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Abstract
Industry 4.0 is characterized by a modular structure of the production process that consists of cyber-physical systems. These
cyber-physical systems provide interoperability, information transparency, and decentralization of decisions. The modular struc-
ture, according to Industry 4.0 principle, creates intelligent networks of machines, work pieces, and systems that can predict
failures, self-organize themselves, and react to unexpected events. In this paper, we consider the complexity of assembly
processes and propose modular structures for assembly processes based on probabilistic formulation. Despite the reliability
and precisions that the use of cyber-physical systems such as robotics and automation in assembly processes have introduced,
and because of the increasing complexity, there is a need for probabilistic process characterization models for smart assembly
planning purposes. First, a new framework for assembly complexity measurement based on processes’ probabilistic and
Markovian characters is suggested. Then, two effects of modularization, namely stabilization of components by boundary
creation and application modular interfaces, are analyzed. For each case, a probabilistic formulation for assembly formation
and analysis is presented. The effect of task sequencing and component modularization on assembly time and cost is considered
simultaneously by the Bayesian formulation of the assembly problem. Several heuristics are derived from simulation examples,
and the modularization cost is studied through utilization of design structure matrix.
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1 Introduction

Cyber-physical system (CPS) consists of physical assets and
computational capabilities that are integrated and intercon-
nected. The availability and affordability of field devices, in-
formation systems, and computer networks drive industries to
implement new methodologies, resulting in more intelligent,
resilient, and self-adaptable systems. These types of systems,
known as Industry 4.0 systems, offer significant economic
potentials by acquiring accurate and reliable data from the
production plants, converting this data into useful

information, analyzing the information, optimizing operation-
al decision, and applying the corrective and preventative de-
cisions. The challenge as well as the key to the success of
Industry 4.0 are highly modular structures for multivendor
interoperability facilitation [1]. In Industry 4.0, the traditional
production hierarchy is replaced by a decentralized self-
organization scheme [2]. Components and procedures with
local control intelligence communicate to other components
and procedures through the system’s network to self-organize
themselves within the production network. In this way, pro-
duction lines become flexible and modular, allowing an easy
plug-and-play integration or replacement of entities (compo-
nents and/or procedures) [3]. The increased demand for per-
sonalized products, reduced life cycle time, and higher com-
petitive markets results in more complexity of the organiza-
tional structures and procedures, including the assembly pro-
cesses. However, the complexity introduced by Industry 4.0
technologies demands new approaches to manage modular
design and design for assembly techniques.

Industry 4.0 is heralding an era of personalized production
and assembly [4], which demands and is motivated by
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integration of online/real-time sequence optimization and op-
timal assembly formation tools. This information becomes
readily available to the assembly workers, for example though
augmented reality headsets [4], and to assembly machines for
evolvable readjustment [5]. The optimization problem applies
to both assembly time, through balancing problem [6, 7], and
assembly process cost. In this paper, we introduce a probabi-
listic formulation for assembly optimization problem and ex-
plore the sensitivities of an assembly process to the constraints
imposed by modular design. This method can be used with
online optimization of assembly processes through simulta-
neous sequencing and module formation.

1.1 Problem definition

In the assembly literature, the cost or the number of defects is
typically taken as the measure of assembly process efficiency.
In this paper, we turn our attention to the cost of the assembly
process (or the time of the assembly process) as a result of
imperfect process efficiencies. The paper investigates the ef-
fect of modularity in the assembly sequence planning (ASP)
for heterogeneous complex assembly processes where each
operation (task) has a unique probability for success and a
unique cost as shown Fig. 1a. Here, ci, i + 1 and pi, i + 1 are the
cost and the probability for a successful completion of assem-
bly task between elements i and i + 1, respectively.We analyze
the effect of buffering the assembly process by introducing
break points as shown in Fig. 1b, given the heterogeneous
probabilities and costs, and the mutual dependencies between

all tasks, and in view of a principal assumption about the
complexity of assembly, a failure in any task requires
restarting the assembly process from the first task. The goal
of these break points is to interrupt the mutual dependencies in
case of failures such that a failure of a specific assembly task
affects previous operations only to the last break point. These
break points can take place as operational buffers (e.g., me-
chanical couplers, electronic diodes), as assembly stabilizers
(e.g., additional fixtures and connectors), or as modules and
subassemblies that can be executed independently. According
to this structure, all operations between two break points con-
struct a cluster, and any pair of clusters is connected at a break
point. Each break point is defined by two values (cBPMi;Mj

and

pBPMi;M j
), representing the cost and probability of assembling

the two modules (i and j), respectively. Although each break
point entails additional cost to the entire assembly process, we
anticipate that the expected process cost and duration are im-
proved by both optimal modularization and optimal sequenc-
ing of tasks within each module. Also, Fig. 2 shows a scenario
where three workstations assemble the three modules and a
forth workstation assembles the modules together. The total
assembly time in this case is the sum of the longest module
assembly time (for this example, workstation 2) and the mod-
ule integration time in station 4.

In this work, we consider task sequencing (optimization)
and (optimal) modularization simultaneously. Figure 3 shows
three modular architectures of the same system: in Fig. 3a, b,
the sequences are identical and the modularization is different,
while in Fig. 3c, both the sequence and the modularization are
altered. We define a modular structure by a modularization

(a)

(b)

Fig. 1 a Serial assembly sequence of eight components with seven fully
mutually dependent assembly tasks, each with a different cost and
reliability. b Two break points replace two initial assembly tasks to
interrupt the mutual dependencies between the tasks

Fig. 2 A hypothetical assembly time scenario for modularization in
Fig. 1b

Int J Adv Manuf Technol (2019) 105:3815–38283816



vector (MV) that characterizes a modular architecture by the
number of modules in the entire process and by the number of
elements within each module for a given sequence of the tasks
(Hk). For example, the MV in Fig. 3a is [2, 3] (two elements in
M1, three elements in M2, and three elements in M3) for the
sequence [3 → 1 → 2 → 5 → 4 → 6 → 8 → 7], the MV in
Fig. 3b is [2, 3] for the same sequence, and the MV in Fig. 3c
is [2, 3] for the sequence [2→ 1→ 5→ 8→ 4→ 6→ 7→ 3].
The aim here is to find optimum modularization and sequenc-
ing for minimum time (optimally balanced line [6]) and cost.

