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Abstract
Robots are used in manufacturing cells for wide purposes including pick and place of the items from a location to a destination. As
far as the authors’ knowledge in this context, the scheduling problem of a real-life flexible robotic cell (FRC) with intermediate
buffers is missing in the literature. Therefore, in this study, the process-sequencing problem of a real-life FRC is considered, aiming
to minimize the cyclic operation time of the cell. The problem is mathematically modeled and solved for a real case. Since
computation times for solving the problems rise exponentially with increasing the number of machines in the FRC, a genetic, a
simulated annealing, and a hybrid genetic algorithms are proposed to solve the large-sized problems. The objective function value of
a given solution in metaheuristic algorithms is computed by solving a linear programmingmodel. After tuning the parameters of the
proposed algorithms, several numerical instances are solved, and the performance of these algorithms are evaluated and compared.
The results show that the performance of the hybrid genetic algorithm was significantly better than both genetic and simulated
annealing algorithms.
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Nomenclature
CNC Computer numerical control
FRC Flexible robotic cell
GA Genetic algorithm
HGA Hybrid genetic algorithm
MIP Mixed integer programming
RC Robotic cell
SA Simulated annealing
α The coefficient for temperature modifications
ta The completion time of activity a
C The cycle time

Tf The final temperature
T0 The initial temperature
Mi The ith machine in the FRC
Lik The loading of the kth item on machine i in

each cycle
Tiab The lower bound of dab for machine i
Itermax The maximum number of iterations in GA
N The number of iterations in SA
m The number of machines in the FRC
Pop The number of population
Pc The probability of crossover
Pm The probability of mutation
p The processing time for an item on any machine
wab The robot waiting time between ta and tb
Li The set of loading activities of machine i in

each cycle
Ui The set of unloading activities of machine i in

each cycle
ε The time for just picking/placing an item from/to the

input/output buffer, or any machine
dab The time of performing activity b after finishing

activity a, by the robot
δ The travel time of the robot between two

consecutive station
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Uik The unloading of the kth item from machine i in
each cycle

xab 1, if the robot performs activity b immediately after
activity a; 0, otherwise

zik 1, if the kth order is applied for the activities of ma-
chine i; 0, otherwise

1 Introduction

With traditional issues surrounding the manufacturing indus-
try, there are always opportunities for improvement and indus-
trial robot arms play a significant role in this matter. The use of
robots in production has many advantages and benefits such
as quality improvement for the system and quality of life im-
provement for the workers. Robots have the potential to en-
hance manufacturing sectors from productivity, quality, secu-
rity, and safety points of view, and can even stimulate the
creation of more jobs [1].

Robots in manufacturing cells are mainly used to pick and
place the course products/products, assembling, painting, and
welding processes. Robotic pick and place speeds up the pro-
cess and decreases wasted handling time and as a result, in-
creases production rates [2]. With many end-of-arm-tooling
options available, robots can be customized to fit specific pro-
duction requirements and as a consequence, moving large,
small, heavy, or hard-to-handle products would be an easy
task in manufacturing lines [3]. Consistency is the main ben-
efit of using robots in production [4].

The scope of this research pertains to a real-life flexible ro-
botic cell (FRC). An FRC is comprised of a number of comput-
er numerical control (CNC)machines in which a robot is used to
pick, place, and transport the parts between the input/output
buffers and machines. Real-life flexible robotic cell is an FRC
with intermediate buffers on the CNC machines. In such a cell,
eachmachine is capable of performing all required processes for
producing the parts, and item visits only one of the machines in
the system [5]. Raw materials are handled by a robot from the
main input buffer to intermediate buffers of the machines, and
the products should be transported from the machines to the
main output buffer. As a result, machines in the cell are laid
out in parallel, not a sequence. The flexibility of the machines
in the system allows the cell to produce parts with a wide range
of features. The robot is capable of transporting parts with dif-
ferent ranges of size and weight. When the number of machines
in a cell is high, the robot will be busier. Hence, it is valuable to
investigate whether there exists an optimal process sequence for
the robot to minimize the idle time of the machines and maxi-
mize the productivity of the cell, and if exists, how to find it.

This paper provides an approach to discover the optimal
sequence of the pick-and-place jobs in a real-life FRC. The
problem is framed as transferring items from the input buffer
to the intermediate buffers and from machines to the output

buffer. The purpose of this paper is threefold. First, to take into
account all the characteristics of the real-life FRC and to de-
velop a mathematical model to solve the optimization problem
of the cell. Second, to generalize the problem by considering a
cell with m machines and m intermediate buffers. Third, to
solve the large-sized problem with simulated annealing
(SA), genetic algorithm (GA), and expecting to obtain a much
finer result with a hybrid metaheuristic algorithm (the initial
parameters of the hybrid metaheuristic algorithms are calibrat-
ed by using the Taguchi method). Some numerical examples
are solved aiming to make comparisons among the methods.

