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Abstract
To improve the machining accuracy of the CNC machine tools, it is essential to establish a high-precision and strong-robustness
thermal error model for further thermal error compensation work. In this paper, it presents a new method of thermal error
measurement and modeling in CNC machine tools’ spindle. In order to measure the thermal deformation of the machine tools’
spindle more conveniently and efficiently, a five-point measurement method is proposed in this paper. The sensitive temperature
points are identified by using the theory of partial correlation analysis and it has successfully reduced 12 raw temperature
variables to 2~3 sensitive temperature variables. The thermal error model of the machine tools’ spindle is exactly figured out
based on the regression theory of weighted least squares support vector machine (WLS-SVM). This paper proposes a method of
gene expression programming (GEP) algorithm to optimize the penalty parameter c and kernel function parameter σ involved in
WLS-SVM. The parameter υ of the weighting value contained inWLS-SVM is to be optimized with the method of an improved
normal distribution weighting rule (INDWR). The measurement and modeling experiments are carried out on i5M1 CNC
machining center and its modeling accuracy reaches 0.7664 μm in the axial direction of the spindle. That the prediction accuracy
under the variable working condition reaches 0.8168 μm proves that the model is still of high precision and robustness.
Compared with other modeling methods, the experimental results have shown that this GEP-WLSSVM modeling method is
superior to PSO-LSSVM and GA-LSSVM method.
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1 Introduction

Among the factors affecting the machining accuracy of CNC
machine tools, the thermal error has been regarded as the main
error source [1], which accounts for 50–70% of the total errors
during the machining process [2]. The key of improving the
machining accuracy of CNC machine tools is to control the
thermal error. Many solutions can be conducted to reduce the
thermal error. One of the most economical and reliable solu-
tions is thermal error compensation. The prerequisite of

thermal error compensation is to establish an effective thermal
error model of high precision and strong robustness.

Many scholars have made their significant devotions to the
research of thermal error of CNC machine tool. For example,
Liu et al. [3] first revealed the law of thermal tilt deformation
of spindle, defined the concept of “Liu-Loop,” first modeled
and compensated the thermal drift error of CNC lathe’s spin-
dle in the world. The research has laid an important theoretical
foundation for the optimization design of the spindle, and has
great reference value. The commonly used thermal error
modeling methods include least square support vector ma-
chine (LS-SVM) method [4], genetic algorithm (GA) and
BP algorithm [5], Grey or BP neural network [6–9], fuzzy
clustering analysis [10], time series analysis [11], reconstruct-
ed variable regression method [12], and many other modeling
methods [13–15]. These thermal error models have achieved
certain accuracy improvement. However, they still cannot
meet the requirements of high robustness and generalization
ability because of these shortcomings such as fitting accuracy
inadequately, initial-conditions dependently, data-smoothness
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dependently, and over-learning easily. As for the grey system
theory modeling method, it does not own the abilities of feed-
back and self-learning and will have poor prediction accuracy
when changing the machine tools’ working condition. As for
the artificial neural network modeling method, it needs a huge
number of training samples and costs a long time before the
model is done. As for the genetic algorithmmodeling method,
its encoding method is not flexible enough to initialize the
population. As for the least square support vector machine, it
cannot overcome the influence caused by random errors from
the samples when operating the training process and it is not
easy to get the optimum parameters involved in its model.

In view of the shortcomings of the existing thermal error
modeling method, this paper proposes a new method based
on the weighted least square support vector machine
(WLS-SVM) regression theory which essentially springs
from LS-SVM theory. Support vector machine (SVM),
put forward by Vapnik [16] based on statistical learning
theory [17], can improve the generalization ability for
using the principle of structural minimization, and smooth-
ly solve the problems of lacking enough samples, nonlin-
earity, multiple dimensions, and local minimum. The least
squares support vector machine (LS-SVM) is the extension
of the standard SVM. The difference between the LS-SVM
and the standard SVM is that the LS-SVM defines the 2-
norm of error (relaxation variables) as the loss function and
transforms the inequality constraints into equality con-
straints. The quadratic programming problem in SVM has
been transformed into linear equations in LS-SVM, which
reduce the computational complexity and enhance the
learning speed. However, the objective function of LS-
SVM is the sum of mean squares error and its correspond-
ing Lagrange multipliers are proportional to the errors,
which results in the losses of sparsity and reduction of
robustness of the model. To solve this problem, Suykens
proposed the weighted least squares support vector ma-
chine (WLS-SVM) method [18, 19] by giving certain
weights to the fitting errors in the objective function. As
for how to get the optimum weighting values, this paper
proposes a new weighting method based on an improved
normal distribution weighting rule (INDWR), which adap-
tively assigns different weights to these modeling fitting
errors and reduces the influence of random errors from
the samples as a result. On the other hand, as how to find
the optimum parameters involved in LS-SVM model, this
paper puts forward a new parameter optimization algo-
rithm, gene expression programming (GEP) [20–22],
which regards the two key parameters (penalty parameter
c and kernel function parameter σ) as the GEP genes. It is
executed by the dynamic change mechanism of the number
of genes in chromosomes and evolutionary generations ac-
cording to its mutation operator. The speed and accuracy of
its convergence are greatly improved. Therefore, the