More specifically, there are several questions regarding the
implementation of the break points that the paper tries to answer:

1. How many points (modules) the optimal cost and time
values give?

2. Where to insert them?
3. Should there be a change of assembly sequence within

each module? Is there an optimal assembly sequencing
for the new modular structure with respect to both assem-
bly cost and time?

4. What sort of trade-offs exists between assembly time and
cost for each modularization and sequence?

We study the above problems in a very general form by
considering the following assumptions:

1. There are enough working stations to accommodate any
modularization.

2. There are no precedence constraints for assembly tasks.
This is not a limiting assumption, and this actually in-
creases the computational complexity of the optimization
process relative to when precedence constraints are
present.

3. The probability for successfully conducting an assembly
task and its cost are constant, regardless of the number of
attempts and repeats. In reality, repeating a task might
increase the probability of its success because of learning.

In Section 2, a literature review and background to the
assembly complexity, and some initial developments to the
assembly model, are provided. We show how task sequencing
affects complex assemblies with heterogeneous success prob-
abilities. We then examine, in Section 3, the effects of
employing break points in a given assembly sequence. In
Section 4, we examine the simultaneous effect of employing
break points and changes in the assembly sequencing. The
paper concludes that, for cost optimality, task sequencingmust
be performed subsequent to task decomposition; otherwise,
the cost-saving effects of task sequencing can be eradicated
by inappropriate decomposition.

2 Background

Traditionally, an assembly line is a sequential manufacturing
setup in which components are assembled in several worksta-
tions (local or external) which are connected by a transporta-
tion network [8]. The transportation network can be rigid (e.g.,
conveyors) or flexible (e.g., autonomous guided vehicles
(AGVs)). Each station in the line performs one or several
assembly operations using humans, machines, tools, or robots.
The output of the assembly line is a complete unit that is
assembled according to the product structure or “bill of mate-
rials” (BOM) that lists the components, sub-assemblies and
parts, and their relationships. The assembly process has a ma-
jor impact on the product cost and quality. As assembly is
often the last process in the manufacturing chain, detection
and correction of failures in this stage is an important factor
for the product quality. Design for assembly (DFA), originally
proposed by Boothroyd [9], is a product design methodology
that aims at reducing costs and the probability for assembly
failures. Reducing the number of components (and therefore,
the number of assembly tasks), adding grasping and orienta-
tion tools, and considering assembly directionality assist in
reducing assembly cost and increasing the reliability.
Numerous enterprises use the DFA methodology and report
large savings [10–12]. Many models, technologies, and meth-
odologies have been developed since Boothroyd’s introduc-
tion of the DFA for improving the assembly process and re-
ducing the costs [13–17].

Statistical quality control (SQC) is a common tool in in-
dustry for process monitoring and improvement, which is
based on sampling products from the manufacturing line, ob-
serving variations, and applying corrections [18]. The
Motorola 6σ (Six Sigma) method [19] is another common tool
used for process improvement. It identifies and removes the
causes for failures during the manufacturing process using a
clear sequence of actions with specific value targets. SQC and
6σ methods in assembly processes assume all defects are the
results of normal distribution of variations that can be ob-
served and corrected. However, many failures during the

(a)

(b)

(c)

Fig. 3 a–c Different modular structures with different sequences of the
same system resulting in different expected costs
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assembly process can be defined only in terms of probabilistic
occurrence due to different types of errors [20] such as missed
assembly operation, processing errors, tools and machines’
setting-up errors, missing parts, wrong parts, and tools and
jigs’ errors. Hinckley [21] presents the type of defects, the
source for these defects, and metrics for assessing the relative
importance of each source. He introduces the concept of as-
sembly complexity factor and states that “complexity is the
least understood source of defects in assembly processes be-
cause of the difficulty of defining relative measures of
complexity”.

The complexity of the assembly process can be expressed
by quantitative measures (e.g., the number of components and
the required assembly operations) and by qualitative measures
(e.g., the level of components and assembly difficulty). While
quantitative measures are explicit and unambiguous, the qual-
itative measures are subjective and multitudinous. The expect-
ed time for completion of a specific assembly operation is
often used as an approximation for the assembly complexity.
Hinckley [21] formulates complexity by the probability that
an assembly process is successful according to

PY ¼ ∏
n

i¼1
Ck ti−t0ð Þk

n o
1−dið Þ ð1Þ

where the notations are as follows:
PYthe probability that the entire assembly process is

successful
Ckthe level of the quality control of the assembly opera-

tions (Ck > 0)
tithe expected assembly time of assembly operation i
t0the expected assembly time of the benchmark assembly

operation
kthe sensitivity of assembly complexity to defects (k > 1)
nthe number of assembly operations
dithe probability that the ith operation is defected (0 ≤ di ≤

1)
The expected times in Eq. (1) can be determined from

direct measurements or by using one of the DFA methodolo-
gies. The probability for successful assembly as given by Eq.
(1) expresses the effect of the relevant factors on the assembly
complexity and provides a tool for comparing design alterna-
tives. However, this complexity definition does not take into
consideration the effect of the assembly operations task se-
quencing on PY. It also does not help in the identification
and formation of the assembly batches.