2 Literature review

According to the industry 4.0 records of the United Nations
Educational, Scientific and Cultural Organization (UNESCO),
one of the agendas that is perceived as a particular need, and a
serious gap in industries is “increase facilities individual flexibil-
ity” [6]. By recent developments on technical specifications of
CNC machines, robotic cells (RCs) are going to give their place
to FRC that will be dominant in the manufacturing systems.

An RC is a group of machines with diverse characteristics in
a workspace (e.g., drilling, milling, and turning). These ma-
chines are commonly connected to each other by a material
handling system in order to process parts [7]. In RCs, the parts
are processed through all the machines without any distinction
in general. Therefore, parts go through machines in a similar
sequence. Eachmachine performs a single operation and passes
the part to the next machine by using the material handling
system. A machine in an RC cannot complete all of the opera-
tions. In fact, RC scheduling problems lie in classical flow shop,
which has been widely studied [8, 9].

In an FRC, all the operations of similar parts with a specific
number of different operations are completed on a machine
with the same process times [10]. When a part is loaded on a
machine, the machine can complete all the remaining opera-
tions, not necessarily one operation. Depending on parts oper-
ation specifications, there is a need for flexible and program-
mable machines in the cell to solely perform all of the opera-
tions. Hence, it is possible to assign each of the operations to
any machine and the operation time is not relative to the ma-
chine’s name and specifications [11]. The scheduling problem
of an FRC can be generalized as two well-known scheduling
problems: (a) cyclic scheduling of the robot move, and (b)
operation allocation. In the cyclic scheduling of the robotmove-
ment, an optimal cycle for the robot’s movement sequence
among all desired locations in a steady state is considered. On
the other hand, in the operation allocation, the optimal order of
the operations on the machines is found for each machine,
independently. The problem becomes very difficult when the
number of machines and operations increases, consequently,
existing literature are mostly limited to a simple cell with two
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machines for processing a single-part type. The problem even is
more complicated by considering constraints for the robot and
machines (e.g., considering a different capacity for robot and
machines). Moreover, the problem depends on the layout of the
cell (i.e., circular or linear configuration).

In the last decades, some researchers have investigated the
scheduling problem of FRCs. Akturk et al. [12] suggested a
basic framework for FRC scheduling problems. Gultekin et al.
[13] considered situations that are more realistic; they divided
the operations into three groups based on tool constraints in the
tool magazine, and they assumed that the first CNC machine or
the second CNC machine could only execute some operations.
In other studies, Gultekin et al. assessed the effect of pure cycles
on the cycle times [14–16]. Rajapakshe et al. [17] accomplished
a comparative productivity analysis on the flexible robotic cell
with a single-gripper robot and without swap ability in circular
and linear configurations. Yildiz et al. [18] considered a circu-
larly configured FRC with m machines, a shared input/output
buffer (I/O), and a single gripper robot without swap ability.
Foumani and Jenab [19] investigated an FRC with m machine,
a robot with swap ability, and the workingmachines are allowed
to switch parts with each other. Kim et al. [20] examined the
cyclic scheduling problem for a dual-armed cluster tool that
performs periodic cleaning processes. They identified sufficient
conditions for which the conventional backward and swap se-
quences provide the minimum cycle time. Moreover, they pro-
posed two heuristic scheduling strategies and compared them
with traditional programming methods and the lower bound of
each schedule. Jiang et al. [21] applied two heuristics to mini-
mize the makespan of a job scheduling problem. They consid-
ered a two-machine system where the machines are parallel and
identical and the machines are loaded/unloaded by a server.
Batur et al. [22] considered a hybrid robotic cell to produce
multiple part-types and they presented a TSP-based model to
solve this problem. Gultekin et al. [23] studied a two-machine
dual-gripper FRC where their aim is finding the best order the
robot moves to maximize the production rate. They found five
different robot movement orders that dominate the rest of them.
Recently, Ghadiri Nejad et al. [5] developed a mathematical
model for the scheduling problem of an m machine FRC, and
they proposed a SA algorithm for solving the problem. Ghadiri
Nejad et al. [24] dealt with the scheduling of a multi-machine
robotic cell producing identical parts. Without considering indi-
vidual buffers for the machines, they tried to maximize the
throughput of the system in the long run utilizing ametaheuristic
algorithm. Moreover, Nejad et al. [25] considered a bi-objective
scheduling problem of a flexible robotic cell to minimize the
cyclic production cost of the cell. They proposed amathematical
model and used NSGAII for large-sized problems.

Recently, simulated annealing (SA) and genetic algorithm
(GA) solution methods are used to solve a broad range of
optimization problems. These methods have come to promi-
nence for their high solution performance and fine results

achieved in short times among meta-heuristics approaches.
In recent publications, the SA and GA or their modifications
have been used for solving the production scheduling prob-
lems [26, 27], flow shop FRC scheduling [28], supply chain
inventory and network optimization problem [29, 30], emer-
gency logistics problem [31, 32], assembly line balancing
problem [33, 34], clustering problem [35, 36], etc.

