
The International Journal of Advanced Manufacturing Technology (2019) 103:2377–2390
https://doi.org/10.1007/s00170-019-03597-2

ORIGINAL ARTICLE

Robust cepstral-based features for anomaly detection in ball
bearings

Ricardo Sousa1 · Joel Antunes2 · Filipe Coutinho3 · Emanuel Silva2 · Joaquim Santos2 ·Hugo Ferreira4

Received: 9 October 2018 / Accepted: 12 March 2019 / Published online: 22 April 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper proposes the linear frequency cepstral coefficients as highly discriminative features for anomaly detection in ball
bearings using vibration sensor data. These features are based on cepstral analysis and are capable of encoding the patterns
of a spectral magnitude profile. Incipient damages on bearings can grow rapidly under normal use resulting in vibration
and harsh noise. If left undetected, this damage will worsen, leading to high maintenance costs or even injury. Multiple
interferences in an industrial environment contaminate the signal, making it a challenge to correctly identify the bearings’
condition. Many studies have attempted to overcome this issue at the signal level. However, the discriminative capacity of
the current vibration signal features is still vulnerable to interference, which motivates this work. In order to demonstrate the
benefits of these features, we (1) show that they are computationally efficient and suitable for real-time incremental training;
(2) conduct discriminative analysis by evaluating the separability performance and comparing it with the state of the art;
and (3) test the robustness of the proposed features under noise interference, which is ideal for use in the harsh operating
conditions of industrial machinery. The data was obtained from a laboratory workbench setting that reproduces bearing
fault scenarios. Results show that the proposed features are fast, competitive when compared to state-of-the-art features,
and resilient to high levels of interference. Despite the higher performance when using the quadratic model, the proposed
features remain highly discriminative when used with several other discriminant function.

Keywords Anomaly detection · Spectral profile features · Noise resilience

1 Introduction

Rolling elements (such as ball bearings) have a major
impact on a rotating machinery’s operation condition. Faults
due to wear and tear, high temperatures, misalignment,
lack of adequate lubrication, or fine particle contamination
are a constant in industrial environments. These rolling
elements can be found in important components such
as motors, compressors, gearboxes, and pumps. Thus,
detecting bearings faults in its early stages is essential in
reducing maintenance costs and avoiding injury [22].

Predictive maintenance (PdM) is a set of methodologies
to detect, predict, and diagnose machine component faults
as early and as accurately as possible [8]. Knowledge-based
PdM is a non-invasive methodology that resorts to machine
learning and data mining methods to build their procedures
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[19]. Anomaly detection is one of the PdM procedures
whose goal is to identify precursor events in the sensor
signals that anticipate failure.

More specifically, anomaly detection only requires
negative (non-failure) labelled data to generate detection
models. This has two significant advantages. Firstly, feature
extraction does not depend on the rare positive (failure)
labelled data. Second, feature extraction does not require
collecting and labelling all the possible failure modes of a
component—a formidable if not impossible task.

Vibration signals (displacement signals) obtained from
accelerometers attached to bearings’ housing structures are
considered one of the most reliable means of monitoring
the bearings’ conditions. These signals contain meaningful
information that reflects the bearing’s health [5]. For
anomaly detection, discriminative features of signals are
needed to differentiate the various conditions of the bearings
in various machines working modes. However, the signal
is distorted by noise interference from the industrial
environment, which leads to detection errors (false positives
and negatives). It is therefore important to design these
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features to be resilient to this interference. This is crucial
since it compromises the next stage of anomaly detection—
generating the classification model of the health state. The
more discriminative and resilient to interferences these
features are, the less complex the classification stage will
be. Feature extraction is the generation of measurements
that describe the signal patterns used to characterize the
condition of the bearing element. Some features consist
of measures with physical meaning associated to bearings
physical model [21]. They are discriminative if they can be
used to unequivocally encode particular waveform patterns
that can be successfully used to differentiate between the
various conditions of this physical process [2].

Data streams are the main abstraction used for collecting
monitoring data through IIoT (Industrial Internet of Things)
sensors networks in industrial environments [1]. Vast
amounts of data are continuously produced in real-time and
at many sampling rates, which gives rise to demanding
processing time requirements [23]. Fast feature extraction
methods are therefore required in this context.