Here, we propose a new definition for assembly complex-
ity that is based on a network of assembly operations and their
level of interdependencies that determine the amount of re-
work. According to this definition, assembly processes are
classified by the effect that a failure of one assembly task
may have on pervious completed tasks. In simple assemblies,
a failure of one assembly task requires rework of that task

alone and does not necessitate reworks of prior tasks. A failure
of a task in a complex assembly process, on the other hand,
requires either scrapping the semi-finished assembly or
disassembling some of the components and reassembling
them. According to this definition, the assembly complexity
is determined according to the mutual dependencies between
the assembly tasks. Given the availability and affordability of
a wide range of sensors and quality assurance techniques, each
task in the assembly process can be accurately monitored and
registered independently. Analyzing the outcomes of the qual-
ity assurance of each task, the assembly process can be adjust-
ed by either repeating the failed tasks or scraping the entire
process and restarting it from the first task.

Figure 4 illustrates these dependencies as a state diagram in
which the states represent the assembly tasks and the edges
represent the transitions between these tasks. Each transition
has a probability (pi, j) associated with it. The probability pi, i +
1 reflects the probability for a successful completion of task i
and continuing to the next task in the sequence (i + 1). pi, i is
the probability of repeating the same task after a failure, and pi,
j ∀ j < i is the probability of returning to task j after a failure in
task i. In this case, we define a complexity index (ki = i − j) that
indicates the number of steps the assembly process needs to
repeat in case of a failure in task i. For example, in Fig. 1, tasks
1 and 2 are simple as a failure requires repetition of the failed
tasks only. However, tasks 3 and 4 are complex as a failure in
one of them requires repetition of previously completed tasks.
Notice that a task may have several complexity indices (e.g.,
task 4) as there may be probabilities for returning to different
previous tasks according to the specific type of failure.
According to this definition, the complexity of the entire as-
sembly sequence (CA) is given by

CA ¼ ∑n−1
i¼1ki maxð Þ ð2Þ

where ki(max) is the largest complexity index of task i.
Although most assembly processes are a mixture of simple

and complex tasks, in this paper, we consider the worst-case
scenario in which all tasks are mutually dependent and are
therefore sensitive to failures in the subsequent steps, and each
task has the highest possible assembly complexity index such
that a failure in one task results in repeating all previous tasks.
In particular, we consider the cost associated with the

Fig. 4 State diagram of an assembly process
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assembly process and the expected assembly time, given the
probability for success of each assembly operation.

In the study of Efatmaneshnik and Ryan [22], we intro-
duced a general formulation for tackling complex assem-
blies by modularization of the entire assembly process into
subassemblies for homogeneous operations that are char-
acterized by identical costs and probabilities for success of
all assembly operations. In the study of Shoval et al. [23],
we considered the effect of assembly sequencing on the
expected assembly cost for simple and complex heteroge-
neous assembly processes. For simple heterogeneous serial
assembly processes, we used the traveling salesperson
problem (TSP) solver for determining the optimal assem-
bly sequence that provides a lower bound for the assembly
process. For complex heterogeneous assembly processes,
we presented heuristics that claim that sequencing the more
complex operations at the beginning of the process de-
creases the expected assembly cost. We also showed that
when the probabilities for success of the assembly opera-
tions are similar, the more expensive operations should be
deployed as late as possible (subject to the operational
constraints) in order to reduce the total expected assembly
cost.

A summary of the results presented in the study of Shoval
et al. [23] that is relevant to themodularization of the assembly
process is presented here for clarity. As mentioned, we con-
sider a complex assembly system where tasks are fully mutu-
ally dependent, and therefore, a failure in the current assembly
task requires rework of all previous tasks. Efatmaneshnik and
Ryan [22] found that the expected cost of n assembly tasks for
a homogeneous system (identical task reliabilities and costs) is

Ĉn ¼ ∑n
i¼1

C
Pi ¼

C
1−P

1

Pn −1
� �

ð3Þ

where P and C are the probability for a successful comple-
tion and the cost of all the homogeneous assembly tasks,
respectively. An important assumption in the model pre-
sented in the study of Efatmaneshnik and Ryan [22] is that
the probability for success and the cost are constant, re-
gardless of the number of attempts. That is, the probability
and the cost of the first attempt are identical to all addition-
al attempts due to the failures. Note that similar formula-
tion can be driven for assembly time, in which case the cost
is replaced by the homogenous time of completing the
individual tasks. Because of this similarity, we pay closer
attention to the assembly time in Section 3, where the as-
sembly time of modular structures is considered. Since all
probabilities and costs for all tasks are homogeneous, the
expected cost of the entire process, given by Eq. (3) is not
affected by the assembly sequence.

Next, we examine systems with heterogeneous proba-
bilities and costs. Consider an assembly system that

consists of n + 1 element that is assembled in n serial
heterogeneous tasks, where the costs and reliability values
of task i (connecting elements i and i + 1) are ci, i + 1 and pi,
i + 1, respectively (i = 1,..., n). Assuming a system with no
precedence constraints, then H(n × n!) represents all pos-
sible sequences for the n tasks’ system, where each row is a
specific assembly sequence. Let Hk (k = 1,…, n!) be the kth
row in H that represents a specific sequence, which con-
sists of n tasks, each with a cost (CHk ið Þ ) and probability

for success (PHk ið Þ ) (i = 1,…, n). Notice that CHk ið Þ ¼
cHk ið Þ;Hk iþ1ð Þ and PHk ið Þ ¼ pHk ið Þ;Hk iþ1ð Þ. The expected cost

of the entire system is given by

Ĉ Hkð Þ ¼ ∑
n−1

i¼1

cHk ið Þ;Hk iþ1ð Þ
∏n

j¼i pHk ið Þ;Hk iþ1ð Þ
ð4Þ

For proof of Eq. (4), see the study of Shoval et al. [23].
The complexity of determining the optimal assembly se-
quence using an exhaustive search algorithm is O(n2 × n!).
This problem is NP-complete and therefore intractable for
assembly sizes greater than 20 tasks. However, given the
precedence constraints, the number of possible valid se-
quences is lower, and often the problem can be solved
using conventional optimization techniques (e.g., linear
programming, graph optimization). Two useful heuristic
based on Eq. (4) are that of Shoval et al. [23]:

1. Given equal costs for all assembly tasks, when less reli-
able tasks (lower probabilities of success) are executed
earlier in the process, the expected cost of the whole as-
sembly would be lower.