Observing the cell configuration, the FRC in all the report-
ed studies has a robot, an input/output buffer, and some ma-
chines, which are placed on a circular or liner layout. However,
a vital component of a real-life FRC, namely an intermediate
machine’s buffers, is not considered on scheduling problem.
As far as the authors’ knowledge in this context, the schedul-
ing problem of a real-life FRC with intermediate buffers is
missing in the literature.

3 A real-life flexible robotic cell

A real-life FRC with three machines M1, M2, and M3, and one
robot is shown in Fig. 1. In this system, theCNC centermachines
perform milling, drilling, and turning operations on a 19-kg cast
crankshaft to be used in an automobile engine. Considering part
features, it seems that it is possible to use a flow shop to produce
the part. However, because of part sensitivity, the company pre-
fers to do all the machining operations of the crankshaft on a
CNC center machine. The part is brought to input buffer by an
indexing conveyor. There is an intermediate buffer attached to
each of the machines and a robot transfers the parts from the
input to the intermediate buffers of the machines, and from ma-
chines to the output buffer. Loading of the parts from intermedi-
ate buffers to machines is performed by the manipulator of the
buffer. A belt conveyor removes the finished parts from the out-
put buffer of the cell. Since the robot performs a repeated se-
quence of pick-and-place operations, the performance of the cell
depends on the sequence of the robot activities. The machining
time including the time for loading of each item is 120 s. The
load/unload activity by the robot takes 2 s. The transfer velocity
of the robot is constant, and all of the individual facilities (i.e.,
input/output buffers, machines) are located linearly and in equal
distance from each other. Therefore, the robot can transfer a part
from the input buffer to the first machine, in 5 s whichmeans, the
loading of machine 1’s buffer from the input buffer, considering
the loading and unloading time of the items, takes 9 s for this
case. Apparently, the loading of machine 2 and machine 3’s
buffer from the input buffer takes 14 and 19 s, respectively.

3.1 Problem definition and formulation

In the formulation, m machines are considered in FRC where
the processing time for an item on any machine is p. Each
machine has an individual input buffer to keep a part. The
loading activity of machine i consists of moving the robot to
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the input buffer, picking an item, transferring it to machine i,
and loading it into the machine’s buffer. Similarly, the
unloading activity of machine i includes moving the robot
towards machine i, getting the finished part from the machine,
transferring, and putting it into the output buffer. Note that
after each mission, the robot stays in place until its next oper-
ation. Cycle time is a duration from the starting of the system
from a particular state and returning to the same state.

Let Lik be the loading and Uik be the unloading of the kth

item of machine i in each cycle. Let Li be the set of loading
activities of machine i, i.e., Li = {Lik| k = 1, 2}, and Ui be the
set of unloading activities of machine i, i.e., Ui = {Uik| k = 1,
2}, when just two parts can be loaded on each machine. Let A
be the set of all loading and unloading activities, i.e., A = {Lik,
Uik| i = 1, 2, …, m; k = 1, 2}. Let ε be the time for taking an
item from the input buffer or a machine, or the time for putting
an item to the machines’ buffer or the output buffer. Let δ be
the travel time of the robot for a one-unit distance. The dis-
tances between the input buffer and the first machine, between
any two following machines, and between the last machine
and the output buffer are assumed to be one unit of distance.
Therefore, the time that the robot needs to perform activity b
after finishing activity a (dab) is:

dab ¼
2εþ iþ jð Þδ if a∈Li and b∈Lj

2εþ ji− jj þ mþ 1− jð Þδ if a∈Li and b∈U j

2εþ 2 mþ 1− jð Þδ if a∈Ui and b∈U j

2εþ mþ 1þ jð Þδ if a∈Ui and b∈Lj

8>><
>>:

Wherem is the number of machines in the FRC. For example,
to load machine 3 after loading machine 1 (L1L3), the robot
goes to the input buffer from machine 1 (1δ), take a part (1ε),

goes to machine 3(3δ), and load the machine (ε), that is totally
2ε + (1 + 3)δ (see the first row of dab). Until the process of an
item has not been finished, the robot may need to wait before
unloading it. Therefore, the time between the completion
times of activities a and b related to machine i cannot be less
than the following values (Tiab):

Ti
ab ¼

2εþ mþ 1−ið Þδ þ p if a ¼ Li1 and b ¼ Ui1

2εþ mþ 1−ið Þδ þ p if a ¼ Li2 and b ¼ Ui2

εþ p if a; b∈Ui

dab otherwise

8>><
>>:

Table 1 contains different scenarios for the states of each
machine at the beginning of the cycle.

The order of the loading and unloading activities of each
machine can be any of the orders mentioned in this table in the
cyclic production. According to the orders of the activities,
each machine should be set up before starting the cyclic pro-
duction, and then the system may repeat the same operations,
continuously.

