blockages.

2. Monitor the plant operations within ΔT .

(a) When a maintenance activity is required for the
component i ∈ C, select all rij ∈ R : i → j , where
j ∈ C, i 
= j .

(b) Solve the ILP model described in Section 3.2 for
selecting the components to be maintained on the
basis of the information extracted at the previous
step.

OUTPUTS

– The optimal set of components to maintain
– The total time for maintenance planning

It is worth noting that defining the input parameters
is particularly significant in the above procedure. Indeed,
the time frame has to be set so that the maintenance
activities are related to plant blockages in a meaningful
way. In fact, setting a too short interval could lead to the
loss of relevant associations, i.e., not to consider all the
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components’ breakages related to the specific blockage.
On the contrary, a time interval too long may provide
misleading results. Hence, this step of the procedure has to
be carried out by domain experts, able to both define the
most appropriate length of the time interval and evaluate
whether shortening or enlarging the time for maintenance
may result particularly convenient. The number of rules also
depends on minsup. In our scenario, the minsup threshold
has to be set as low as possible in order to allow analyzing
a significant number of ARs. Starting from the plant
blockage, the system is monitored and, in the case of a
breakage (step 2.a), the maintenance planning is defined
by solving an optimization model (step 2.b). This aspect
overcomes what was already proposed in Antomarioni et
al. [6] in which a maintenance policy, based on a user-
defined minimum confidence, is proposed. In our approach,
the solution of an ad hoc defined optimization model allows
selecting the most convenient components to be maintained
in a predictive way by completely removing the arbitrariness
introduced by the user-defined confidence threshold.

3.4 Methodology validation

This section aims at validating the proposed methodology
by considering a use case with 21 components. It is assumed
that the breakage of the component C̄ happens. The goal of
the proposed methodology is to decide which components
(hereafter, denoted as Ci ∀i = 1, . . . , 20) we have to repair
in a predictive way while the plant is stopped to repair C̄.
The repair time Ti and the repair cost RCi , ∀i = 1, . . . , 20
have been randomly generated in the range [30, 300] and
[100, 3000], respectively. Here, we are also assuming that
ΔT equals to 1 month. An a priori breakage probability is
associated with each component Ci , randomly generated in
the range [0, 0.6]. Based on this probability, it is possible
to determine if, in the month in which the breakage of C̄

occurs, the component Ci breaks too and a repair order
is then issued. Hence, 56 months have been simulated.
In particular, 36 months have been used for generating
the ARs, while the remaining 20 months for testing the
methodology (each denoted as Testing Month T Mi, ∀i =
1, . . . , 20). By following the proposed methodology, after
obtaining the confidence of each of the 20 rules of the type
C̄ → Ci , the ILP model is then solved by setting Tmax and
B equal to 350 and 10,000, respectively. For each testing
month T Mi , the square confusion matrix CMi of order 2
has been defined as follows:

CMi =
[

RRi RNi

NRi NNi

]

where:

– RRi denotes the number of components to be repaired
in T Mi and actually selected by the ILP model.

– RNi is the number of components to be repaired in T Mi

but not selected by the ILP model.
– NRi represents the number of components not to be

repaired in T Mi but selected by the ILP model.
– NNi counts the number of components not to be

repaired in T Mi and actually not selected by the ILP
model.

Then, for each T Mi , the accuracy ηi has been calculated as:

ηi = NNi + RRi

NNi + RRi + NRi + RNi

Then, the average accuracy has been computed over the 20
testing months. We have run 10 simulations (varying Ti ,
RCi , and a priori breakage probability) obtaining a high
average accuracy η̄ equal to 0.836 with a variance of 0.078,
proving the effectiveness of the proposed predictive meth-
odology. It is worth noting that errors (i.e., RNi and NRi)
depend on the imposed constraints on the total repair time
and the total available budget. On the 10 simulation runs, the
average total repair time as well as the average total budget
required was of 321 and 3646.3, respectively. It is worth
noting that a critical issue of the proposed methodology
is the availability of a large amount of data. Indeed, the
quality of results depends on the extraction of valid ARs,
i.e., rules whose confidence represents a good estimation of
the actual breakage probability, given that the breakage of
the component C̄ occurs.