This work proposes the use of the noise-robust and dis-
criminative linear frequency cepstral coefficients (LFCC)
features to detect anomalies on bearings with high speed
and accuracy so that it can be easily integrated into an
anomaly detector. These types of features are generally used
in speech processing tasks where signal pattern diversity is
high. In fact, these features are closely related to the mel-
frequency cepstral coefficients (MFCC), which are the state
of the art in speech recognition methods and are used in very
complex classification tasks.

The LFCC features describe the spectral magnitude pro-
file. The DCT transform is also used to decorrelate these
features with almost the same compaction efficiency of the
Karhunen-Loève transform (optimal decorrelation transfor-
mation) [17]. We also suggest the use of median filtering
over the feature space since it prevents cluster overlap-
ping and significantly increases the feature’s discriminant
properties.

To verify the benefit of these features, we compared the
LFCC to a baseline that consists of the traditional time
domain features and to the empirical mode decomposition
(EMD) features, which is widely applied in bearing
vibration analysis. In this task, we (1) measure the run-
time of all features computation; (2) perform discriminative
analysis by evaluating the performance with simple
discriminant functions; and (3) test the robustness of the
features under noise interference (with several noise levels).

The remainder of this paper is organized as follows.
Section 2 briefly reviews the traditional time domain
and the EMD features that are often used in anomaly
detection in bearings elements. Section 3 describes the
LFCC and discuss its main advantages. Section 4 explains
the evaluation experiments. The results are presented and

discussed in Section 5 and the main conclusions are reported
in Section 6.

2 Related work

A short literature review is provided in this section
referencing the most prominent work on feature generation
for bearing vibration signal analysis. In this description,
we favour the features that can be computed over small
segments (windows or frames) of the signal (short-
term features), which are compatible with data streaming
anomaly detectors.

We selected just two features types: the traditional time
domain statistical features and the state-of-the-art EMD
features. The time domain features are the baseline and the
EMD features are used as the golden standard to show the
competitive benefits of LFCC.

2.1 Time domain features

Time domain features have been used in bearing vibration
analysis as a first approach to anomaly detection. In general,
these features encode the patterns of variations in signals’
amplitude and are based on statistical measures [3, 9,
15]. The most common features are root mean square
(RMS), kurtosis (K), crest factor (CrF), clearance factor
(ClF), impulse factor (If), and shape factor (SF), which are
described in the following expressions:
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where n is the frame sample index, xn is the element of the
frame, x̄ is the mean of the frame values, and N is the size
of the frame. These features capture the spiky and impulsive
nature of damaged bearing vibration [11]. As advantages,
these features are very easy to implement and are highly
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computational efficient. They are also very interpretable
since they are directly related to the impulsive events
on the signal. As drawbacks, these features present low
performance in noisy environments since they are strongly
dependent on signals’ amplitude and cannot distinguish
between noise and vibration impulses. Although no work
on short-term measures was found using these features, they
can be easily applied in this context.

2.2 Empirical mode decomposition features

EMD is an iterative method that decomposes the signal into
its elementary components referred to as the intrinsic mode
functions (IMFs) [12, 16, 21, 25]. IMFs form an orthogonal
basis of the signal. Hence, these components represent
decorrelated information with the potential to discriminate
bearing conditions. This method acts like a filter bank where
the weak impulses caused by bearings faults are enhanced.
Figure 1 displays the spectrum magnitude of the EMD
components with a frequency axis in logarithmic scale.

The filter bank is nearly dyadic and its filters are focused
on the low frequencies of the spectrum. This characteristic
gives more resolution and enhancement to low-frequency
information. The pseudo-code of the EMD computation is
presented in Algorithm 1.

Algorithm 1 EMD components computation.

1: Initialization: xn− input signal; i = 0
2: while xn not monotonic do
3: 1− Compute the maxima and the minima
4: 2− Interpolate a function with all maxima − Mn

5: 3− Interpolate a function with all minima − mn

6: 4− Compute μn = (Mn + mn)/2
7: 5 − cn = xn − μn

8: if [c[n] is IMF function] then
9: xn = cn

10: IMF i
n = cn

11: i = i + 1
12: else
13: xn = cn

Basically, the method involves the computation of the
frame’s upper and lower envelopes through interpolation of
the maxima and minima, respectively. Then, the envelope’s
average is subtracted from the frame. This is an iterative
process that repeats itself until the remaining frame’s signal
is monotonic.