thermal error model is to be established with the method
of GEP-WLSSVM in this paper.

The framework of this paper is about to be conducted as
follows: The first section makes a brief introduction to this
paper. In Section 2, the five-point measurement method is
proposed to efficiently measure the thermal deformation of
the machine tools’ spindle. In Section 3, the temperature-
sensitive points are identified based on the partial correlation
analysis theory. In Section 4, the modeling theory based on
GEP-WLSSVM is expounded at length and then used to es-
tablish the thermal error mathematical model. Meanwhile, its
modeling accuracy has been compared with other traditional
modeling method. In Section 5, under variable working con-
ditions, the reliability and robustness of this established ther-
mal error model are verified to be still of high prediction
accuracy and strong robustness. Finally, the conclusions are
drawn in Section 6.

2 Five-point measurement method

2.1 Measurement principle

To measure the thermally induced errors of CNC machine
tools’ spindle, a five-point measurement method is proposed
as shown in Fig. 1. Five displacement sensors (D1, D2, D3,
D4, D5) are used to measure the spindle’s thermal errors along
the X-, Y-, and Z-direction.

As shown in Fig. 1a, the one displacement sensor D1 is
used to measure the thermal deformation error along the Z-
direction, the two displacement sensors D2 and D3 are used to
measure the thermal deflection error along the X-direction,
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Fig. 1 The diagram of five-point measurement method. a Sensor
arrangement. b Measuring principle
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and the other two displacement sensors D4 and D5 are used to
measure the thermal deflection error along the Y-direction.

As shown in Fig. 1b, the thermal deformation E along the
Z-direction can be calculated as follows.

E ¼ l01−l1 ð1Þ

where l01 is the initial distance between the displacement sen-
sor D1 and the spindle along the Z-directio and l1 is transient
distance between the displacement sensor D1 and the spindle
along the Z-direction.

As shown in Fig. 1b, the thermal deflection error θx along
the X-direction can be expressed as follows.

θx ≈ tanθx ¼ l
s
¼ Δl3−Δl2

s
¼ l3−l03
� �

− l2−l02
� �
s

ð2Þ

where S is the distance between displacement sensors D2 and

D3 along the Z-direction, l02 and l03 are the initial distance
between the displacement sensors (D2, D3) and the spindle
along the X-direction, l2 and l3 are the transient distance be-
tween the displacement sensor (D2, D3) and the spindle along
the X-direction.

Similarly, the thermal deflection error θy along the Y-direc-
tion can be measured.

2.2 Measurement experiment

Using the five-point measurement method, an experiment was
carried out on an i5M1 machining center produced by
Shenyang machine tool factory. As shown in Fig. 2, the five
displacement sensors were used to measure the thermal errors
of the spindle in three directions. The thermal deformation E
was measured by the sensor D1, the thermal deflection error θx
along the X-directionwas measured by the sensors D2 and D3,
the thermal deflection error θy along the Y-direction was

measured by the sensors D4 and D5. The spindle of the ma-
chine tool ran at 8000 rpm for 5 h without loading, and then
stopped for 1 h. These displacement sensors collected data
every 3 min, so each sensor can get 120 thermal error data.
The measuring results are shown in Fig. 3.

The measurement experiment shows that the thermal errors
of the spindle increase with the running time increase. The
maximum thermal deflection error along the X-direction is
0.0031°; the maximum thermal deflection error along the Y-
direction is 0.0045°; the maximum thermal deformation along
the Z-direction is 42.5 μm.