2. Given all assembly tasks are mutually dependent and have
the same reliabilities for success, the minimum expected
cost of a complex assembly process is given by a se-
quence that sorts the costs in ascending order.

3 Modularity in assembly planning

In this section, we examine the effect of modular bound-
aries on assembly cost and time. In the next section, we
examine the effect of modular interfaces. Here, both ef-
fects are studied in combination with task sequencing. A
complex assembly system, in which tasks are mutually
dependent, was initially investigated by Simon [24].
Each time the process is disturbed, it has to be repeated
from the first task. According to Simon [24], the solution
to this complexity is the division of the process into sev-
eral subassemblies such that a failure in one task affects
only the tasks within that subassembly. Dividing assembly
processes into subassemblies (modules) may require
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additional resources (machines, tools, space, etc.), and
possibly new product architectures, as the connectivity
between the components may need to be altered. These
features should be considered in terms of their entire con-
tribution to the system.

Two principal purposes can be envisaged for modularity in
assembly [25]:

1. Reduce assembly cost

a. To stabilize the number of components in a module by
creating boundaries for subassemblies that protect them
from being harmed in the assembly rework process

b. Reduce the assembly complexity level by creating inter-
faces (standard or otherwise) between modules (subas-
semblies). These interfaces reduce the complexity of the
process. By process complexity, we mean the measure
introduced earlier in Eq. (2). Interfaces facilitate this by
easing the plug-in process that have the ability to decouple
the processes, thus removing the dependency between
failure and success of subassembly processes. This pro-
cess will be explained in Section 4

2. Reduce assembly time due to parallelism (further ex-
plained in this section)

Let us assume that a serial assembly process that consists of
n + 1 elements and n tasks is redesigned such that m break
points are added to the original assembly sequence, creating
an m + 1 subassembly. In addition, the assembly sequence is
replanned, subject to the assembly sequence constraints. The
redesigned system is similar to the one shown in Fig. 2, but
now, the assembly costs and probabilities for successful com-

pletion within each subassembly are marked by cMk
i;iþ1 and

pMk
i;iþ1, respectively, representing costs and probabilities of as-

sembling elements i and i + 1 within moduleMk. These terms
consider possible changes in the assembly sequences, as well
as special features related to the modular structure.
Furthermore, the modular structure includes different types
of costs and probabilities: cBPMi;Miþ1

is the cost of assembling

modules i and i + 1, and similarly, pBPMi;Miþ1
is the probability

for success in assembling modules i and i + 1. Notice that
assembling two components in a separate module may require
additional fixtures, tools, or machines and also may change
the probability for successful completion of that task.

Therefore, in Fig. 4, cBPMi;Miþ1
≠cM1

2;3≠c
M2
2;3 and, similarly, pBPMi;Miþ1

≠pM1
2;3≠p

M2
2;3 as assembling modules M1 and M2 are different

from assembling elements 2 and 3. In most cases, we antici-

pate that cBPMi;Miþ1
≥cMi

j; jþ1 and pBPMi;Miþ1
≤pMi

j; jþ1 as connecting

two modules is typically more complex than connecting two
elements.

Based on the previous notations, the total expected assem-
bly cost in a modular system is given by

Ĉ
M
¼ ∑

m−1

i¼1

cBPMi;Miþ1

∏m−1
j¼i p

BP
M j;M jþ1

þ ∑
m

i¼1
∑
ni−1

j¼1

cMi
j; jþ1

∏ni−1
k¼ j p

Mi
k;kþ1

ð5Þ

where m is the number of modules, and cBPMi;Miþ1
and pBPMi;Miþ1

are the cost and reliability of the ith break point between the
ith and the (i + 1)th modules, respectively (assembling mod-

ulesMi andMi + 1). In Eq. (5), c
Mi
j; jþ1 and p

Mi
j; jþ1 are respectively

the cost and reliability of the jth assembly task insidemodule i,
and ni is the number of elements in the ith module. The first
part in Eq. (5) is the expected cost of connecting all the mod-
ules, and the second part is the expected cost of assembling the
elements within each module.

Now, assume tMi
j; jþ1 is the time associated with the task of

joining j and j + 1 components in the ith module, and tBPMi;Miþ1

is the time associated with assembling modulesMi andMi + 1.
In a modular setting, the assembly of modules can be per-
formed in parallel. To fully utilize the parallelism, at least m
working stations are required. Then, the expected minimal
total assembly time is

T̂
M
¼ ∑

m−1

i¼1

tBPMi;Miþ1

∏m−1
j¼i p

BP
M j;M jþ1

þ max
i¼1…m

∑
ni−1

j¼1

tMi
j; jþ1

∏ni−1
k¼ j p

Mi
k;kþ1

ð6Þ

where tBPMi;Miþ1
is the assembly time of modulesMi andMi + 1.

Again, here, we assume there are enough working stations to
accommodate any modularization.