4 Application scenario: oil refinery

The proposed approach described in Section 3 is applied to a
real-life case study concerning an oil refinery, characterized
by a production capacity of 85,000 barrels/day. The refinery
plant is organized into sub-plants, each devoted to specific
activities. In particular, the topping sub-plant receives crude
oil in input and, then, the production process is split into
three branches:

(a) The first one is dedicated to liquefied petroleum gas
and petrol production. Hence, the corresponding sub-
plants are dedicated to unifining, naphtha splitting,
isomerization, and platforming.

(b) The second branch produces gas oil, by means of the
hydro-desulfurization sub-plant.

(c) The third one, instead, is composed of thermal
cracking, visbreaking, and hydro-desulfurization sub-
plants for the production of fuel oil and bitumen.

Table 2 summarizes, for each sub-plant, the number of
components monitored and the percentage of components
broken during the period under investigation. Indeed, the
numbers reported in the table confirm the need of a
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Table 2 Resume of the sub-plants, the corresponding number of
components monitored in each of them, and the percentage of
components requiring a maintenance intervention in the monitored
period

Sub-plant Number of Percentage of broken

components components

Topping 82 88%

Unifining 73 86%

Naphta splitting 23 52%

Isomerization 37 84%

Platforming 91 70%

Hydro-desulfurization (1) 59 75%

Thermal cracking 35 88%

Visbreaking 86 79%

Hydro-desulfurization (2) 44 63%

maintenance policy. In addition, the high percentage of
components’ breakages implies a high cost due to the
reduced production capacity of the sub-plant. And, this
implicitly confirms the need of implementing a predictive
maintenance policy.

Since the three production processes depend on the
topping sub-plant, the maintenance policy is applied to
its components. Indeed, for the proper functioning of the
whole refinery plant, it is necessary that the flow along
this sub-plant runs smoothly. The data provided by the
maintenance department of the refinery plant refer to the
period from January 2001 to December 2003 and they are
organized in two different databases. The former is referred
to the crude oil circulating in the sub-plant and contains
the average hourly mass-flow, the daily mass-flow (obtained
by adding up the hourly measurements), and the average
yearly value, calculated from the daily measurements. This
database has some missing values in the columns reporting
hourly mass-flow that could depend on a blockage or a
measurement error. In order to replace missing values, we
compare instances of the database with the list of occurred
blockages, as follows:

(a) If a blockage is detected, then the missing value is
replaced by 0.

(b) Otherwise, the missing value is due to a measurement
error. Hence, it is replaced by the value of the hourly
mass-flow measured at the previous hour.

The refinery classifies the blockages in three groups:

(1) A shut-down (ShD) is defined as an all-day blockage.
Hence, the mass-flow value remains null for the whole
day observed.

(2) A slow-down (SlD) blockage causes a decrease of the
daily mass-flow less than 25% of the mean.

(3) All the others are classified as non-significant (NS).

Table 3 Excerpt of the integration between the two databases. The date
of the blockage, the blockage category, the intervention date on the
component, the component name, and the corresponding failing item
are reported

BD BC ID Component Item

06/03/2001 NS 09/03/2001 Coupling TUB1000

06/03/2001 NS 01/04/2001 Controller LC1060A

06/03/2001 NS 20/03/2001 Piping P1015A

06/03/2001 NS . . . . . . . . .

06/03/2001 NS 29/03/2001 Valve Valv1000

In the case of a sub-plant blockage, the corresponding
category is stored in the database. The other database
collects information regarding the maintenance activities.
In particular, for each activity, it stores information about
the component and the date in which the maintenance has
been performed. The maintenance date is equal to or later
than one of the component’s breakage. In this work, we
assume that it is exactly equal to the date in which the
component’s breakage occurs. During the monitored period,
several blockages occurred: 21 NS blockages (103 h),
37 SlD blockages (122 h), and 8 days of ShD (192 h).
Moreover, 767 components required maintenance activities.
In order to apply the solution proposed in Section 3, the
two databases have been properly integrated by joining
data regarding the blockages of the sub-plant and the
components’ breakage occurred after the blockage in a
defined time interval. Table 3 shows an example of the
integrated database where the first two columns report the
date in which the blockage occurs (BD) and its category
(BC), respectively. The remaining columns refer to the
maintenance activities performed on a given component.
In order to extract the ARs, data reported in Table 3
are re-arranged as presented in Table 4. The first three
columns report the date of each blockage, its category,
and the considered time interval (ΔT ). The following 82
columns contain a list of the components belonging to
the topping sub-plant. If the corresponding component
required a maintenance activity in the considered time

Table 4 Excerpt of the input dataset for RapidMiner. The information
reported regard the blockage date, the blockage category, the time
interval, and a list of all the components monitored in the sub-plant

BD BC ΔT Coupling Controller Valve . . .