Fig. 1 Real-life FRC
configuration for crankshaft
production

Table 1 All of the activity orders for each machine

The situation of each machine Activity orders

The machine is idle and its machine
buffer is empty

1. Li1, Li2, Ui1, Ui2

2. Li1, Ui1, Li2, Ui2

The machine has a processed part and
its input buffer is empty

3. Li2, Ui1, Ui2, Li1
4. Li2, Ui1, Li1, Ui2

5. Ui1, Li2, Ui2, Li1
6. Ui1, Li2, Li1, Ui2

The machine has a processed part and
its input buffer is full

7. Ui1, Ui2, Li1, Li2
8. Ui1, Li1, Ui2, Li2
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Considering the cyclic form of the operations, and for the
sake of simplicity and prevention of repeating similar permu-
tations, one activity may be fixed as the first activity. In this
study, L11 is considered as the first activity. Therefore, the time
between two consecutive L11 activities is regarded as the cycle
time. A reduction in the cycle time means an increase in the
production rate of such a system. In the following, a mixed
integer programming (MIP) model is proposed to find the
optimal cycle time, the order of activities, and the robot
waiting time before unloading each machine. The decision
variables of this MIP model are as follows:C is the cycle time,
ta is the completion time of activity a ∈ A, and wab is the
waiting time of the robot between the completion times of
activity a and following activity b, a ∈ A, b ∈ A − a.

xab ¼ 1 if robot performs activity b immediately after activity a
0 otherwise

�

zik ¼ 1 if kth order is applied for the actvities of machine i; k ¼ 1; 2; :::; 8
0 otherwise

�

min ∑
a∈A

∑
b∈A−a

dabxab þ ∑
a∈A

∑
b∈A−a

wab s:t: ð1Þ
∑

b∈A−a
xab ¼ 1 ∀a∈A ð2Þ

∑
a∈A−b

xab ¼ 1∀b∈A ð3Þ
tb≥ ta þ dab þ wab−M 1−xabð Þ ∀b∈A−L11; a∈A−b ð4Þ
tb≤ ta þ dab þ wab þM 1−xabð Þ ∀b∈A−L11; a∈A−b ð5Þ
C≥ ta þ daL11 þ waL11−M 1−xaL11ð Þ ∀a∈A−L11 ð6Þ
C≤ ta þ daL11 þ waL11 þM 1−xaL11ð Þ ∀a∈A−L11 ð7Þ
wab≤Mxab ∀a∈A; b∈A−a ð8Þ

∑
8

j¼1
zij ¼ 1 i ¼ 1; :::;m ð9Þ

tLi1−tUi1≤M zi3 þ zi4 þ zi5 þ zi6 þ zi7 þ zi8ð Þ i ¼ 1; :::;m

ð10Þ
tLi1−tUi2≤M zi3 þ zi5 þ zi7ð Þ i ¼ 1; :::;m ð11Þ
tLi1−tLi2≤M zi3 þ zi4 þ zi5 þ zi6ð Þ i ¼ 1; :::;m ð12Þ
tUi1−tLi1≤M zi1 þ zi2ð Þ i ¼ 1; :::;m ð13Þ
tUi1−tLi2≤M zi1 þ zi3 þ zi4ð Þ i ¼ 1; :::;m ð14Þ
tLi2−tUi1≤M zi2 þ zi5 þ zi6 þ zi7 þ zi8ð Þ i ¼ 1; :::;m ð15Þ
tLi2−tUi2≤M zi7 þ zi8ð Þ i ¼ 1; :::;m ð16Þ
tLi2−tLi1≤M zi1 þ zi2 þ zi7 þ zi8ð Þ i ¼ 1; :::;m ð17Þ
tUi2−tLi1≤M zi1 þ zi2 þ zi4 þ zi6 þ zi8ð Þ i ¼ 1; :::;m ð18Þ
tUi2−tLi2≤M zi1 þ zi2 þ zi3 þ zi4 þ zi5 þ zi6ð Þ i ¼ 1; :::;m ð19Þ
tUi1≥ tLi1 þ Ti

L1;U1−M 1−zikð Þ i ¼ 1; :::;m; k ¼ 1; 2 ð20Þ
tUi2≥ tLi2 þ Ti

L2;U2−M 1−zikð Þ i ¼ 1; :::;m; k ¼ 1; 2; 3; 4; 5; 6 ð21Þ
tUi2≥ tUi1 þ Ti

U1;U2−M 1−zikð Þ i ¼ 1; :::;m; k ¼ 1; 3; 4; 7; 8 ð22Þ

tLi1−tUi1≤C−Ti
L1;U1zik i ¼ 1; :::;m; k ¼ 3; 4; 5; 6; 7; 8 ð23Þ

tLi2−tUi2≤C−Ti
L2;U2zik i ¼ 1; :::;m; k ¼ 7; 8 ð24Þ

tUi2−tUi1≤C−Ti
U2;U1zik i ¼ 1; :::;m; k ¼ 4; 6; 8 ð25Þ

ta≥0 ∀a∈A ð26Þ
C≥0 ð27Þ
wab≥0 ∀a∈A; b∈A−a ð28Þ
xab∈ 0; 1f g ∀a∈A; b∈A−a ð29Þ
zik∈ 0; 1f g i ¼ 1; :::;m; k ¼ 1; :::; 8 ð30Þ