In general, the number of possible partitions of a set that
consists of n elements into m subsets is given by the Stirling
number of the second kind, also known as Stirling partition
number (SPN)

S n;mð Þ ¼ 1

m!
∑
m

i¼0
−1ð Þi m!

i! m−ið Þ! m−ið Þn ð7Þ

The SPN considers the number of different partitions but
not the order of the elements within each subset. Therefore,
the number of permutations of dividing n elements into clus-
ters is

N ¼ ∑
n

m¼1
S n;mð Þ ∏

m

i¼1
ki! ¼ S n;mð Þ � n! ð8Þ

where ki is the number of elements in the ith module.
The combined modularization and sequencing problem is

NP-hard and therefore can be solved only for simplified
cases. Simplification can be done by limiting the total number
of elements or by introducing sequential constraints. For ex-
ample, maintaining a constant sequence reduces the number
of possible partitions to 2n − 1 for the n elements’ system. To
illustrate this argument, consider a system that consists of
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eight elements that are assembled in seven sequential tasks.
Assume the probabilities for success completion of the as-
sembly tasks are given by the matrix in Fig. 5. The probabil-
ity of joining every pair of components i and j is the element
of the ith column and jth row of the matrix. Given this, the
probabilities for the sequence 1→ 2→ 3→ 4→ 5→ 6→ 7
→ 8 are in the ascending order 0.91, 0.92, 0.93, 0.94, 0.95,
0.96, 0.97, respectively, where task 1 is the assembly of ele-
ments 1 and 2 and task 7 is the assembly of elements 7 and 8.
For the sequence 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1, the
probabilities are in the descending order 0.97, 0.96, 0.95,…,
0.91. For clarification, assume identical costs and times of 1

(ci, j = ti, j = 1 ∀ i, j) and cMk
i; j ¼ ci; j, t

Mk
i; j ¼ ti; j, and pMk

i; j ¼ pi; j
such that modularization does not affect the internal costs,
times, and reliabilities within a module. Also, assume that
cBPMi;Miþ1i ¼ 1 (the cost of assembling any two modules is 1,

and that pBPMi;Miþ1
¼ pm;n where m is the last element of mod-

ule i and n is the first element of module i + 1). The final
assumption is that the modules are mutually independent
such that a failure in assembling two modules does not affect
previously assembled modules. There are 28 − 1 = 128 possi-
ble modular structures for the given sequence, ranging from a
single module structure ([8]) to a monolithic assembly struc-
ture ([1]). For example, the eight elements can be divided into
two modules in seven different configurations ([1, 7], [2, 6],
[3, 5], [4], [3, 5], [2, 6], [1, 7]), into three subassemblies in 21
different ways, into four subassemblies in 35 different ways,
into five modules in 35 ways, and so on. All 128 MVs for an
eight-component system are presented in Table 1 in the
Appendix.

We can analyze the best modularization for particular se-
quences. For example, consider two extreme sequences: as-
cending and descending probability sequences. In the ascend-
ing sequence elements are assembled in the order of 1→ 2→

3 → 4 → 5 → 6 → 7 → 8, whereas in the descending se-
quence, the elements are assembled in the order of 8→ 7→ 6
→ 5 → 4 → 3 → 2 → 1. The minimum expected cost and
time for ascending order occurs at MV = [2, 3], and that for
descending order occurs at MV = [2, 3]. However, these two
configurations are not optimum when all other sequences are
considered, and despite their symmetry, they do not lead to
similar assembly costs and times.

Figure 6 shows the expected cost (Fig. 6a) versus the
expected time (Fig. 6b) for all possible scenarios which
consist of 128 MVs multiplied by 40,320 sequences, a
total of 516,0960 points. Since the minimization of cost
and time possibly requires different sequences, we thus
suggest using the Pareto optimization to find the non-
dominated solutions (sequences and MVs) for the min-
imum expected cost and time problem. Figure 6b shows
the specified region in Fig. 6a, which is a Pareto region,
and also the Pareto solutions (global Pareto solutions)
within the region. Five MVs constitute all the points in
this region: [4], [2, 3], [2, 3], [2, 3], and [2]. The
Pareto point characteristics are as follows:

& Ĉ
M ¼ 7:58 and T̂

M ¼ 4:38 for MV = [4] and sequences 2
→ 4→ 3→ 5→ 6→ 8→ 7→ 1 and 2→ 4→ 3→ 5→
6 → 7 → 8 → 1.

& Ĉ
M ¼ 7:57 and T̂

M ¼ 4:38 for MV = [4] and sequences
2→ 3→ 4→ 5→ 6→ 8→ 7→ 1 and 2→ 3→ 4→ 5
→ 6 → 7 → 8 → 1.

& Ĉ
M ¼ 7:61 and T̂

M ¼ 4:33 for MV = [2, 3] and se-
quences 1 → 3 → 2 → 6 → 8 → 7 → 5 → 4 and 1 →
3 → 2 → 6 → 7 → 8 → 5 → 4.

& Ĉ
M ¼ 7:59 and T̂

M ¼ 4:33 for MV = [4] and sequences
1→ 2→ 3→ 6→ 8→ 7→ 5→ 4 and 1→ 2→ 3→ 6
→ 7 → 8 → 5 → 4.