06/03/2001 NS 1 month False True True . . .

06/03/2001 NS 1 week True False False . . .

06/03/2001 NS 2 weeks False False True . . .

08/04/2001 SlD 1 month True False False . . .

08/04/2001 SlD 1 week False False False . . .

08/04/2001 SlD 2 weeks False True False . . .
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Fig. 2 View of the process implemented in RapidMiner

interval, then the value assigned is true, false otherwise.
For example, the blockage occurred on April 8, 2001 is a
SlD: a maintenance activity is performed on the component
coupling in a 1-month time interval. Alarm and impeller
are not maintained after this blockage. According to the
maintenance policy described in the previous section, when
a component breakage occurs, the ARs having the broken
component as their body are extracted. To this end, we use
the tools provided by RapidMiner (www.rapidminer.com),
a widely applied data-mining platform. In particular, Fig. 2
describes the whole process. Firstly, the integrated dataset
(as represented in Table 4) is loaded from Microsoft Excel;
the operator filter example allows setting some filters, e.g.,
limiting the analysis to a specific blockage. Then, through
the exclude attributes module, attributes which do not
provide useful information are excluded from the analysis.
FP-growth and create AR generate the frequent patterns and
the ARs from the dataset, respectively. The implementation
of the RapidMiner process has been run on a machine at
3.40 GHz with 16 GB of RAM. It requires 28 s to extract
the full set of ARs, namely for ΔT equals to 1 week, 2
weeks, and 1 month. The ILP model has been implemented
in LINGO language (www.lindo.com) and runs on the same
machine. Solving the ILP model, formulated in Section 3.2,
requires 0.8 s.2

5 Numerical results

This section describes the numerical results obtained by
applying the solution approach detailed in Section 3 to
the case study reported in Section 4. In the following
experiments, we focus attention on the component requiring
a lot of maintenance activities, i.e., the controller. In
order to compare and discuss results, four different cases
are presented, considering all the blockage categories
and differentiating among SlD, ShD, and NS blockages.
According to the privacy policy adopted by the refinery, we
cannot report details about the total budget, the repair times,
and the costs of the components. However, in the following
experiments, we use reasonable estimated values for them.

2The time for extracting ARs and that for solving the ILP model are
averaged on 5 runs.

5.1 Analysis on the component controller

The first example presented regards the breakage of the
controller, since it resulted the most critical component
in terms of number of maintenance activities required.
Indeed, from data, it turns out that the controller is the
component with the highest breakage probability (87.9%).
The parameters setting is performed by following the
suggestion coming from the maintenance department: the
set C is made up of 82 components, monitored in the
topping sub-plant while the value of ΔT and minsup are
equal to 1 month and 0.005, respectively. The budget value
is set to e10,000, while the maximum time Tmax is 350 min.
Finally, α is initially set to 1. Firstly, all the ARs of
interest are individuated as described in Section 3. Then,
the monitoring phase starts. When a maintenance activity is
required for the component controller, all the ARs whose
support is greater than minsup and body equal to controller
are selected. In Table 5, we report the ARs extracted for
analysis. In particular, the first column shows the body of
the rule, namely controller, while the second one the head
of each rule. Then, in the third column, the confidence of
the rules is indicated. The last two columns report the repair
cost and the repair time of the component in the head of
the rule. According to these rules, the components with the
higher probability of breakage given the breakage of the
controller, i.e. confidence of the rule, are coupling, sealing
Device, and insulation. The solution of the optimization
model, instead, highlights that when the breakage of the
component controller occurs, a consequent maintenance
activity should be planned for the components ammeter,
drainer, lighting, liquid level, and piping (all highlighted
in italics in Table 5), so that both the total repair time and
the budget constraints can be respected. In this way, it can
be obtained a total confidence of 1.397. Indeed, the repair
times estimated for the selected components are 120, 90,
10, 60, and 60, respectively. This means that 340 min of the
350 available are used. Moreover, the total repair cost of the
selected components is e2295, out of the e10,000 of the
total budget. One can argue that a simpler way for detecting
the most convenience set of components to maintenance
is to order them by decreasing confidence and then, to
select starting from the most likely ones, i.e., those with the
highest confidence, respecting time and budget constraints.
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Table 5 Association rules having support greater than minsup and
“controller” as body