The main advantage is the fact that these components
form a nearly orthogonal base that can be used to produce
the discriminant features. EMD does not require any domain
transformation and can be easily applied to non-stationary

signals. The main inconvenience is the long processing time,
in particular, the interpolation stages [13]. Since it is an
adaptive decomposition, the filter bank is not the same for
all frames, even in the number of filters. Therefore, the
same IMFi

n does not reflect exactly the same information in
different frames.

It is worth mentioning that the more recent variants of
EMD, such as ensemble EMD (EEMD) and complementary
EEMD (CEEMD), retain these same advantages and
disadvantages [13]. In our work, we used the original EMD
for comparison since it is the simpler one.

The most well-known features based on EMD analysis
are the normalized IMF component energy EMD(Eng),
entropy EMD(Ent) and the singular values EMD(SV)
obtained from the singular value decomposition (SVD) [22].
The EMD(Eng) features are computed as the ratio between
the IMF i

n energy Ei and the sum of all component’s energy
E [25]. The EMD(Ent) are computed simply by applying
Eq. 7 to the normalized energies [22].

EMD(Ent)i = −Ei

E
log2(

Ei

E
) (7)

The EMD(SV) features are obtained by performing a tall
matrix SVD where each column contains the IMF compo-
nents. The singular values have the properties of stability
and rotation and scale invariance, which is beneficial for
encoding patterns. However, the computational cost is high.

3 Linear frequency cepstral coefficients

3.1 Linear frequency cepstral coefficients features

In this section, we describe the LFCC features’ computa-
tion. The rationale behind the use of LFCC is the fact that
the acoustic speech signal is of a vibrational nature. In fact,
vibrational and acoustic signals can be described by both the
spectral and cepstral analysis since they are the reflection of
vibrational physical models. LFCC are also spectral profile
descriptors based on cepstral analysis that encode the pos-
sible magnitude patterns. They are less affected by additive
and noisy interference.

These features are very similar to the MFCC features
which are considered the state of the art in speech
recognition and regarded as highly discriminative. The
difference between LFCC and MFCC is that the latter
models the human auditory system, which cannot be applied
in this context [14]. To the best of our knowledge, this is
the first time that LFCC analysis is employed in bearing
vibration analysis.

Figure 2 illustrates the LFCC computation. LFCC are
short-term features that are computed from a signal frame
where the vibration signal is considered to be stationary
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Fig. 1 Spectrum magnitude of
the IMF components from a 256
sample frame of bearing
vibration signal. The frequency
axis uses a logarithmic scale

(e.g., 50 ms). For each signal frame, the Hanning window
is applied in order to reduce the “spectral leakage” effect
(introduction of new frequency components artefacts) to
obtain xw[n] [7]. Then, the DFT’s magnitude is obtained
by first using the fast Fourier transform (FFT) and then
calculating the power spectrum S[k]. The DFT presents
already decorrelated components.

Here, the noise is spread throughout the components
and its effect is reduced in each one. Next, a triangular-
shaped filter bank (weighting masks) is applied to reduce
the resolution of the power spectrum and compress the
information in a few coefficients. The filter masks are
equally spaced and have an overlap of 50% in order to
give the same importance to all spectral regions. This step
produces separated bands B[k, i].

The energy E[i] of each band i is computed and the
logarithmic function log10(.) is then applied to enhance
and capture subtle but discriminative information. Each
filter therefore summarizes the information of a spectral

region into a single value of energy Elog[i]. Finally, the
discrete cosine transform (DCT), which is also derived from
the DFT, is applied to decorrelate the Elog[i] values and
produce the cepstral coefficientsC[i]. The DCT also has the
approximate compaction efficiency of the Karhunen-Loève
transform for vibration signals [27].

3.2 Median filter application

Preliminary experiments have shown that the LFCC present
high and spiky like variability when the signal’s frames are
relatively small (∼ 64 to 256 samples). To get more stable
values, we used another level of framing applied to the
LFCCwhen the coefficients vary a long time. In each frame,
a median was applied (median filters) to remove the effect
of outliers on the LFCC coefficient values. This procedure
exploits the related consecutive feature examples.

Figure 3 illustrates the effect of removing the outlier
examples in two LFCC coefficients.