3 Temperature-sensitive points’ identification

3.1 Identification principle

In order to improve the robustness of the thermal error model,
the temperature variables used to establish the thermal error
model should be as few as possible. Considering the complex-
ity and characteristics of the thermal error model, a partial
correlation analysis method is proposed to identify the
temperature-sensitive points. The correlation coefficient is
used to describe the degree of correlation among these factors,
namely temperature variables and thermal error variables.

rxy ¼ cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xð ÞD yð Þp ¼

∑ xi−x
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ xi−x
� �2

∑ yi−y
� �2r ð3Þ

where x, y ∈ t ∪ δ, t = [t1, t2, t3,⋯, t12], δ = [E, θx, θy], t repre-
sents the temperature variables of the CNC machine tool, and
δ represents the thermal error variables of the CNC machine
tool.
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Fig. 3 The thermal errors of the spindle. θx = [θx1, θx2, θx3,⋯, θx120]
represents the X-direction thermal error; θy = [θy1, θy2, θy3,⋯, θy120]
represents the Y-direction thermal error; and E = [E1, E2, E3,⋯, E120]
represents the Z-direction thermal error.
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Considering the interaction between the variables, in order
to obtain the essential connection between the variables more
accurately, the partial correlation analysis theory was defined
based on simple correlation in statistics. Assuming that there
are a group of independent variables x = [x1, x2, x3,⋯, xn], the
calculation method of the partial correlation coefficient be-
tween xi and xj includes three steps.

The first step is to build the correlation coefficient matrixR
composed of the simple correlation coefficient calculated by
Eq. (3).

R ¼ rij
� �

n�n ¼
r11 r12 … r1n
r21 r22 … r2n
… … … …
rn1 rn2 … rnn

2
664

3
775 ð4Þ

The second step is to calculate the inverse matrix R−1 ac-
cording to Eq. (4).

R−1 ¼
λ11 λ12 … λ1n

λ21 λ22 … λ2n

… … … …
λn1 λn2 λn3 λnn

2
664

3
775 ð5Þ

The third step is to calculate the coefficients of partial cor-
relation:

jcijj ¼ j −λijffiffiffiffiffiffiffiffiffiffi
λiiλjj

p j ð6Þ

The coefficients of partial correlation indicate the degree of
correlation between two variables when other factors already
exist in the model, the greater the coefficient value, the stron-
ger the correlation.

3.2 Experimental analysis

To identify the temperature-sensitive points of the spindle of the
i5M1 machining center, 12 temperature sensors were installed
on the i5M1machining center as shown in Fig. 2. The positions
of these temperature sensors are shown in Table 1. The temper-
ature measurement process was synchronized with the thermal

error measurement process, and the corresponding data was
also collected every 3 min, so each temperature sensor can get
120 temperature data. Figure 4 shows the measured results of
12 temperature sensors. It can be seen that the temperatures of
the spindle fluctuate with the running time increase. The max-
imum temperature rise of the spindle was 18.7 °C that occurred
in the spindle motor.

According to the experimental results and the partial corre-
lation analysis method, the partial correlation coefficients be-
tween 12 temperature variables and thermal errors E, θx, and
θy can be obtained as shown in Table 2.

It can be concluded from Table 2 that t3 and t8 are the
temperature-sensitive points of the thermal deformation E;
t2, t7, and t11 are the temperature-sensitive points of the ther-
mal deflection error θx; t2, t5, and t8 are the temperature-
sensitive points of the thermal deflection error θy. Therefore,
the input samples to each thermal error model can be gathered
in Tables 3, 4, and 5.

Using these temperature-sensitive points and their corre-
sponding thermal error, the thermal error model is to be
established in Section 4.

4 Thermal error modeling

4.1 WLS-SVM-based thermal error modeling

For a given training set {(Ti, δi)| i = 1, 2,⋯, n} (Ti ∈ Rd and
δi ∈ R represent the temperature-sensitive value and the ther-
mal errors of CNCmachine tools in Section 3, n is the number
of samples), according to the regression theory, the thermal
error model can be expressed by the following equation.

δ Tð Þ ¼ WTϕ Tð Þ þ b ð7Þ

Table 1 The arrangement of temperature sensors

Temperature sensors Positions

T1 Spindle box

T2, T3, T4 End cap of front bearing of the spindle

T5, T6, T7 End cap of rear bearing of the spindle

T8 Ball screw nut of Z-axis

T9, T10 Spindle motor

T11 Column

T12 Environment
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Fig. 4 The temperature curves. ti = [ti1, ti2, ti3,⋯, ti120] represents the
temperature value which was measured by temperature sensor Ti (i = 1,
2, 3,⋯, 12).
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where b is the threshold value, W is the weight-coefficient
vector, W = [W1,W2,⋯,Wn]

T, ϕ(⋅) is the mapping function,
ϕ(⋅) = [ϕ1(⋅), ϕ2(⋅),⋯, ϕn(⋅)]T.