From Fig. 6b, an important observation can be made: that
the MVs in the Pareto region have particular characteristics
that also lead to a useful heuristic for modular assembly for-
mation. First, the size of eachmodule in theseMVs is lower or
equal to n/2 (= 4). Second, these MVs are the most balanced
ones, meaning they have minimum standard deviation (SD)
among the categories of similar sized MVs

C1 : m≤
n
2

C2 : min
MVm

SD MV½ � ð9Þ

Note that the two constraints need to be observed together
and that this heuristic does not advise on a particular sequence.
The standard deviation of MVs can be found in Table 1 in the

P  1 2 3 4 5 6 7 8 

1 1 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

2 0.91 2 0.92 0.92 0.92 0.92 0.92 0.92 

3 0.91 0.92 3 0.93 0.93 0.93 0.93 0.93 

4 0.91 0.92 0.93 4 0.94 0.94 0.94 0.94 

5 0.91 0.92 0.93 0.94 5 0.95 0.95 0.95 

6 0.91 0.92 0.93 0.94 0.95 6 0.96 0.96 

7 0.91 0.92 0.93 0.94 0.95 0.96 7 0.97 

8 0.91 0.92 0.93 0.94 0.95 0.96 0.97 8 

Fig. 5 The assembly success probability matrix used for the design of
optimum assembly
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Appendix. These two rules can be examined further in Fig. 7a,
b where the minimum expected cost and minimum time for
each MV (over all sequences) are respectively plotted against
the standard deviation of correspondingMVs. The figure clas-
sifies different solutions according to the size of the MVs (m).
To verify this heuristic, a further example with different P and
C matrices is shown in Fig. 12 in the Appendix.

4 Modularization costs

Let us now loosen some of the assumptions used for simplifi-
cation in the previous section by considering the effect of
modularization and modular interface creation on the expect-
ed cost. In simple mechanical systems, the additional connec-
tion costs of the modules are due mainly to supplementary
manufacturing cost of the mechanical components. A simple
illustration of this is brought in Fig. 8. However, in more
complex systems, the connection costs between modules, as
well as the probabilities for success, depend on the relations
between the elements of the modules as determined by the
design structure matrices (DSMs) or by connectivity graphs.

The connection costs and probabilities between modules are
determined by the internal costs of connecting the elements
within the module and by “bottleneck” or “external” connec-
tions, which represent interactions and dependencies between
elements that belong to different modules [26, 27]. Figure 9
shows the DSMs of two products [28]: PW4098 Jet Engine
(Fig. 9a), and Kodak single-use camera (Fig. 9b). Although
the two systems consist of a nearly similar number of modules
(9 for the jet engine and 8 for the camera), there are significant
differences between their modular structures, as well as differ-
ences between modules within the same product. For exam-
ple, the “waterproof” module of the camera has a single ex-
ternal interface with the “shutter” module (element 4 is the
“rubber cover” and element 28 is the “shutter release”), while
module 8 of the jet engine has more than ten external connec-
tions with each of the other modules in the engine.

In general, the intermodular connection costs and probabil-
ities are given by

cBPMk ;Mkþ1
¼ F E nið Þ;E niþ1ð Þð Þ

pBPMk ;Mkþ1
¼ M E nið Þ;E niþ1ð Þð Þ ð10Þ

(a) (b)

Fig. 7 The minimum expected assembly cost (a) and time (b) versus the standard deviation of their MVs. The encircled regions show that validity of the
two-step heuristic

(a) (b)

Fig. 6 Panel a shows the plot of assembly time versus the cost for each configuration determined by a MVand a sequence. Panel b shows the close up
look into the region circled out in a and the MV numbers that form that region. The Pareto solutions are also shown
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where E(ni) and E(ni + 1) are the subsets of elements in mod-
ules k and k + 1, respectively. Similarly, the costs and proba-
bilities of the internal connections between elements within a
module are determined by the costs and probabilities of the
internal connections given by

cMk
i; j ¼ H E nkð Þð Þ
pMk
i; j ¼ L E nkð Þð Þ ð11Þ

where E(nk) is a subset of elements in module k. As mentioned

in Section 3, cMk
i; j and pki; j may be different from ci, j and pi, j

due to special features within the module. The goal is to de-
termine an optimal modular structure that minimizes the total
expected assembly cost and time as given by Eqs. (5) and (6).

A simple example to demonstrate the above follows.
Consider the binary DSM of a system that consists of the eight

elements shown in Fig. 10a. The optimal clustering of this
system results in three subassemblies without any external
(bottleneck) connections (three independent subsystems),
and therefore, the only costs are related to the internal connec-
tions of the elements within each subassembly (Fig. 10b).
Furthermore, a failure in any assembly task can affect only
the tasks in the same cluster. Assume the nominal connection
costs and probabilities between the elements as ci, j = ti, j = 1
and pi, j are those shown in Fig. 5, with no assembly sequence
constraints. If we assume that the assembly cost between any

twomodules is determined by cBPMk ;Mkþ1
¼ tBPMk ;Mkþ1

¼ ∑cbi; j
� �

,

where cbi; j is the cost of a bottleneck connection between ele-

ments i and j (let us refer to this by case 1), the optimal
modularization and sequence is that depicted in Fig. 10c.

(a)

(b)                                                                                (c)

Fig. 8 Assembling four blocks
using simple mutually dependent
connection (a), modified modular
assembly interfaces and mutually
dependent connections (b), and a
fully modular assembly
configuration with modular
interfaces (c)

(a) (b)

Fig. 9 Design structure matrices (DSMs) for the PW4098 Jet Engine system (a) and the Kodak single-use camera (b) [23]
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However, if we raise the assumed cost by

cBPMk ;Mkþ1
¼ tBPMk ;Mkþ1

¼ ∑cbi; j
� �

nk þ nkþ1ð Þ, where nk and nk-

+ 1 are the number of elements in modules k and k + 1, respec-
tively (and let us refer to this scenario as case 2), the optimal
modularization is no modularization (Fig. 10a). Figure 11a, b
shows the general landscape for the cost and time of different
modularizations under cases 1 and 2, respectively. For case 1,
the following sequences lead to the minimum cost and time of
7.8692 and 4.4795, respectively, when used with MV = [4]:

1→3→8→6→2→4→7→5
1→3→8→6→2→4→5→7
1→3→6→8→2→4→7→5
1→3→6→8→2→4→5→7

All four sequences lead to similar probabilities (0.9100,
0.9300, 0.9600, 0.9200, 0.9200, 0.9400, 0.9500). This exam-
ple shows the importance of interface cost modeling for se-
quencing and modularization problem.