Fig. 2 Diagram for the computation of LFCC features
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(a) (b)

Fig. 3 Effect of the median filter considering the coefficient 1 and 7 of the LFCC with 13 coefficients a without median filter and b with median
filter. Normal and damaged labelled examples are represented in dark and light gray, respectively

These clusters show that the median both reduces the
overlap between clusters and increase the distance between
the normal and damaged labelled clusters. Moreover,
Fig. 3b also suggests that the various operating regimes
within the normal and abnormal classes can also be
separated.

3.3 Run-time complexity comparison

Table 1 shows the run-time complexity of each method. For
the LFCC, the FFT is the operation that most significantly
contributes to its run-time complexity, and is of the order
of O(n.log(n)), where n is the frame size [20]. The
EMD method has a run-time complexity of the order of
O(n.log(n)) [26].

When considering the SV, the complexity increases by
exactly O(kn2), where k is the number of features [10].
Considering that k is small compared to n, the complexity
for the SVD operation is O(n2).

Table 1 Run-time complexity of the aforementioned features

Method Time complexity

LFCC O(n.log(n))

EMD(SV) O(n.log(n) + n2)

EMD(Ent) O(n.log(n))

EMD(Eng) O(n.log(n))

Time O(n)

4 Evaluation

This section presents the evaluation of the LFCC in terms
of run-time, discriminative capacity, and noise resilience.
Since it is currently not possible to obtain vibration data
labelled with bearing faults from the application site, a
laboratory workbench was used to reproduce several fault
scenarios. Semi-synthetic signals were also produced due
to the difficulty of creating realistic noise interference on
the workbench. The fault scenarios mimic the operation of
milling machines that are installed at the application site.

The scientific questions will be contextualized in a
supervised anomaly detection framework because of the
possibility of labelling all the data. First, we describe the
experimental setup that was used to collect the vibration
signals and the respective settings. Next, we explain how
the semi-synthetic signals were generated. Finally, the
discriminative performance evaluation is described.

4.1 Experimental setup

The laboratory workbench is comprised essentially of
two bearing housings, a motor flange, several 6305 ball
bearings, an AISI 304 stainless steel shaft, an elastomer
flexible coupling, a AM8121-0F00 servo-motor controlled
by EL7211 driver, and PLC programmed via TwinCAT3
software by Beckhoff (Fig. 4a).

Figure 4b presents a 4353 B triaxial accelerometer
from Brüel&Kjaer. This accelerometer was attached to the
top of the housing that supported the bearing subjected
to analysis. The accelerometer is connected to a C
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(a) (b)

Fig. 4 Laboratorial workbenchs. a Experimental setup and b the triaxial accelerometer attached to the housing of the bearing subjected to analysis

Series NI 9234 (sound and vibration signal capturing
module) from National Instruments, itself connected to
a DAQ-9171 chassis, which in turn is connects to
a PC. The LabVIEW programming environment from
National Instruments provides the accelerometer’s signal
conditioning and data acquisition.

As an important step, the analysis required the vibration
frequencies information, which were provided by the
bearings’ physical and operating (e.g., number of spheres
and speed) specifications.

The sampling frequency was determined considering the
necessary information for this work and the overloading
limit of the hardware and software. Therefore, knowing the
sampling rates of the NI 9234 module, we use

fsmp = 2.n.fspin (8)

to compute the sampling frequency, where fsmp is the
sampling frequency (Hz), fspin is the spindle speed fre-
quency (Hz), and n is the number of teeth. The multipli-
cation factor 2 reflects the Nyquist-Shannon theorem of
sampling, which states that the minimum sampling fre-
quency should be twice that of the maximum frequency of
the collected information.

In this work, maximum fspin is 100 Hz (6000 rpm) and
the maximum n in the available mills is 24; the minimum
sampling frequency is therefore 4800 Hz. Since the value
of 4800 Hz is not one of the recommended sampling
frequencies of the NI 9234 module, the closest higher value
of 5120 Hz was used.

The bearing component’s health is the central factor in
this analysis. Thus, we considered a normal undamaged
condition and three types of bearing damage on the various
components: outer race, inner race and on the sphere.
These fault types were selected because they are the most

likely parts of the bearing to become damaged in the
application site [6, 24]. Bearing faults were introduced
by puncturing the relevant components to produce visible
fissures. Figure 5 shows the three types of damage used in
this work. One bearing element was used for each damage.