Body Head Confidence RCHead THead

Controller Coupling 0.690 1184 250

Controller Sealing device 0.569 5931 600

Controller Insulation 0.517 2300 750

Controller Lighting 0.466 90 10

Controller Tracker 0.431 235 430

Controller Indicator 0.414 289 300

Controller Alarm 0.362 4094 275

Controller Area 0.328 2881 324

Controller Sampling valve 0.310 150 300

Controller Ammeter 0.259 1009 120

Controller Drainer 0.224 845 90

Controller Valve 0.224 735 300

Controller Liquid level 0.224 190 60

Controller Scanner 0.224 2100 150

Controller Piping 0.224 161 60

Controller Bearing 0.207 2500 800

Controller Auxiliary 0.172 1010 206

Controller Air analysis system 0.155 2103 170

Controller Blade 0.155 1233 607

Controller Condensation detector 0.138 207 420

Controller Transmitting device 0.138 890 254

Controller Lubrication 0.138 580 402

Controller Dimmer 0.138 2930 293

Controller Refrigerant 0.138 3290 248

Controller Oil seal 0.138 402 300

Controller Engine 0.138 4065 348

Controller Electrode 0.138 5040 122

Controller Instrumentation 0.121 1300 280

Controller Button panel 0.121 1600 400

Controller Pavage 0.121 2065 200

Controller Level controller 0.121 2300 60

Controller Battery 0.121 1280 177

In this way, the components coupling, lighting, and liquid
level are selected for maintenance, with a total confidence
equal to 1.379. The total time required for performing this
maintenance plan is 320 min, with a total repair cost of
about e1500. Despite both a time and cost saving, this
solution provides a total confidence (1.379) lower than the
one detected by ILP (1.397). A more accurate perspective
can be obtained if the rules are discriminated on the basis
of the blockage category since it can have an impact on
the components’ breakages. For instance, Table 6 contains
the ARs related to a SlD blockage. Comparing Tables 6
and 5, it is noteworthy that in both cases, the rules are
almost all the same, but with different values of confidence.
This is a reasonable result since the SlD blockages are the
majority. The only exception is the component Belt, whose

Table 6 ARs extracted in the case of SlD blockage having support
greater than minsup and controller as body

Body Head Confidence

Controller Coupling 0.886

Controller Sealing device 0.657

Controller Insulation 0.657

Controller Indicator 0.514

Controller Tracker 0.457

Controller Lighting 0.457

Controller Sampling area 0.429

Controller Ammeter 0.400

Controller Alarm 0.400

Controller Scanner 0.371

Controller Area 0.343

Controller Drainer 0.314

Controller Liquid level 0.286

Controller Auxiliary 0.286

Controller Blade 0.257

Controller Bearing 0.257

Controller Air analysis system 0.229

Controller Oil seal 0.229

Controller Liquid level 0.224

Controller Valve 0.200

Controller Button panel 0.200

Controller Dimmer 0.200

Controller Engine 0.200

Controller Electrode 0.200

Controller Battery 0.200

Controller Transmitter 0.171

Controller Equipment 0.171

Controller Paving 0.171

Controller Lubrication 0.171

Controller Level controller 0.171

Controller Condensation detector 0.171

Controller Refrigerant 0.143

Controller Belt 0.143

support is higher than the minsup only in the case of a SlD.
When a ShD is considered (see Table 7), the number of
ARs decreases and they involve some new components, like
safety valve, pressure gauge, and piston. The repairing of
these components would be preferable since a ShD blockage
has the highest impact on production. However, this kind
of blockage is the rarest, so the related rules have a low
significance.