The objective function of this model is to minimize the
cycle time including the robot waiting times. Constraint
(2) guarantees that the robot passes from each activity to
another activity. Constraint (3) ensures that the robot
passes each machine once. Constraints (2) and (3) togeth-
er guarantee that the robot performs each activity.
Constraints (4) and (5) compute the completion times of
the activities considering the robot moving time, its load-
ing and unloading times, and the waiting times of the
robot to perform successive activities. These constraints
also eliminate sub-cycles. Constraints (6) and (7) compute
the cycle time considering the completion time of the last
activity, the robot moving time, the load/unload times,
and the waiting time until completing the first activity of
the cycle. If a and b are not successive activities, wab will
be fixed at zero by constraint (8). Constraint (9) guaran-
tees that for each machine, one of the eight possible or-
ders is applied. Constraints (10)–(19) compare the com-
pletion times of the activities of each machine and force
the related z variables to be 1. Since in all of the eight
orders, Ui1 is before Ui2; considering constraint (9), there
is no need to use the similar restrictions for Ui2–Ui1.
Constraints (20)–(25) compute the completion times of
the activities regarding the processing times of the ma-
chines and the time that the robot needs to perform these
tasks. Constraints (26)–(28) are the non-negativity con-
straints, and finally, constraints (29) and (30) define the
binary variables.

4 Solution methods

To solve the problem using the mathematical model, enumer-
ation method is used considering the real data of the cell.
Genetic and simulated annealing algorithms and a hybrid ge-
netic algorithm are proposed to solve the large-sized cells.

4.1 Genetic algorithm

Genetic algorithm (GA) starts by generating a population of
random solutions. Each solution is represented by an array
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having 4m elements in the form of XYZ where X, Y, and Z
show loading/unloading activity, machine number, and part
number, respectively. As an example, L21 illustrates a loading
activity on machine 2 for its first part. Figure 2 depicts an
encoding of a solution for a four-machine FRC. To avoid
having similar permutations of a solution, the loading of the
first machine with the first part is fixed as the first activity.

The value of the fitness function for each solution is
calculated considering the described formulations and
given parameters. Since there is a probability of gener-
ating an infeasible solution, a repair procedure as shown
in Fig. 4 is applied. It should be mentioned that after
each crossover, or mutation operations, the solution is
checked and is repaired if it is infeasible. In each step,
some offsprings are produced by mating the selected
parents through crossover and mutation operators. The
one-point-crossover operator is utilized to decompose
parent solutions into two segments. The second part of
the parents after the crossover point is interchanged and
two offsprings/children are produced. A graphical repre-
sentation of the crossover operation is shown in Fig. 3.

If there exists a repeated gene in the offspring, its
second appearance in the chromosome would be re-
placed by a gene which is absent in the solution. If
there are more than one repeated genes, they are re-
placed by the absent ones in random order. For in-
stance, L22 has been repeated twice in the first chromo-
some of offspring solution in Fig. 3. To repair this
chromosome, the first L22 remains in the same place,
but the second one is replaced by U21 which was absent
in the solution. Similarly, in the second chromosome of
the offspring solution in Fig. 3, U21 has been repeated
twice and L22 which is the only absent gene is replaced
in the second repeated gene of U21. Figure 4 illustrates
the repaired offspring solutions.

The mutation operator uses shift, swap, and reverse
operations to generate neighboring solutions from the
current solution. Shift operator selects an activity ran-
domly and changes its place, preserving the order of all
the other activities. Swap operator selects two activities
randomly and changes their place. The reverse operator
selects two positions and reverses the order of activities
between them. Figure 5 gives examples for each of
these mechanisms.

After generating the offsprings and adding them to the
population, they are sorted based on their fitness function
values. The best solutions are selected for starting the next
iteration. The algorithm continues for a pre-determined

number of iterations. Algorithm 1, represents the pseudo code
of the proposed GA.

4.2 Simulated annealing

The simulated annealing (SA) algorithm starts by gen-
erating a random initial solution at a temperature of T =
T0, and its fitness function is calculated similarly to
what is explained for GA. SA generates a new neigh-
boring solution by applying one of the shift, swap, and
reverse operators on the initial solution, and then the
fitness value of the new solution is calculated. If the
fitness value is improved, the new solution is accepted
for generating the next solution. Otherwise, the new
solution with worse fitness value is accepted with a
probability calculated by Eq. (31). Having the chance
of selecting the worse solution is the advantage of the
SA algorithm to escape from the local optimal and find
better solutions. After each iteration of SA, the temper-
ature drops by a coefficient of α (α ∈[0, 1]). The algo-
rithm goes on until the temperature is less than a final
temperature (Tf) and the best solution found so far is
returned. Algorithm 2 represents the pseudo code of the
proposed SA.