To create signal diversity, we selected 1000, 2000, and
3000 rpm motor speeds according to machine operating
modes in the application site. We collected 4 s of
signal segments, which are sufficient to provide stability
in the sensor readings. Each segment is composed of
3 acceleration values (respectively the x, y, and z

accelerometer axes) with 20,480 samples each. Note that
the information conveyed by the three axes is orthogonal,
which can also contribute to the discriminative capacity of
the anomaly detection model.

In the data collection process, no load was attached to the
rotation system. During signal collection, we first captured
5 segments (one for each test scenario) in different moments
with the bearing in normal condition, while it was in motion.
Afterwards, the motor was stopped and the bearing was
damaged. Finally, the motor is again set in motion and 5
more segments were captured. The signal segments were
stored onto files that were labelled as normal (negatives) and
damaged (positives). The data is available online as separate
files at the URL.1

4.2 Semi-synthetic signals and features datasets

For the semi-synthetic signals’ production, we chose to
add white noise since all signal frequencies can be equally

1https://gitlab.com/cese/adw/tree/master/data/inegi/ensaios
rolamentos 3

https://gitlab.com/cese/adw/tree/master/data/inegi/ensaios_rolamentos_3
https://gitlab.com/cese/adw/tree/master/data/inegi/ensaios_rolamentos_3
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(a) (b) (c)

Fig. 5 Bearing damage types: a outer race, b inner race, and c on the sphere damages

affected. However, even though this is in general true, in a
real scenario, the low frequencies are more often affected due
to the existence of other rotational vibration sources. We added
white noise to the signal segments (all three axes) and generated
three additional data sets with the signal-to-noise ratios
(SNRs) of 0, −6, and −12 dBs respectively. As a reference,
we also considered the signal without noise addition in
our experiments. In the noise addition cases, we assumed
that the signals’ implicit noise component (e.g., noise from
instrumentation) presents little impact on the measurements
and is substantially smaller than the added noise.

Each signal segment was divided into small 50-ms
frames (256 samples for each axis), which simulates the data
stream framing. With an overlap of 50% (equivalent to 128
samples), 849 frames were produced for each axis. Each
frame was labelled according to the fault types (these fault
labels are stored in the files’ name). Then, we combined the
five signal segments’ frames of normal condition followed
by five signal segments frames of damaged condition, which
results in a total of 8478 frames for each noise level. Finally,
we extract the abovementioned features, which yields four
data sets of 8478 examples each. Each example is composed
of the three concatenated features vectors from x, y, and z

axis values.

4.3 Run-time evaluation

The goal of the run-time analysis is to measure the feature
extraction processing time taken for one frame consisting
of the three axis values. This run-time evaluation, together
with the discriminative analysis, is then used to make
the accuracy-efficiency trade-off decision. All the methods
were implemented in MATLABb and run on a Intel®
Core™ i7-4720HQ 2.60-GHz PC with 8 GB RAM on
windows 8.1.

4.4 Discriminative analysis

In order to test the feature’s resilience to noise interference,
we assessed the discriminative capacity of the LFCC
against the time and EMD features. The goal is to find
the combination of features and classification models that
presents the best performance separating the normal and
damage labelled examples for the various noise levels.
These results will provide information used to implement an
anomaly detection system that may eventually require more
complex and highly non-linear classifiers. The following
most frequently used functions were therefore selected to
test the adequacy of the models for anomaly detection:
linear, quadratic, and logistic discriminants.

The linear function is the simplest model that can be
easily implemented but is the least flexible (most biased).
The logistic function, on the other hand, is the most flexible
of the models as it supports more complex separation
borders that may be required to differentiate between the
normal and damaged labelled examples. However, it could
more easily over-fit to the data. Preference is therefore given
to the simpler model (easier to implement and less risk
of over-fitting). The models’ training was conducted using
MATLAB’s Statistics Toolbox.

To evaluate the model and the features, we used Accuracy
(percentage of correctly classified examples) for the global
performance analysis and the False Alarm Rate (False
Positive Rate), which is of particular interest when these
features are incorporated into an alarm system. The best
performance is high Accuracy and low False Alarm Rate,
simultaneously. However, we consider Accuracy as more
important and the False Alarm Rate is used as tiebreaker
between equally accurate methods.