5.1.1 Sensitivity analysis on α parameter

We carry out also a scenario analysis to study the sensitivity
of the solution varying the α parameter. In particular, we
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Table 7 ARs extracted in the case of ShD blockage having support
greater than minsup and controller as body

Body Head Confidence

Controller Insulation 0.714

Controller Tracker 0.571

Controller Lighting 0.571

Controller Sealing device 0.429

Controller Indicator 0.429

Controller Alarm 0.429

Controller Coupling 0.429

Controller Safety valve 0.286

Controller Valve 0.286

Controller Blower 0.286

Controller Refrigerant 0.286

Controller Piston 0.286

Controller Pressure gauge 0.286

Controller Liquid level 0.286

Controller Joint 0.286

Controller Tube bundle 0.286

define a range for it between 0.50 and 1.50 and we test
different cases using an incremental step of 0.05. In Fig. 3,
the values of the objective function (1) are reported as
the parameter α increases and all kinds of blockages are
considered. This figure shows the trend of the objective
function with respect to the portion of the maximum repair
time used. Reducing the time available for maintenance
planning has obviously a significant impact on the number
of components that can be maintained. Indeed, when α =
0.50 (αTmax = 175 min), piping, liquid level, and lighting are
selected for maintenance planning, but the total confidence
decreases of about 53% (0.914). On the contrary, increasing

the available time of the 50% (α = 1.50, αTmax = 525 min)
leads to a total confidence of 1.862, with 25% growth. In
this case, the selected components are coupling, ammeter,
lighting, liquid level, and piping. It is worth noting that the
components with high confidence, i.e., sealing device and
insulation (see Table 5), have not been selected since they
violate the total repair time constraint.

In Table 8, for each scenario, we report the corresponding
α, the total repair time (TRT) of the selected components.
The third column, instead, shows the value of the objective
function (i.e., the total confidence (TC)) while the last one
details the selected components. This way, the decision
maker can evaluate, on the basis of her own experience,
how to properly choose the α value and how much she is
willing to pay for increasing the total time available for
maintenance.

5.1.2 Sensitivity analysis on the budget

An additional sensitivity analysis is presented varying the
budget allocated to maintenance activities. The different
values tested range from e500 to e30,000, with an
increment of e500. The greater the budget, the higher
the total confidence obtained. This is due to the fact that
more components can be repaired in the maximum time
allowed. For example, if B is set to e500, the components
selected for maintenance are lighting, liquid level, and
piping. The total confidence obtained in this case is 0.914.
The same solution is obtained in the case in which B is
set to e1000. If B ranges from e1500 to e2000, instead,
the total confidence is higher (1.379) and the components
selected are coupling, lighting, and piping. Remarkably,
allowing a budget higher than e2500 is not useful since
the optimal solution found remains the same: ammeter,

Fig. 3 Values of the objective function (1) for different α

Int J Adv Manuf Technol (2019) 105:3661–36753670



Table 8 Optimal solution displayed for the α parameters analyzed

α TRT TC Selected components

0.5 130 0.914 Lighting, liquid level, piping

0.55 190 0.948 Ammeter, lighting, liquid level

0.6 190 0.948 Ammeter, lighting, liquid level

0.65 220 1.138 Lighting, liquid level, piping, drainer

0.7 220 1.138 Lighting, liquid level, piping, drainer

0.75 250 1.172 Lighting, liquid level, piping, ammeter

0.8 250 1.172 Lighting, liquid level, piping, ammeter

0.85 250 1.172 Lighting, liquid level, piping, ammeter

0.9 250 1.172 Lighting, liquid level, piping, ammeter

0.95 320 1.379 Coupling, lighting, piping

1 340 1.397 Ammeter, drainer, lighting,
liquid level, piping

1.05 340 1.397 Ammeter, drainer, lighting,
liquid level, piping

1.1 380 1.603 Coupling, lighting, liquid level, piping

1.15 380 1.603 Coupling, lighting, liquid level, piping

1.2 380 1.603 Coupling, lighting, liquid level, piping

1.25 380 1.603 Coupling, lighting, liquid level, piping

1.3 440 1.638 Coupling, ammeter, lighting, piping

1.35 470 1.828 Coupling, drainer, lighting,
liquid level, piping

1.4 470 1.828 Coupling, drainer, lighting,
liquid level, piping

1.45 500 1.862 Coupling, ammeter, lighting,
liquid level, piping

1.5 500 1.862 Coupling, ammeter, lighting,
liquid level, piping

drainer, lighting, liquid level, and piping are the selected
components, while the total confidence is 1.397. Indeed,
above this value, the constraint (2) becomes tighter than the
constraint (3), making any variation on the budget irrelevant.