Based on the structural risk minimization principle, the
optimization problem of Eq. (7) can be described as the fol-
lowing equation.

minJ W ; ξið Þ ¼ 1

2
Wk k2 þ 1

2
c ∑

n

i¼1
υiξi

2 ð8Þ

s:t: : δi ¼ WT ⋅ϕ Tið Þ þ bþ ξi�
ξi≥0 i ¼ 1; 2;…; n

�
where ξi is the fitting error, c is the penalty parameter, and υi is
the weighting coefficient.

To solve the optimization problem of Eq. (8), the Lagrange
equation L(W, ξ,α, b) is established.

L W ; ξ;α; bð Þ ¼ 1

2
Wk k2 þ 1

2
c ∑

n

i¼1
υiξ

2
i

− ∑
n

i¼1
αi WT ⋅ϕ Tið Þ þ bþ ξi−δi
� � ð9Þ

where αi (i = 1, 2,⋯, n) is the Lagrange multipliers.
According to the KKT conditions, the following equations

can be obtained by calculating the partial derivative of Eq. (9).

∂L
∂W

¼ 0→W ¼ ∑
n

i¼1
αiϕ Tið Þ

∂L
∂b

¼ 0→ ∑
n

i¼1
αi ¼ 0

∂L
∂ξi

¼ 0→αi ¼ cυiξi

∂L
∂αi

¼ 0→δi ¼ WT � ϕ Tið Þ þ bþ ξi

i ¼ 1; 2;…n

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

The form of Eq. (10) can be further transformed into matrix
so that the following equation can be obtained.

0 1Tn

1n R þ 1

c
V

2
4

3
5 b

α

� �
¼ 0

δ

� �
ð11Þ

Table 2 Partial correlation coefficients and significance

Temperature
variables

Partial correlation coefficient (∣cij∣) Significance (κ)

E θx θy E θx θy

t1 0.298 0.223 0.271 0.33 0.39 0.28

t2 0.023 0.781 0.533 0.78 0.07 0.11

t3 0.646 0.178 0.189 0.10 0.41 0.35

t4 0.252 0.038 0.095 0.39 0.58 0.49

t5 0.214 0.029 0.646 0.47 0.62 0.09

t6 0.293 0.106 0.083 0.21 0.49 0.54

t7 0.097 0.643 0.206 0.68 0.09 0.31

t8 0.845 0.245 0.779 0.06 0.36 0.07

t9 0.279 0.091 0.112 0.35 0.52 0.44

t10 0.106 0.016 0.051 0.61 0.77 0.57

t11 0.027 0.541 0.098 0.72 0.11 0.48

t12 0.006 0.009 0.011 0.93 0.86 0.79

κ is the significant degree. The lower the κ value is, the higher the
reliability of the correlation is. The bilateral t test calculating mothed is
adopted to calculate the significance value κ

Table 3 The sample for modeling of thermal error θx

Input samples Data1 Data2 Datan Data119 Data120
T1 T2 … T119 T120

T t2 t21 t22 … t2199 t2120
t7 t71 t72 … t7119 t7120
t11 t111 t112 … t11119 t11120

δ θx θx1 θx2 … θx119 θx120

T = t2 ∪ t7 ∪ t11, ti = [ti1, ti2, t23,⋯, ti118, ti119, ti120], i = 2, 7, 11; Tj = [t2j,
t7j, t11j], j = 1, 2, 3, ⋯, 120; δ = θx ∈ θxk, k = 1, 2, 3, ⋯, 120.
Datan = [T, δ] = [Tn, θxn] = [t2n, t7n, t11n, θxn], n = 1, 2, 3,⋯, 120

The thermal error values of θx is shown in Fig. 3

The temperature values of t2, t7, and t11 is shown in Fig. 4

Table 4 The sample for modeling of thermal error θy

Input samples Data1 Data2 Datan Data119 Data120
T1 T2 … T119 T120

T t2 t21 t22 … t2199 t2120
t5 t51 t52 … t5119 t5120
t8 t81 t82 … t8119 t8120

δ θy θy1 θy2 … θy119 θy120

T = t2 ∪ t5 ∪ t8, ti = [ti1, ti2, t23,⋯, ti118, ti119, ti120], i = 2, 5, 8; Tj = [t2j, t5j,
t8 j ] , j = 1, 2, 3, ⋯ , 120; δ = θy ∈ θyk , k = 1, 2, 3, ⋯ , 120.
Datan = [T, δ] = [Tn, θyn] = [t2n, t5n, t8n, θyn], n = 1, 2, 3,⋯, 120