Tenfold cross-validation was applied. The normal and
damaged labelled examples were equally distributed to
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Fig. 6 Visualization of the x, y, and z axis signals of a without damage bearing, b damage in the outer race, c damage in the inner race, and d)
damage in the sphere
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all folders in order to create balanced data sets using a
random shuffle. In addition, the cross-validation process
was repeated 10 times since the examples are shuffled
differently each time. At the end, the final performance was
measured by computing the mean value of all runs. This
process was performed so that we could have consistent and
significant values.

Finally, the Friedman and Nemenyi post hoc tests were
applied to the performance results in order to find the
groups of methods that differ significantly and rank them
accordingly [4]. Both grouping and ranking were performed
with a 5% significance level.

5 Results

This section presents the evaluation results that answer the
research questions. We present the run-time of the methods
and the Accuracy and False Alarm Rate measurements for
each discriminant function and noise level.

5.1 Acquired vibration signals

This subsection presents a few examples of vibration signals
visualizations. Note that these signals do not contain added
noise. Figure 6 depicts the x, y, and z accelerometer axis
signals from a bearing without damage, with damage in the
outer race, in the inner race and in one sphere. Each plot
presents 100-ms segments.

The bearings with damage presented pulses and the
increase of amplitude caused by the damages. In particular,
the damage in the inner race showed larger pulses. In
fact, these pulses are very subtle and hardly observed in
a direct observation of the signal. These subtle changes
reinforces the need of features that can differentiate the
several bearings conditions.

5.2 Run-time analysis

Table 2 shows the mean run-time required to extract the
features from one signal frame with 256 samples and three
axes. The EMD produces a different number of IMF for
each frame. We therefore only considered the minimum of
5 IMFs in this experiment (including the residual). This
means that the total number of features for the EMD(SV),
EMD(Ent), and EMD(Eng) models is 15 each, considering
the three axes.

In order to make a fair comparison, we also calibrated
the LFCC with five coefficients for each axis, denoted
as LFCC5. To prove that these features can reach
higher performance, we also calibrate the LFCC with 13
coefficients for each axis. This number of 13 coefficients
was selected because it is the typical value used in speech

Table 2 Mean run-time of features extraction from one three-axis
frame

Method Mean execution time (μs)

LFCC13 1,29

LFCC5 1,17

Time 0,11

EMD(SV) 218

EMD(Ent) 176

EMD(Eng) 170

recognition systems [18]. This LFCC calibration is denoted
as LFCC13. The six time features are grouped in one
vector for each axis, yielding a total of 18 features. These
experiments did not involve the median filter since this
operation does not contribute significantly to the run-time
and can be combined with all the mentioned methods.

As expected, the extraction of time features is the fastest
due to its simplicity. The EMD feature extraction are the
slowest due to the spline functions. In particular, the SV
presents the highest run-time due to the SVD operation.
The LFCC are faster than the EMD algorithms since only
the FFT operation contributes significantly to the run-time.
The number of LFCC coefficients has little effect on the
run-time.

5.3 Discriminative and noise robustness analysis

In this section, we present the performance measures of
the linear, quadratic, and logistic discriminative models for
each noise level, using the abovementioned features. In the
tables below WN corresponds to the without noise adding
case and the wmf subscript corresponds to method without
applying the median filter. The italicized numbers mark the
best values for each noise level. Tables 3 and 4 present the
Accuracy and the False Alarm Rate for the linear model,
respectively.

The LFCC13 presents the highest Accuracy for all noise
levels and are very robust since the Accuracy is higher
than 90% for all the noise levels. The time features are the
least robust because they are very sensitive to the noise.
These tables also reveal that the median filter substantially
increases Accuracy in all cases. The False Alarm Rate
decreases in most of the cases. Some cases, such as the
EMD(Ent)wmf , false positives are very high which means
that the model is prone to classifying the examples as
damaged condition. Effectively, EMD(Ent)wmf presented
one of the lowest Accuracy values. For the −12 dB noise
level, the time features almost reach a very poor 50% that is
close to the performance of a binary random classifier.
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Table 3 Accuracy (%) for a linear model

Methods SNR (dBs)

WN 0 −6 −12

LFCC13 100.0 99.9 99.4 92.6

LFCC13wmf 97.0 90.2 83.6 74.4

LFCC5 98.5 96.8 94.0 87.7

LFCC5wmf 91.8 87.2 80.3 72.3

Time 87.0 80.3 78.1 66.8

Timewmf 78.5 74.1 67.3 58.8

EMD(SV) 96.3 96.4 93.8 86.6

EMD(SV)wmf 89.7 90.0 78.1 62.5

EMD(Eng) 96.9 94.3 89.1 87.0

EMD(Eng)wmf 89.7 83.4 82.4 82.1

EMD(Ent) 87.2 84.1 78.0 76.5

EMD(Ent)wmf 75.9 75.5 74.2 73.5

Tables 5 and 6 present the Accuracy and the False Alarm
Rate for the quadratic model, respectively.