5.1.3 Variations of the blockage category

In order to further detail the experimental campaign, in this
section, the analysis is performed both distinguishing the
blockage category (i.e., NS, SlD and ShD) and varying the α

parameter. Indeed, we properly filtered the dataset in order
to extract only the ARs related to each blockage category
and consider the corresponding confidence values to solve
the model. Figure 4 shows the trends of the objective
function (1) with respect to the portion of the maintenance
time used. Observing the results reported in the figure, it
is worth noting that in the case of a SlD blockage, the
optimization model provides the highest total confidence.
When ShD and NS blockages are considered, the values of
the objective function are lower than the values obtained in
the case of SlD blockages. Indeed, ShD blockages rarely
occur and after them, the number of components that have
broken within ΔT is less than the one after SlD blockages.
A further consequence of this is obtaining ARs with very
quantized confidence values (see for instance Table 7). This
leads to the piecewise linear trend of the objective function
in the case of ShD blockages (see Fig. 4). A similar trend
is reported also in the case of NS blockages, but reasons
are different. It is noteworthy that the decrease of the daily
mass-flow due to NS blockages is not significant and its
impact on components’ breakage is limited too. Indeed, the
most of ARs involve only a component (e.g., the controller)
and there are very few rules involving two components
within ΔT after a NS blockage. Hence, these rules are
characterized by very low confidence values. In particular,
in the case of ShD, when α ranges from 0.5 to 0.7, the
components selected for maintenance planning are lighting
and liquid level (T C = 0.857). When α varies from 0.8 to
0.9, the component pressure gauge is also selected, and the
value of the objective function is 1.143. The components

Fig. 4 Comparison between objective function values (1) for different α, discriminating the blockage category
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coupling, lighting, and liquid level are selected for any α

in the range from 0.95 to 1.40 (T C = 1.286). It is worth
noting that the rule with insulation as head has a confidence
by far higher (i.e., 0.714) than the aforementioned ones,
but its repair time exceeds Tmax. Thus, increasing the repair
time of the 40% does not lead any improvement on the total
confidence.

5.2 Scalability analysis

As already remarked in Section 4, the proposed methodol-
ogy does not require higher computational times (i.e., 1 min
on average). However, in order to highlight the potentiality
of the proposed methodology, a sensitivity analysis on the
number of components is carried out. This aims at testing
how the number of components given as input may affect
the total computational time. For this purpose, 12 different
instances are generated using the available real data and rea-
sonably estimating the unavailable ones. The instances have
a number of components ranging from 10 to 20,480, so that
the i-th instance has 10 · 2i−1 components. Each instance
is tested five times and the average computational time is
considered, for both the ARs extraction and the ILP solu-
tion. Mining the ARs of 10 and 20 components requires, on
average, 7 s, while for the 40 components, it takes 21 s, on
average. In the case of 80 components, 28 s are required on
average, while for 160, 320, and 640 components, it takes
on average about 33, 41, and 56 s, respectively. Increasing
the number of components to 1280, 2560, and 5120, the
ARs are extracted, on average in 67, 75, and 84 s, respec-
tively, and in any case, it continues being a reasonable time.
In addition, also the large-sized instances (i.e., with 10,240
and 20,480 components) can be analyzed in a reasonable
amount of seconds (i.e., on average, 123 and 180 s, respec-
tively). For what instead concerns the total times required
by the ILP model, we can conclude that the instances with
10, 20, 40, 80, 160, 320, 640, and 1280 components are
solved in less than 1 s, on average. Moreover, the instances
with 2560, 5120, and 10,240 components are solved on
average in 1.33 s. Finally, the instance with 20,480 compo-
nents is solved in about 3.2 s. These experiments remark
that the proposed methodology scales well with the number
of components.

5.3 Discussion

An issue worthy of discussion regards the databases update.
Indeed, during the application of the maintenance policy,
other blockages may occur, as well as other maintenance
activities, leading to AR changes. The update interval
depends on the specific production process: in our case
study, an update interval proportional to ΔT defined by
members of the maintenance department, i.e., monthly, is

a valid option. Moreover, the maintenance policy imple-
mentation modifies the correlations among components’
breakage and thus, the database should be updated by
adding new data gathered within the update interval (e.g.,
ΔT ) and removing the oldest ones (i.e., related to the oldest
update interval) to take into account the effect of the pol-
icy itself. Parameters setting surely has an impact on the set
of components to maintain. For instance, the minimum sup-
port threshold could be critical: setting a high minsup value
implies the exclusion of some ARs from the analysis. On the
contrary, a value too low may cause an increment of the time
to execute the maintenance policy. However, as presented in
Section 5.1, in the current application, the optimal solution
is computed in reasonable time also in the cases in which a
high number of components is considered. However, if the
amount of data stored in the database is significantly higher
(e.g., in the case of streaming data), an increment of the
minsup could speed up the analysis.