The thermal error values of θy is shown in Fig. 3

The temperature values of t2, t5, and t8 is shown in Fig. 4

Table 5 The sample for modeling of thermal error E

Input samples Data1 Data2 Datan Data119 Data120
T1 T2 … T119 T120

T t3 t31 t32 … t3199 t3120
t8 t81 t82 … t8119 t8120

δ E E1 E2 … E119 E120

T = t3 ∪ t8, ti = [ti1, ti2, t23,⋯, ti118, ti119, ti120], i = 3, 8; Tj = [t3j, t8j], j = 1, 2,
3, ⋯, 120.δ = E ∈ Ek, k = 1, 2, 3, ⋯, 120. Datan = [T, δ] = [Tn, En] = [t3n,
t8n, En], n = 1, 2, 3,⋯, 120

The thermal error values of E is shown in Fig. 3

The temperature values of t3 and t8 is shown in Fig. 4
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where 1n = [1, 1,⋯, 1]T, R = {k(Ti, Tj)| i, j = 1, 2, … , n},
k(Ti, T) = exp[−‖Ti − T‖2/(2σ2)] is the Gauss kernel function,
V ¼ diag υ−11 ; υ−12 ;⋯; υ−1n

� �
, δ = [ δ 1 , δ 2 , ⋯ , δ n ]

T ,
α = [α1, α2,⋯, αn]

T. Furthermore, α and b can be figured
out as the following equations by using Eq. (11).

b ¼ 1Tn R þ 1
c V

� �−1
δ

1Tn R þ 1
c V

� �−1
1n

ð12Þ

α ¼ R þ 1

c
V

	 
−1

δ−1nbð Þ ð13Þ

Therefore, the final thermal error model can be obtained as
the following mathematical expression.

δ Tð Þ ¼ ∑
n

i¼1
αik T i; Tð Þ þ b ð14Þ

In Eq. (14), there are three variables to be determined. The
first variable is the weighting coefficient υi, the second vari-
able is the penalty parameter c, and the third variable is the
width σ of Gauss kernel function. To improve the accuracy
and robustness of the thermal error model, these three param-
eters will be optimized by using the method of GEP algorithm
and the method of improved normal distribution weighting
rule (INDWR) as proposed in this paper.

4.2 Parameters optimization

The parameters selection of theWLS-SVM directly affects the
convergence, stability, and accuracy of the established thermal
error model. In this paper, these three parameters are opti-
mized in two steps. The first step is using the GEP algorithm
to optimize the penalty coefficient c and the kernel function
width parameter σ, and the second step is to calculate the
weighting coefficient υi based on the improved normal distri-
bution rule. Therefore, the GEP-WLSSVM method can be
obtained and then applied to establish the thermal error model.

4.2.1 Parameters optimization for c and σ using GEP

GEP [20–22] is a new genetic algorithm (proposed by C.
Ferreira, a Portuguese scientist) based on the genome and
phenotype. It inherits and develops the genetic algorithm
(GA) and the genetic programming (GP). Generally, each
GEP gene consists of a head and a tail. The head could be
contained functions and terminators. The tail could be only
contained terminators. Functions usually include common op-
erators, mathematical functions, and custom functions.
Terminators usually include inputs to the GEP program, con-
stants, or non-parametric functions. The length of tail and
head meets the following GEP rule:

L tð Þ ¼ L hð Þ � n−1ð Þ þ 1 ð15Þ

where, L(t) is the length of the tail, L(h) is the length of the
head, and n is the maximum number of operations of functions
concerned. This formula guarantees the validity of each GEP
gene.

Compared with GA and GP, GEP has a stronger global
searching capability. Thus, it is proposed to optimize the two
parameters in LS-SVM. The chromosome encoding method
and the selection of fitness function are the two main parts of
the optimization for the penalty coefficient c and the kernel
function width parameter σ.

Considering the effectiveness and characteristic of c and σ
on the performance of the thermal error model established by
the LS-SVM method, two kinds of GEP encoding methods
are used to optimize the parameters c and σ respectively. The
Hzero algorithm is used to optimize the penalty parameter c,
and the GEP-PO algorithm is used to optimize the parameter
of σ. The two methods both have constant domain in each
GEP gene; the length of the constant domain is equal to the
length of tail. The Hzero encoding method is shown as below,
for example:

01
?3 C1 ¼ 15; 30; 125; 550; 965f g

where C1 is random constant array. The head length of this
gene is 0; the tail length and the constant domain length are 1.
The sign “?” represents the terminator, and the number 3
means that the constant in the “?” position is replaced by the
constant of the ordinal number of 3 (the ordinal number starts
from 0) in the constant array. In the case, c takes 550. The
GEP-PO encoding method is shown as below, for example:

01234567890123456789
q* þ =?*q???????? 30413412
C2 ¼ 0:7094; 2:1088; 4:5787; 3:9610; 4:7975f g
where C2 is random constant array from the range of [0,5].
The gene has a head length of 7 and its constant domain length
and tail length are 8, so the length of the gene is 23. The
corresponding expression tree of the gene is shown as below:

So, σ can be obtained as:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:9610þ 4:7975� 2:1088ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:9610

p
=0:7094

q
¼ 6:2846
In order to simultaneously encode the value of c and σ

with the two encoding methods, the chromosome should
be composed of two different encoding genes in the pro-
gram, and the two parts are separated by a space, for
example:

01 01234567890123456789
?3 q* þ =?*q???????? 30413412
C1 ¼ 15; 30; 125; 550; 965f g
C2 ¼ 0:7094; 2:1088; 4:5787; 3:9610; 4:7975f g
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All the evolutionary algorithms need to evaluate the adapt-
ability of the newly generated chromosomes. The fitness is a
measure of the ability of the species to adapt to the environ-
ment. Generally, the fitness function values are used to eval-
uate the chromosomes. In this study, the fitness function was
chosen as the following equation.

f i c;σð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
δi−δ

0
i

� �2r
þ 1

ð16Þ

where δi is the actual thermal error, δ
0
i is the output value of

LS-SVM, and n is the number of the samples.
In the GEP-LS-SVM method, the next generation of indi-

viduals is selected by the method of roulette wheel selection,
so that the probability that each individual enters the next
generation is proportional to the fitness of itself. The greater
the fitness is, the more possibility the individual is to be se-
lected. The genetic operators in this study include selection,
replication, mutation, transposition, recombination, inversion,
and insertion. In this paper, according to the characteristics of
thermal error data and temperature data from the CNC ma-
chine tool, all the parameters of GEP are shown in Table 6.

To conclude, the optimization process includes the follow-
ing eight steps and its flowchart is shown in Fig. 5.

1. Using the encoding method of Hzero and GEP-PO to
encode each GEP gene to initialize the population accord-
ing to the parameters c and σ.

2. Reading the samples and train the LS-SVMmodel based on
the current parameters to obtain the outputs of the LS-SVM.

3. Calculating the adaptive values according to the Eq. (16),
sorting the adaptive values in order to reserve the individ-
ual with the highest adaptability.

4. Executing the mutation. In this paper, each chromosome
possesses two GEP genes, and each gene mutates in one
gene locus once a time.

5. Executing the IS insert Sequence, the RIS insert Sequence,
and theGene insert Sequence, performing the single-point
recombination, two-point recombination, and gene re-
combination with the parameters in Table 6.

6. If the execution result reaches the predetermined maxi-
mum algebra or the fitness function value converges to
the presetting precision, continue to step 7, otherwise re-
turn to step 2.

7. Selecting and recording the optimum chromosomes and
then decoding the chromosomes to obtain the optimum
parameters c and σ.

8. Establishing the LS-SVM model with the optimum pa-
rameters c and σ.

4.2.2 Parameter optimization for υi using INDWR

The function of weights in WLS-SVM is mainly to eliminate
the influence of random errors during the modeling process,
and the appropriateness of the weights directly determines the
performance of the model. It is necessary to optimize the
weight-selection criteria. Therefore, a weighting rule based
on improved normal distribution weighting rule (INDWR) is
proposed and the weighting coefficient υi in Eq. (8) can be
expressed by the following equations.

Input data

Initiate population

(c, )

Chromosome decoding

Train the LS-SVM model

Fitness function calculation

Evaluation of individual fitness

Whether to 

meet the end 

of evolution

Yes
Output the best c 

and

No

Selecting the best individuals

a new generation of population

Establish the 

GEP-LSSVM 

model 

Fig. 5 The flowchart of GEP-LSSVM method

Table 6 The parameters of GEP

Parameter names Values

Function set {+ − × /}

Terminator set {?}

Evolutionary generation 100

Population size 40

Constant set size 8

Constant range [0,5]

Mutation rate 0.2

Inversion rate, insertion rate 0.1, 0.2

DC inversion rate, DC insertion rate 0.1, 0.2

Two-point recombination rate 0.3

Single-point recombination rate 0.2

Constant mutation rate 0.2

DC mutation rate 0.1
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where the fitting error ξi can be obtained by GEP-LSSVMmeth-
od and u1 and u2 are the width adjustment parameters. Through
lots of numerical experiments with thermal error value and tem-
perature value, the range of the parameters u1 and u2 is eventu-
ally determined as u1 ∈ [9, 17], u2 ∈ [6, 13]. In this paper, the
parameters of u1 and u2 are determined as u1 = 11.34, u2 = 8.52.