Exp − OBF new solutionð Þ−OBF current solutionð Þð Þ=Tð Þ
ð31Þ

Fig. 2 GA solution representation
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4.3 Hybrid genetic algorithm

The proposed hybrid algorithm proceeds the same as the
GA except it uses a simulated annealing algorithm to
improve the quality of each offspring, generated by
the crossover operation. If the fitness function value is
improved, the offspring is replaced by the new solution.
To consider a probability to keep a worse solution for
the next iteration, Eq. (32) is used. Algorithm 3 repre-
sents the pseudocode of the mutation algorithm which is
located instead of lines 17 to 21 of the pseudocode of
the GA in Algorithm 1

Exp − OBF newð Þ−OBF currentð Þð Þ= 1−Iteration no=Itermaxð Þð Þ ð32Þ

5 Experimental results

The experiments of all the problem instances have been per-
formed on a platform with Intel(R) Core(TM) i5-3320 CPU at
2.60GHz and a 4.0 GB RAM.

5.1 The initial results for the real-life FRC case

The real-life FRC as an instance of the proposed model has
been solved by an enumeration method, which helps to con-
sider all different robot sequences to complete the jobs.
Moreover, its corresponding cycle time allows verifying if
all the logic and connections have been properly set.
Moreover, for each run, detail information regarding the entire
elements of the model and processes carried out in the system
were provided.

To analyze the behavior of the real-life FRC, it is interest-
ing to consider the data regarding total robot’s cycle time, the
sequence of the robot operations, utilization of machines, and
robot idle times. The minimum cycle time required to produce
two parts in each of the individual machines in the existing
configuration of the cell, as shown in Fig. 6, was 288 s.
Considering the sequence of the robot operations for the opti-
mal cyclic time, it was possible to conclude that the suggested
sequential operations of the robot were logical and properly
arranged. Figure 6 demonstrates the operations’Gantt chart of
the tasks in the cell for the optimum result.

According to the top row of Fig. 6, the robot performed
L21U12U32U22L32L22L12U11U31U21L31L11 activities, conse-
quently. This means the cycle was started just after completion
of the loading of the first part on the first machine (at time of
zero). Then, the robot went to the main input buffer, took a part,
went to the second machine and loaded the buffer of the ma-
chine (at the time of 19). Then, the robot went to the first
machine and unloaded the part, transferred it to the main output

Fig. 3 An example of the crossover operation

Fig. 4 Repairing the chromosome after a crossover operation
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buffer and put it there (at time 43) and so on. The other three
rows of the figure show the processing schedules of the ma-
chine where it is seen that when the machines were processing
andwhen theywere idle or were waiting to be loaded/unloaded.

In the real-life case, daily production in the cell was divided
into three shifts, each consisting of 8 h, for 6 days a week, and
consequently, 312 days a year, whichmeans the available time
was 26,956,800 s in a year. During this available time, the cell
could complete 93,600 cycles, in each of which six parts were
produced. Therefore, the cell was able to produce 561,600
number of products each year. Considering the utilization as
a percentage of busy time over total production time, the use

of the robot was 100%, as it was always busy according to the
optimal schedule, and the usage of the machines was similar
for all and equal to 83.3%.

Now, let us consider the order of robot activities before
finding the optimal one. The previous order was
L12L21L22L31L32U11U21U31U12U22U32L11. The cycle time of
this order was 366 s. It shows that having this order in the real-
life case, and considering 26,956,800 s available time in a
year, the cell could have 73,652 complete cycle which was
able to produce 441,912 parts in a year. Just these data show
that the productivity of the cell with the optimized order was
about 12.7% more than the cell with the previous order.

Fig. 5 Generation of neighboring
solutions by mutation operator

Fig. 6 Gantt chart of the optimal solution of m = 3, ε = 2, δ = 5, and p = 120 problem

3620 Int J Adv Manuf Technol (2019) 103:3613–3627



To evaluate the performance of the proposed mathematical
model, some instances for a two- and three-machine cells with
different processing times were considered. The ε and δ were
fixed at one and two time units, respectively. The model was
coded in CPLEX 12.6 software. Table 2 illustrates the related
results where P was the processing times of the machines, m
shows the number of machines in the cell, and C was the
optimal cycle time calculated by the model.

As shown in Table 2, the optimal cycle times for both two-
and three-machine cells were constant when the processing
times of the machines were small enough. Then by raising the
processing times, their cycle times were steadily increasing.
The computation times for the two-machine problems were
always less than 1 s. For three-machine problems, the compu-
tation times were enormous when the processing times were
small. By increasing the processing times until about 40 units,
the computation time climbed to a minute. The other important
point was the high rising in computation times between two-
and three-machine cell problems with the same processing
times, especially when the processing times were small. The
experience gained from the model solution for the cell allowed
us to draw some conclusions about the proposed model. It was
verified that the model worked as specified in both

mathematical processes and real-life operation. Additionally,
the computation time of the model for large-size cells increased
exponentially. It seemed that the use of metaheuristic algo-
rithms for solving the model might be a good candidate.

5.2 Performances of the proposed metaheuristic
algorithms

5.2.1 Tuning of the initial parameters

The performance of the proposed GA, SA, and HGA depend
on their initial parameter settings. Therefore, different levels
for the parameters of the proposed algorithms were selected
and illustrated in Table 3.