It is worth noting that any structural modification of
the (sub-)plant, as well as any other change in terms
of components’ characteristics, limits the available data
validity. In the process industry, like the oil refinery
considered in the case study, this is a reasonable hypothesis
since structural modifications are very rare. Otherwise, it
is necessary to create a new dataset collecting new data
on the (sub-)plant blockages, components breakages, and
maintenance activities.

After the experimental campaign carried out on a real-life
case study, we can conclude that two are indeed the main
limits of the proposed methodology: the number of available
data (Section 3.4) and the fact that we are focusing attention
on a sub-plant at time. In fact, the breakage of a component
in a sub-plant could depend on the blockage of upstream
sub-plants. Finally, one can observe that the extraction of
the ARs depends on the number of components. However,
it is de facto performed before the sub-plant is monitored
and therefore, it is a one-time procedure (Section 3.3)
that requires at most 180 s in the case study with 20,480
components. While, the computational time required by the
optimization solver may increase in the cases with many
components, although, in any case, it remains reasonable
(Section 5.2).

6 Conclusions and future work

The components maintenance is a critical issue in all indus-
trial fields, specifically in the case of continuous processes
since the occurrence of an event may have an influence on
the rest. For this reason, in this work, an association rule
(ARs)-based maintenance optimization procedure is pro-
posed and tested on a real-life oil refinery sub-plant. In par-
ticular, it integrates the potentialities of both AR mining and
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mathematical optimization. The former technique, indeed,
allows extracting the existing relationships among data,
while the latter, through the definition of an integer linear
programming formulation, aims at selecting the most criti-
cal components to maintenance. Being able to anticipate the
need for maintenance activities is the key aspect for limiting
production flow interruptions and, thus, productivity losses.
A wider control on components’ breakages can be translated
into maintenance cost savings. The proposed procedure
extracts all ARs considering the maintenance activities exe-
cuted within a given time interval from all the past sub-plant
blockages. Then, the system is monitored and as soon as a
component breaks, an ILP model is solved for selecting the
optimal set of components to maintain, respecting budget
and time constraints. The analysis is carried out differen-
tiating among the three categories of blockages considered
in the refinery object of the case study. The results remark
that, depending on the category of blockage, different opti-
mal sets of components are selected. In addition, a scenario
analysis carried out varying the time devoted to maintenance
planning allows studying the sensitivity of the solution
found. For these reasons, the results obtained through the
implementation of the maintenance procedure provide a
valuable decision support system: indeed, the optimal set of
components to maintain is presented and, through the sce-
nario analysis, modifications on the time range devoted to
maintenance planning can be taken into consideration.

Further research directions worthy of investigation could
firstly concern the application of the proposed predic-
tive optimization-based methodology to the whole refinery
plant, including, this way, dependency relationships among
sub-plants and, hence, a larger number of components.
Regarding the optimization model, additional constraints
could be introduced for taking into account both the costs
due to the operators used for maintenance and their hour
availability. In addition, multi-objective programming can
be also used for modeling the situation in which one wants
to maximize the plant’s reliability and to minimize the
blockage costs due to failure, simultaneously. Moreover,
due to the nature of the problem addressed, stochastic pro-
gramming could be also used for taking into account some
aspects that cannot be known in advance. In addition, due
to the complexity of the problem, meta-heuristics and/or
matheuristics could be also defined to efficiently solve it.
Finally, the introduction of an architecture aimed at collect-
ing and analyzing streaming data would improve the signif-
icance of the procedure developed. Interesting application
field may regard other kinds of processes, for example water
recovery and purification systems, with the aim of reducing
waste-water [10]. In addition, a further development may
regard the inclusion in the model of performance indica-
tors regarding the emissions, as recommended by Accorsi et
al. [1], in proper contexts.
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