5 Conclusions

Modularity is an important feature in any complex system. It
is particularly important in cyber-physical systems (CPSs),
where many physical and computational resources are inte-
grated and interconnected. Modularity is one of the major

principles in the Industry 4.0 structure, as systems are becom-
ing more complex, and the traditional production hierarchy is
replaced by alternative dynamic structures.

This paper considered the design of complex assembly
processes, given that each assembly task has cost and reliabil-
ity values associated with it. The reliability value denotes the
probability of the assembly task to be completed successfully
in a single attempt. Given the availability and affordability of a
wide range of sensors and quality assurance techniques, each
task in the assembly process can bemonitored, and if required,
the process is adjusted according to the updated information.
In particular, the paper focuses on the assembly process in
which the tasks are mutually dependent such that a failure of
a specific assembly task is backpropagated to the previous
tasks. In such a case, the assembly must restart from previous
tasks and, in the extreme case, even from the first tasks. Our
previous work focused on the effect of task sequencing in
assembly processes with probabilistic success rate on the ex-
pected process cost and duration. This paper illustrates the
importance of considering task modularization prior to task
sequencing in complex assemblies in order to reduce the effect
of the mutual failure dependency. Simulation results indicate
that a balanced modularization, in terms of the number of
assembly tasks within each module, as well as sequencing
the tasks in a descending order of the probability for failure
of each task, improves the process performance. The cost
savings that might result from this simple heuristic are

(a) (b) (c)

1 2 3 4 5 6 7 8

1 1 1 1

2 2 1 1

3 1 3 1

4 4 1

5 1 5 1

6 1 6

7 1 1 7

8 1 1 8

1 3 8 2 5 7 4 6

1 1 1 1

3 1 3 1

8 1 1 8

2 2 1 1

5 1 5 1

7 1 1 7

4 4 1

6 1 6

1 3 8 6 2 4 7 5

1 1 1 1

3 1 2 1

8 1 1 3

6 4 1

2 5 1 1

4 1 6

7 1 7 1

6 1 1 8

Fig. 10 DSM for the eight
elements’ system (c = t = 9.4250)
(a) and the optimal clustering of
three subassemblies (c = 8.7321, t
= 5.4715) (b) and optimal
clustering for minimum assembly
cost and time (c)

(a) (b)

Fig. 11 The assembly time versus
cost for case 1 (a) and for case 2
(b)
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calculable and depend on the nature of the assembly system
and the assembled product. For simple assemblies, the pre-
sented heuristic does not hold, as the only factors affecting
their sequencing are the assembly liaison matrices and prece-
dence relations [29]. However, as the assembly process be-
comes more complex, the advantages of modular assembly
become more apparent. The paper unveils several hidden
complexities even for presumably simple assembly processes.

The implementation of the proposed method requires con-
siderations at both the product design and the assembly pro-
cess planning stages. At the product design stage, the interac-
tion between the different components, mainly in terms of the
product’s liaison graph and the assembly sequence, must be
considered. In particular, a failure in the assembly process of a
particular component may have an effect on other components

and subassemblies. In the assembly process stage, the plan-
ners should consider the effect of failures on the logistics of
the assembly process, in terms of the cost of each assembly
operation, as well as the required resources in the assembly
operations (e.g., manpower, special machinery and tools,
transportation, assembly scheduling).

In practice, designers and planners can use standard risk man-
agement tools such as probabilistic risk assessment (PRA), event
tree analysis (ETA), and fault tree analysis (FTA) to address the
uncertainties with metrics, parameterization, and prioritization.
The PRA tools, also known as likelihood consequence or prob-
ability impact tools, use the magnitude and the likelihood of
potential failures in order to express the expected loss. The
PRA tools can provide the designers and planners with insights
regarding the sensitive components and tasks that can initiate

(a) (b)

(c) (d)

P� 1 2 3 4 5 6 7 8

1 1 0.91 0.91 0.91 0.91 0.91 0.91 0.91

2 0.91 2 0.92 0.92 0.92 0.92 0.92 0.92

3 0.91 0.92 3 0.93 0.93 0.93 0.93 0.93

4 0.91 0.92 0.93 4 0.94 0.94 0.94 0.94

5 0.91 0.92 0.93 0.94 5 0.95 0.95 0.95

6 0.91 0.92 0.93 0.94 0.95 6 0.96 0.96

7 0.91 0.92 0.93 0.94 0.95 0.96 7 0.97

8 0.91 0.92 0.93 0.94 0.95 0.96 0.97 8

C� 1 2 3 4 5 6 7 8

1 1 7 7 7 7 7 7 7

2 7 2 6 6 6 6 6 6

3 7 6 3 5 5 5 5 5

4 7 6 5 4 4 4 4 4

5 7 6 5 4 5 3 3 3

6 7 6 5 4 3 6 2 2

7 7 6 5 4 3 2 7 1

8 7 6 5 4 3 2 1 8

60 61 62 63 64 65 66 67 68
Minimum cost
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Fig. 12 The minimum cost (c) and minimum time (d) (over all sequences) for 128 MVs for the P, C, and T (=C) matrices shown in a and b
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significant failures, the detriments of these failures, and their
probabilities or frequencies. The ETA and FTA tools can guide
designers and planners in optimizing the use of resources, assist
in planning quality assurance and monitoring procedures, and
assist in the development of diagnostic manuals and processes.