Compared with the standard normal distribution weighting
method whose curve distribution is symmetrical, this proposed
weighting method based on the improved normal distribution
weighting rule whose curve distribution expressed by the Eq.
(17) can better reflect the influence of the error data points of the
samples in the model. The calculating process includes the
following five steps and its flowchart is shown in Fig. 6.

1. Input the sample Datai(i = 1, 2, 3,⋯, 120) in Section 3
combined with the optimized parameters to establish the
LS-SVM model.

2. Calculate the values of the model fitting errors ξi.
3. Calculate the values of weights νi by Eq. (17).
4. Establish the WLS-SVM model with the weights νi.

5. If the weights meet the presetting value, choose the weights
and end the calculation, otherwise return to step 2.

4.3 Modeling experiment

In this part, the mathematical model of the spindle thermal
error of CNC machine tool is about to be established by the
theory of GEP-WLS-SVM modeling method which has been
elaborated above. The general modeling process can be car-
ried out by the following four steps:

1. Calculate the optimum parameters (c, σ) based on the
GEP algorithm to achieve the GEP-LSSVM method.Input data

,b,LS-SVM, i

νi =f( i)

*,b*,WLS-SVM, i*  

νi* =f( i*)

Ve<Ve_min

i

Yes

No

Establish the 

WLS-SVM 

model

N

i
ii vv

N
Ve

1

1

Ve_min is the presetting value

Fig. 6 The flowchart of adaptive WLS-SVM method
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Fig. 7 The modeling results of thermal error (θx, θy)
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2. Given each Datai(i = 1, 2, 3,⋯, 120) of θx, θy and E in
Section 3, train these samples by using GEP-LSSVM
method.

3. Calculate their fitting error ξi.
4. Calculate the weighting value υi by Eq. (17) based on the

improved normal distribution weighting rule.
5. Calculate the values of α and b by Eqs. (12) and (13) to

establish GEP-WLSSVM-based thermal error model, so
that their mathematical expression can be obtained.

The input samples of the training data used to carry outmodel-
ing experiment are respectively shown in Tables 4, 5, and 6.

By using the GEP-WLSSVM modeling method, the ther-
mal error regression results of θx, θy, and E are respectively
shown in Figs. 7 and 8. Their mathematical expressions share
the equation as Eq. (14). A portion of their coefficients and
parameters are shown in Table 7.The values of MSE and R2

are used to evaluate the performance of the regression model
and they can be defined by the following equations:

MSE ¼ 1

n
∑
n

i¼1
δ̂i−δ
� �2

ð20Þ
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n ∑
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i¼1
δ̂iδi− ∑

n

i¼1
δ̂i ∑

n

i¼1
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2

n ∑
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i¼1
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2

i − ∑
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i¼1
δ̂i

	 
2
 !

n ∑
n

i¼1
δ2i − ∑

n

i¼1
δi

	 
2
 ! ð21Þ

where n is the number of samples, δi is the ith actual value, and
δ̂i is the ith output value.

From these diagrams above, it can be concluded that the
maximum value of residual error of E is 0.7664 μm and
0.238e−3° to θx, 0.291e−3° to θy. It can be seen that the
GEP-WLSSVM modeling method has high accuracy and
can precisely estimate the change trend of thermal error in
machine tool.

4.4 Comparison of modeling performance

In order to further verify the modeling performance of GEP-
WLSSVM method, it has been compared with the GA-
LSSVM [23] prediction model and PSO-LSSVM [24] predic-
tion model by using the training data of samples:

Datan = [T, δ] = [Tn, En] = [t3n, t8n, En], n = 1, 2, 3, ⋯, 120.