To find the best initial amounts of the parameters, the
Taguchi approach was used [37]. Using Eq. (31), the deviation
of the response was examined, wherein Y designated the value
of reply and n characterizes the number of orthogonal ranges.

S
�
N
¼ −10� log10 sum Y2

� �
=n

� � ð33Þ

The best configuration of the initial values of the parame-
ters is the one that increases the signal to noise ratio (S/N). For
this reason, the S/N ration was plotted for each parameter and
the parameters which maximized this ratio were selected,
which means the parameters that decrease the effect of noise
in the experiments. Seven different problems were considered
to find the best combination of the initial values for each
algorithm (as shown in Table 4).

Table 2 The results of the mathematical models for two- and three-
machine problems

p m = 2 m= 3

C Computation
time (sec.)

C Computation
time (sec.)

0 64 0.76 120 4875.20

5 64 0.67 120 2847.28

10 64 0.57 120 2028.11

15 64 0.43 120 991.49

20 64 0.36 120 492.69

25 64 0.31 120 256.56

30 64 0.34 120 214.78

35 72 0.39 120 82.46

40 82 0.36 120 50.36

45 92 0.35 120 15.32

50 102 0.35 120 12.10

55 112 0.34 120 19.05

60 122 0.37 122 25.12

65 132 0.34 132 17.05

70 142 0.43 142 24.80

75 152 0.35 152 17.09

80 162 0.37 162 20.28

85 172 0.32 172 16.57

90 182 0.37 182 18.68

95 192 0.37 192 15.82

100 202 0.35 202 19.78

Table 3 Levels of the parameters

Algorithms Parameters Level (1) Level (2) Level (3) Level (4)

GA (A) Pop 25 50 75 100

(B) IterMax 40 50 75 100

(C) Pc 0.3 0.5 0.7 0.9

(D) Pm 0.3 0.5 0.7 0.9

SA (A) T0 90 95 98 99

(B) Tf 0.5 0.6 0.75 1.0

(C) α 0.7 0.8 0.9 0.95

(D) N 10 15 20 30

HGA (A) Pop 25 50 75 100

(B) IterMax 40 50 75 100

(C) Pc 0.3 0.5 0.7 0.9

(D) Pm 0.3 0.5 0.7 0.9

(E) N 5 10 15 20

Table 4 Problems which are solved to find the best initial parameters

Number of machines (m) 4 5 6 7 8 9 10

Processing times (P) 90 140 200 240 290 330 380
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For each combination of the parameters, the problems were
solved five times, and the average of the fitness values was
used as the response in Taguchi analysis. This method was
deployed by Minitab 16.0. The design of the experiments can
be found in Table 5.

Figure 7 illustrates the S/N ratios for GA. According to this
figure, all of the GA parameters were better to be at their
fourth level. In other words, GA performed better when the
initial value of population size was set to its upper bound

(100), the maximum iterations was 100, and the probability
of crossover and mutation were the same and equal to 90%.

The results of the Taguchi analysis for SAwere depicted in
Fig. 8. It was evident that T0, Tf, α, and N should be in their
second, third, fourth, and fourth levels which correspond to
95, 0.75, 0.95, and 30, respectively. Additionally, according to
Fig. 9, the parameters of HGA including Pop, IterMax, Pc, Pm,
and N were better to be set at 100, 75, 0.7, 0.7, and 20,
respectively.

Table 5 The results of different parameter combinations for the proposed algorithms

Order GA parameters Fitness function
value

SA parameters Fitness function
value

HGA parameters Fitness function
value

A B C D A B C D A B C D E

1 1 1 1 1 619.86 1 1 1 1 774.00 1 1 1 1 1 608.43

2 1 2 2 2 571.71 1 2 2 2 650.29 1 2 2 2 2 545.86

3 1 3 3 3 548.86 1 3 3 3 563.00 1 3 3 3 3 538.86

4 1 4 4 4 546.57 1 4 4 4 558.43 1 4 4 4 4 539.57

5 2 1 2 3 581.14 2 1 2 3 622.00 2 1 2 3 4 545.00

6 2 2 1 4 562.57 2 2 1 4 645.71 2 2 1 4 3 543.14

7 2 3 4 1 552.00 2 3 4 1 590.86 2 3 4 1 2 539.00

8 2 4 3 2 549.64 2 4 3 2 598.86 2 4 3 2 1 538.86

9 3 1 3 4 555.29 3 1 3 4 572.43 3 1 3 4 2 547.00

10 3 2 4 3 554.14 3 2 4 3 559.50 3 2 4 3 1 542.29

11 3 3 1 2 550.43 3 3 1 2 704.93 3 3 1 2 4 538.86

12 3 4 2 1 538.86 3 4 2 1 746.50 3 4 2 1 3 538.86

13 4 1 4 2 545.86 4 1 4 2 553.14 4 1 4 2 3 543.71

14 4 2 3 1 553.50 4 2 3 1 639.07 4 2 3 1 4 538.86

15 4 3 2 4 547.14 4 3 2 4 598.14 4 3 2 4 1 538.86

16 4 4 1 3 541.00 4 4 1 3 748.00 4 4 1 3 2 539.00

Fig. 7 S/N ratio plot for initial
parameters of GA
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5.2.2 Comparisons between performances of the developed
algorithms

For performance comparison of the algorithms, their parame-
ters were set at their optimum values found by the Taguchi
method, and some instance problems with four-, six- and
eight-machine cell with various processing times were solved
ten times each. The averages of the results were reported in
Table 6.