Similarly, the LFCC13 features present the highest
Accuracy values and are very robust for all noise levels.
With a quadratic model, the LFCC13 features also obtained
the lowest False Alarm Rate values. The median filter also
improves the Accuracy and decreases the False Alarm Rate
in all cases.

Table 4 False Alarm Rate (%) for a linear model

Methods SNR (dBs)

WN 0 − 6 − 12

LFCC13 0,0 0.1 0.9 11.2

LFCC13wmf 3.5 11.2 17.8 24.9

LFCC5 0.8 4.2 6.7 14.5

LFCC5wmf 9.1 12.9 18.8 25.2

Time 12.0 20.6 23.1 34.6

Timewmf 19.2 29.8 37.9 43.8

EMD(SV) 4.2 7.3 11.6 16.4

EMD(SV)wmf 7.0 11.5 21.3 36.0

EMD(Eng) 5.3 8.1 9.3 7.2

EMD(Eng)wmf 7.0 7.7 3.3 0.6

EMD(Ent) 7.0 8.4 6.0 5.1

EMD(Ent)wmf 6.6 4.3 0.4 0.0

Table 5 Accuracy (%) for a quadratic model

Methods SNR (dBs)

WN 0 − 6 − 12

LFCC13 100.0 100.0 99.9 98.0

LFCC13wmf 99.2 92.1 87.4 85.3

LFCC5 100.0 99.9 99.0 89.7

LFCC5wmf 96.2 87.3 80.0 74.0

Time 72.1 71.9 77.9 73.3

Timewmf 67.2 64.8 59.5 56.9

EMD(SV) 98.7 99.2 97.6 89.4

EMD(SV)wmf 87.7 85.1 81.2 81.8

EMD(Eng) 98.9 96.3 92.1 81.0

EMD(Eng)wmf 78.9 75.4 74.2 75.0

EMD(Ent) 99.8 96.8 96.3 87.9

EMD(Ent)wmf 87.7 89.0 76.5 60.8

Tables 7 and 8 provide the Accuracy and the False Alarm
Rate for the logistic model, respectively.

With the logistic model, the LFCC13 also presented the
best results. However, the EMD(SV) features presented the
best results for −12 dB noise level. As anticipated, the time
features again showed to be the least discriminative. The
median filter again improves Accuracy and False Alarm
Rates for all methods.

Table 6 False Alarm Rate (%) for a quadratic model

Methods SNR (dBs)

WN 0 − 6 − 12

LFCC13 0.0 0.0 0.0 2.3

LFCC13wmf 0.8 9.3 12.7 13.5

LFCC5 0.0 0.0 0.8 15.8

LFCC5wmf 4.4 15.6 19.6 20.6

Time 0.1 0.5 8.7 30.7

Timewmf 1.5 2.6 9.7 39.2

EMD(SV) 2.6 1.7 4.4 6.7

EMD(SV)wmf 7.7 8.5 10.1 9.8

EMD(Eng) 2.1 1.1 2.6 5.0

EMD(Eng)wmf 6.4 10.2 9.5 8.7

EMD(Ent) 0.1 6.4 7.3 15.7

EMD(Ent)wmf 7.7 13.8 26.4 40.4
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Table 7 Accuracy (%) for a logistic model

Methods SNR (dBs)