Table 7 A portion of the parameters of mathematical expressions for θx, θy, and E based on GEP-WLSSVM modeling method

θx c 457.1 σ 2.585 b − 4.592 MSE 0.0184 R2 0.982 n(SVs) 45

i 1 2 3 4 5 …… 41 42 43 44 45

αi − 5.918 1.833 − 2.594 − 1.510 0.175 …… − 87.00 204.7 − 83.11 138.76 47.95

υi 0.334 0.065 0.172 0.005 0.452 …… 0.844 0.092 0.532 0.776 0.002

θy c 819.2 σ 0.225 b − 3.729 MSE 0.0027 R2 0.989 n(SVs) 81

i 1 2 3 4 5 …… 77 78 79 80 81

αi 33.2 21.7 − 83.4 31.6 15.0 …… − 21.2 48.9 34.2 − 77.6 − 31.2
υi 0.406 0.232 0.235 0.036 0.140 …… 0.693 0.224 0.008 0.251 0.052

E c 22.672 σ 5.451 b − 0.447 MSE 0.0009 R2 0.997 n(SVs) 76

i 1 2 3 4 5 …… 72 73 74 75 76

αi − 2.329 2.776 − 5.433 7.245 21.345 …… 12.652 22.627 − 3.897 14.361 − 20.392
υi 0.350 0.076 0.745 0.998 0.l67 …… 0.432 0.623 0.574 0.734 0.443

c and σ is the penalty coefficient and the kernel function width; n(SVs) is the number of support vector machine; αi (i = 1, 2,⋯, n(SVs)) are the Lagrange
multipliers; b is the threshold value

Table 8 The comparison of modeling parameters and effect

Algorithm C σ MSE R2

GEP 22.672 5.451 0.0507 0.997

GA 45.023 6.876 0.0729 0.978

PSO 37.806 3.750 0.0843 0.943
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Fig. 9 The modeling results based on GA-LSSVM
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The parameters for each model are shown in Table 8. The
modeling results are shown in Figs. 9 and 10. Their residual
values are compared in Fig. 11.

It can be clearly seen from the comparison results.
For GEP-WLSSVM model, the training samples with a
relative fitting error of less than 8% are up to 93% and
the maximum fitting error is 0.7664 μm. The mean
square error (MSE) of thermal error E is 0.0507 μm.
The MSEs of GA-LSSVM and PSO-LSSVM model are
0.0729 μm and 0.0843 μm respectively. It can be as-
suredly concluded that the thermal error modeling meth-
od of CNC machine tool based on GEP-WLSSVM has
high prediction accuracy, robust performance, and gen-
eralization ability, which is superior to the method of
GA-LSSVM and PSO-LSSVM.

5 Verification of prediction accuracy

In order to verify the feasibility, robustness, and gener-
alization ability of the GEP-WLSSVM method for the
modeling of spindle thermal error, this model is applied
to predict and analyze the axial thermal error E under
variable working conditions. The machine tool spindle
started from cold state and ran 2 h at 5000 rpm speed
then 2 h at 9000 rpm speed, and finally stopped for 1 h
to cool down naturally. During the whole test, the two
temperature sensors (T3 and T8) and the displacement
sensor D1 took the data of samples every 3 min. Then,
100 groups of temperature data were input into the GEP-
WLSSVM model, and the prediction value Ep of the
axial thermal error E of the spindle can be output. The
prediction effect of the model can be proved by compar-
ing the prediction value Ep with the thermal error data E
measured by the displacement sensor D1.The comparison
between the prediction and the measured results is shown
in Fig. 12. The parameters of the mathematical model are
shown in Table 9.

It can be concluded that the residual value range is
[− 0.6648,0.8168] and the prediction model still has
high prediction ability with high robustness under vari-
able working conditions. It proves the feasibility and
effectiveness of the GEP-WLSSVM modeling method.
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Table 9 The parameters of the mathematical model

Parameter C σ MSE R2

Value 11.31370 4.34603 0.063307 0.96684
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6 Conclusions

Establishing a highly accurate mathematical model of thermal
error is of great significance to the further thermal error com-
pensation. In this study, GEP-WLSSVM algorithm is pro-
posed to have created a high-precision and robustness thermal
error model of CNC machine tools. This modeling accuracy
reaches 0.7664 μm in the axial direction. It can be drawn with
the following conclusions.

1. The five-point measurement method is a simple but flex-
ible way for measuring the thermal deformation of the
CNC machine tools’ spindle.

2. Partial correlation analysis method can effectively identi-
fy the sensitive temperature points.

3. The gene expression programming (GEP) algorithm can
be used to optimize the parameters involved in LS-SVM.

4. The improved normal distribution weighting rule
(INDWR) can be used to obtain the weighting values of
WLS-SVM to boost the regression precision.

5. The GEP-WLSSVM modeling method can be used to
model and predict the thermal error of the spindle of
CNC machine tools, and lay a foundation for the next
compensation work.

6. Compared with GA-LSSVM and PSO-LSSVM, the mod-
el built with the GEP-WLSSVMmethod is of higher pre-
diction accuracy, stronger robustness, and generalization
ability.
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