One limitation to this work is that it uses fairly simple exam-
ples to illustrate the utility of the presentedmodel. The number of
components in these examples was limited to no more than eight
components. This is because we could not efficiently run the
model in MATLAB with a greater number of components, pri-
marily due to the large number of sequences that needs to be
considered. MATLAB could not run the code for examples with
more than 18 components, which is relatively small compared to
the size of most complex assemblies. There are two possible
ways to address this issue. One is to use precedence graphs as
shown in the study of Shoval et al. [23] to limit the number of
possible sequences. The second possible solution is to use genet-
ic search algorithms such as for effective search for optimal
modularization and sequencing. We will take on the challenge
of system size in future work.

Appendix

Table 1 The MVs and their SD and size (m) for the eight elements

No. m SD (MV) MV

1 1 0 8

2 2 4.2 [1, 7]

3 2 2.8 [2, 6]

4 2 1.4 [3, 5]

5 2 0 [4]

6 2 1.4 [3, 5]

7 2 2.8 [2, 6]

8 2 4.2 [1, 7]

9 3 2.9 [1, 6]

10 3 2.1 [1, 2, 5]

11 3 1.5 [1, 3, 4]

12 3 1.5 [1, 3, 4]

13 3 2.1 [1, 2, 5]

14 3 2.9 [1, 6]

15 3 2.1 [1, 2, 5]

16 3 1.2 [2, 4]

17 3 0.6 [2, 3]

18 3 1.2 [2, 4]

19 3 2.1 [1, 2, 5]

20 3 1.5 [1, 3, 4]

21 3 0.6 [2, 3]

22 3 0.6 [2, 3]

23 3 1.5 [1, 3, 4]

Table 1 (continued)

No. m SD (MV) MV

24 3 1.5 [1, 3, 4]

25 3 1.2 [2, 4]

26 3 1.5 [1, 3, 4]

27 3 2.1 [1, 2, 5]

28 3 2.1 [1, 2, 5]

29 3 2.9 [1, 6]

30 4 2 [1, 5]

31 4 1.4 [1, 2, 4]

32 4 1.2 [1, 3]

33 4 1.4 [1, 2, 4]

34 4 2 [1, 5]

35 4 1.4 [1, 2, 4]

36 4 0.8 [1–3]

37 4 0.8 [1–3]

38 4 1.4 [1, 2, 4]

39 4 1.2 [1, 3]

40 4 0.8 [1–3]

41 4 1.2 [1, 3]

42 4 1.4 [1, 2, 4]

43 4 1.4 [1, 2, 4]

44 4 2 [1, 5]

45 4 1.4 [1, 2, 4]

46 4 0.8 [1–3]

47 4 0.8 [1–3]

48 4 1.4 [1, 2, 4]

49 4 0.8 [1–3]

50 4 0 [2]

51 4 0.8 [1–3]

52 4 0.8 [1–3]

53 4 0.8 [1–3]

54 4 1.4 [1, 2, 4]

55 4 1.2 [1, 3]

56 4 0.8 [1–3]

57 4 1.2 [1, 3]

58 4 0.8 [1–3]

59 4 0.8 [1–3]

60 4 1.2 [1, 3]

61 4 1.4 [1, 2, 4]

62 4 1.4 [1, 2, 4]

63 4 1.4 [1, 2, 4]

64 4 2 [1, 5]

65 5 1.3 [1, 4]

66 5 0.9 [1–3]

67 5 0.9 [1–3]

68 5 1.3 [1, 4]

69 5 0.9 [1–3]

70 5 0.5 [1, 2]

71 5 0.9 [1–3]

72 5 0.9 [1–3]
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Table 1 (continued)

No. m SD (MV) MV

73 5 0.9 [1–3]

74 5 1.3 [1, 4]

75 5 0.9 [1–3]

76 5 0.5 [1, 2]

77 5 0.9 [1–3]

78 5 0.5 [1, 2]

79 5 0.5 [1, 2]

80 5 0.9 [1–3]

81 5 0.9 [1–3]

82 5 0.9 [1–3]

83 5 0.9 [1–3]

84 5 1.3 [1, 4]

85 5 0.9 [1–3]

86 5 0.5 [1, 2]

87 5 0.9 [1–3]

88 5 0.5 [1, 2]

89 5 0.5 [1, 2]

90 5 0.9 [1–3]

91 5 0.5 [1, 2]

92 5 0.5 [1, 2]

93 5 0.5 [1, 2]

94 5 0.9 [1–3]

95 5 0.9 [1–3]

96 5 0.9 [1–3]

97 5 0.9 [1–3]

98 5 0.9 [1–3]

99 5 1.3 [1, 4]

100 6 0.8 [1, 3]

101 6 0.5 [1, 2]

102 6 0.8 [1, 3]

103 6 0.5 [1, 2]

104 6 0.5 [1, 2]

105 6 0.8 [1, 3]

106 6 0.5 [1, 2]

107 6 0.5 [1, 2]

108 6 0.5 [1, 2]

109 6 0.8 [1, 3]

110 6 0.5 [1, 2]

111 6 0.5 [1, 2]

112 6 0.5 [1, 2]

113 6 0.5 [1, 2]

114 6 0.8 [1, 3]

115 6 0.5 [1, 2]

116 6 0.5 [1, 2]

117 6 0.5 [1, 2]

118 6 0.5 [1, 2]

119 6 0.5 [1, 2]

120 6 0.8 [1, 3]

121 7 0.4 [1, 2]

Table 1 (continued)

No. m SD (MV) MV

122 7 0.4 [1, 2]

123 7 0.4 [1, 2]

124 7 0.4 [1, 2]

125 7 0.4 [1, 2]

126 7 0.4 [1, 2]

127 7 0.4 [1, 2]

128 8 0 [1]
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