Considering the results shown in Table 6, both GA
and HGA have got similar or better results than the SA

for all three different cell problems. Moreover, the com-
parison between the results of GA and HGA shows that
the HGA found the same or better solutions than the
GA algorithm.

Table 7 shows the computation times for obtaining the
results in Table 6. To have a better comparison among
computation times, the results of each problem instance
with the same number of the machine in the cell was
plotted separately. Figures 10, 11, and 12 are related to
four-, six- and eight-machine cell problems, respectively.
These figures have shown similar trends for the

Fig. 8 S/N ratio plot for initial
parameters of SA

Fig. 9 S/N ratio plot for initial
parameters of HGA
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Table 6 The cycle times found by
the proposed algorithms Process time 4-machine cell 6-machine cell 8-machine cell

GA SA HGA GA SA HGA GA SA HGA

0 192 192 192 384 384 384 640 640.8 640

50 192 192 192 384 384 384 640 640 640

100 202.3 204 202 384 384.4 384 640 640 640

150 302 304.3 302 384 384 384 640 640.4 640

200 402 404.3 402 405.1 414.35 402 640 642.3 640

250 502 502 502 502 510.4 502 640 645.3 640

300 602 606.6 602 602 614.2 602 641.8 670.6 640

350 702 704.3 702 702 710.6 702 702 739.4 702

400 802 802 802 802 819.8 802 805.9 852.8 802

Table 7 The computation times
of the proposed algorithms Process time 4-machine cell 6-machine cell 8-machine cell

GA SA HGA GA SA HGA GA SA HGA

0 2.9 1.7 4.3 4.1 6.2 1.9 7.3 14.0 13.4

50 13.4 10.7 14.0 11.9 8.9 13.4 15.4 13.5 18.1

100 395.9 33.4 755.8 32.7 16.5 34.4 29.7 12.8 42.3

150 382.3 32.7 735.2 75.7 25.3 135.7 48.7 21.5 70.3

200 365.6 31.7 726.6 415.6 32.1 791.7 94.2 27.9 153.4

250 367.0 31.0 658.0 403.5 32.2 784.7 169.7 32.3 275.9

300 367.7 34.5 651.8 391.4 32.9 771.5 379.5 35.3 559.7

350 355.6 36.1 646.9 386.5 34.4 744.9 474.6 33.8 859.1

400 338.2 36.2 655.1 392.7 34.6 744.4 454.8 36.3 878.0

Fig. 10 Computation times of the
proposed algorithms for four-
machine test problems
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computation times of the algorithms. It is apparent that
the solution time of the SA was significantly lower than
the other two algorithms and it remained constant by
increasing the machine processing times in all the solved
problems. On the other hand, the computation times of
the GA and HGA had similar trends. For small process-
ing times, the computation times of both algorithms were

small, then by increasing the processing times, after a
sharp rise, they had decreased a little bit and reached
to a steady state situation. It should be mentioned that
the computation time of the HGA was always greater and
it increased sooner and sharper than the GA, except for
the eight-machine cell problems, where the computation
time of GA raised before the HGA.

Fig. 11 Computation times of the
proposed algorithms for six-
machine test problems

Fig. 12 Computation times of the
proposed algorithms for eight-
machine test problems
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6 Conclusion

In this study, the process sequencing problem of a pick-and-
place robot in the real-life flexible robotic cell (FRC) was
addressed. The problem aimed to minimize the cell’s cycle
time by finding the best sequence of the operations for the
robot to perform the jobs. The problem was solved by devel-
oping amixed integer programmingmodel for a real-life FRC.
Moreover, by addressing some two- and three-machine cell
scenarios, it was indicated that the computation times for solv-
ing the problems rose exponentially. Therefore genetic, simu-
lated annealing, and a hybrid genetic algorithmwere proposed
to solve the large-size problems. Furthermore, utilizing the
Taguchi method, the best combinations of initial parameters
for the algorithms have been set. The comparisons of the re-
sults gained by the proposed algorithms illustrated that the
performance of the proposed hybrid genetic algorithm domi-
nates the other algorithms of this study.

Proposing a new mathematical model for the given prob-
lem with different capacities of the individual input buffer can
be an attractive objective for further researches. The case that
the machines have both individual input and output buffers
may also be considered for future studies. Additionally, con-
sidering these problems under uncertainty of each parameter
can be the next subject of discussion.
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