WN 0 − 6 − 12

LFCC13 100.0 100.0 99.9 94.5

LFCC13wmf 97.9 90.2 83.5 74.4

LFCC5 100.0 99.0 96.2 87.7

LFCC5wmf 93.0 87.2 80.3 72.3

Time 90.3 81.8 78.0 66.9

Timewmf 79.3 74.6 67.6 58.8

EMD(SV) 99.8 99.5 99.0 97.8

EMD(SV)wmf 95.7 95.1 95.7 96.8

EMD(Eng) 98.4 95.7 95.4 93.2

EMD(Eng)wmf 89.5 89.1 90.5 91.9

EMD(Ent) 100.0 99.9 97.6 86.3

EMD(Ent)wmf 95.7 90.1 78.2 62.5

5.4 Ranking of discriminative capacity

In this section, we present the critical diagrams of
the Accuracy and False Alarm Rate considering the
combinations of features and discriminant function pairs.
We identify the linear discriminant, quadratic discriminant
and the logistic discriminant in the diagrams as LD, QD, and
LogD respectively. This analysis only includes the methods

Table 8 False Alarm Rate (%) for a logistic model

Methods SNR (dBs)

WN 0 −6 −12

LFCC 0.0 0.0 0.1 5.7

LFCCwmf 2.1 10.0 17,2 25.2

LFCC5 0.0 0.7 3.2 13.1

LFCC5wmf 6.8 12.9 19.5 26.0

Time 9.6 18.2 22.3 34.1

Timewmf 21.6 27.7 34.6 43.4

EMD(SV) 0.2 0.5 1.1 2.9

EMD(SV)wmf 4.8 5.4 5.5 4.5

EMD(Eng) 1.0 3.2 2.7 5.0

EMD(Eng)wmf 6.2 6.7 6.4 6.6

EMD(Ent) 0.0 0.1 2.5 14.9

EMD(Ent)wmf 4.8 10.7 21.8 36.2

with median filtering since it improves the performance for
all combinations of features and discriminative functions.
The Friedman test revealed that the performance results
for each method were different for all measures. Briefly,
the diagram is composed by a ranking bar where the best
methods are on the right. The black bars define a group of
methods where the performance is not statistically different.

Figure 7 displays the critical diagram Accuracy consider-
ing the combinations of features and discriminant functions.

The LFCC13 with quadratic discriminant is the best
combination to obtain a high detection rate. This combi-
nation is included in a distinct group which also includes
the LFCC13 features combined with linear and logistic dis-
criminants. This fact means that these features are suitable
for any model. EMD(SV) with the logistic discriminant is
also included in this best group. These facts reveal that
EMD(SV) features are also very discriminative but only
with a complex discriminant such as the logistic func-
tion. On the other hand, the time features present very low
Accuracy for any discriminant.

Figure 8 depicts the critical diagram of the False
Alarm Rate considering the combinations of features and
discriminant functions.

The diagram reveals that the LFCC13 with quadratic
discriminant produces the least number of false alarms. The
best group include also other combinations of LFCC with
other discriminant functions. Similarly, the EMD(SV) with
the logistic discriminant function is in the best group.

5.5 General remarks

Considering all the results, we point out the following
remarks:

– The median filter improves the Accuracy of all features
and improves the False Alarm Rate of the most accurate
methods.

– The best feature and model combination is the LFCC13
with quadratic discriminant function for both Accuracy
and False Alarm Rate. However, we considered that
the EMD(SV) with the logistic discriminant performs
equally well since it is also in the best group of
combinations.

– The LFCC features present high rates for any discrimi-
nant function and the EMD features are better separated
with a logistic function. This fact suggests that LFCC
presents high separability of the normal and damage
labelled examples.

– The LFCC can be used for the fast training of simple
models without losing discriminative capacity.
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Fig. 7 Critical diagram for
Accuracy. Nemenyi post hoc test
at 5% significance

Fig. 8 Critical diagram for False
Alarm Rate. Nemenyi post hoc
test at 5% significance
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6 Conclusion

This work proposes the use of LFCC features for anomaly
detection in bearing vibration signals. The results reveal that
the LFCC extraction is faster than the EMD features with
similar or higher performance. It is therefore better suited
for data streams and real-time systems. Moreover, LFCC
presents high data separability (even for simple model
functions) between the normal and damage conditions
almost independently of the function model (although the
quadratic function is preferable).

As future work, tuning methods can be applied to find
the best parametrization for LFCC features. In addition,
the LFCC features can be submitted to feature selection
method to improve accuracy and efficiency. Finally, the
results of this work will be used in an anomaly detector
based on the quadratic model. This work was conducted
in a supervised anomaly detection setting. In future works,
we aim to extend these results to a semi-supervised (and if
possible, unsupervised) context, where very little labelled
data is available.
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