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Abstract
Milling thin titanium alloy workpieces using conventional manufacturing processes is a delicate operation. During machining,
the cutting forces can deform the part, while resulting compressive stresses could actually enhance its mechanical properties.
Nevertheless, when parts are both large in size and thin, deformation generated by machining will be incompatible with the
geometrical specifications. From this perspective, abrasive waterjet milling offers a suitable alternative solution. Numerous
works present the results relating to the depths milled, the surface characteristics and machining strategies when milling pockets.
Such studies show that the change of direction when milling closed pockets generates defects arising from the distribution of the
jet’s energy over the milled surface or the kinematics of the machine. When a pocket corner radius is imposed, changes of
direction are made following circular arcs with a radius lower than the specified one. In the present paper, an analysis of the width
milled during successive circular trajectories is presented and a predictive model for the depth is adopted. This model is then used
to propose a milling method that allows both the imposed radius and tolerance on the pocket depth to be respected.
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1 Literature review

Titanium alloys have excellent mechanical properties, and one
of the most commonly used is the Ti6Al4Valloy. This grade is
mainly composed of titanium, aluminium (6%), vanadium
(4%), and other constituents such as carbon (0.08%), iron
(0.25%), oxygen (0.13%), nitrogen (0.05%) and hydrogen
(0.012%). The main properties of this alloy are high tensile
strength (860 MPa), high yield strength (800 MPa) and an

elongation of more than 10%. It is therefore difficult to ma-
chine using conventional turning and milling methods due to
its high strength and galling tendency. During such machin-
ing, the cutting forces can become high and cause deforma-
tions in the workpiece or significant excess heating. In both
cases, the finished workpiece’s geometry will show deviations
outside specifications. This situation is exacerbated when the
workpieces are part of an aerostructure that must be resistant,
of large dimensions and lightweight. Achievement of these
last two properties often requires the use of thin walls that
are difficult to machine as they are extremely deformable
and sensitive to vibrations.

Other material removal solutions have been studied to
overcome the difficulty of milling such parts. Among them,
abrasive waterjet milling is a highly interesting alternative
solution as it uses natural components (water and abrasive)
and only generates low cutting forces. It thus limits deforma-
tion of the workpiece and resolves some production waste
recycling issues. This process has thus been widely studied
to machine open or closed pockets [1–3]. In the case of closed
pockets, the various strategies necessarily generate changes of
direction during machining. In their study, Goutham et al. [4]
consider rectangular pockets and changes of direction at 90°.
This study shows that the changes of direction lead locally to
defects in the pocket depth (Fig. 1). When the jet slows down
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and then stops to change feed direction, the workpiece’s ex-
posure time increases and the depth machined increases.

In their works, Alberdi et al. [1] presented the mill-
ing of triangular pockets (Fig. 2) based on two strate-
gies using changes of different directions by 90°. One
pocket produced in parallel contours was machined
moving, in one instance, from the interior to the exteri-
or and in the other instance moving from the exterior to
the interior. All the pockets showed irregularities on the

bottom depth (Fig. 2). These irregularities appeared in
the zones where changes of direction were made.

In the same study, an analysis of the defects gener-
ated on change of direction is presented and it is stated
that the variation in the distance between two adjacent
trajectories is the origin of the observed defect. When
the trajectories are parallel, the distance between the
point situated under the jet and the point closest to
the already milled surface is constant. This distance is
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greater when there is a change of direction (Fig. 3), and
this generates a difference in depth. The variation in
distance between two successive passes is thus one of
the causes of the variation in depth milled.

2 Change of direction

2.1 Depth model for milled pockets

To predict the depth of the milled pockets, modelling of their
shape is required. Different approaches have been used to
determine the influence of machining parameters on the
milled surface. These approaches are based on experiments
[1–7], on an advanced computational method [8], on design
of experiment [9], on analysis of the material removal mech-
anism [10], on analysis of the surface roughness [11] or on a
CFDmethod [12]. It is also possible to consider an elementary
profile [12–15] to model it [12, 14] and calculate the equation
for a pocket bottom profile by considering an offset between
each pass [9, 15].

The setting parameters are not modifiable during milling:
They are pressure (P), a grade of abrasive particle, the abrasive
flow rate (ma) and the standoff distance (SOD). The control
parameters are those that can be controlled by the NC program

during machining. Considering an elementary pass, the only
controlled parameter is the traverse speed (Vf ).

Among proposed models, the model based on an exponen-
tial function is effective in modelling an elementary pass. This
elementary pass is generated by moving the jet in a straight
line over a machined surface of the workpiece (Fig. 4a).
Several studies onmetallic materials [1, 7, 15] have confirmed
that the profile of an elementary pass can be represented using
the Gaussian profile (Eq. 1).

y xð Þ ¼ −H � e − x2

B2

� �
ð1Þ

This Gaussian profile (Fig. 4b) is characterised by the max-
imum depth H and the width factor B [15]. They are
established using a power function (Eq. 2). The width of the
profile is estimated by the interval of [− 2xB; 2xB] and con-
tains all the points of the profile curve where y(x) ≤ − 0.01xH.
This consideration excludes cases of particle impacting with-
out removing material.

H Vfð Þ ¼ Ho� Vf Hv and B Vfð Þ ¼ Bo� Vf Bv ð2Þ

In this expression, Ho, Hv, Bo and Bv are experimental
coefficients calculated by the least squares method. Traverse
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speed Vf is expressed in millimetres per minute andH(Vf) and
B(Vf) are obtained in millimetres.

As an elementary profile is characterised by the equation
(Eq. 1), it is possible to determine the cross section profile of
an open pocket bottom as being the sum of n elementary
passes (Fig. 5) with an offset distance named Pitch.
According to Eq. 1, Eq. 3 expresses the superposition of n
offset elementary passes for a given Pitch:

Y xð Þ ¼ Ke� ∑
n

i¼0
H Vfð Þ � e

− x−i�Pitchð Þ2
B Vfð Þ2

� �" #
ð3Þ

In this equation, the coefficient Ke allows an additional ero-
sion that appears when a succession of elementary passes is
performed to be taken into account. This erosion arises from
the action produced by a given pass on the surface generated
by the previous passes. Indeed, the main material removal mech-
anism [16–18] identified suggests that a particle does not frag-
ment on impact and that it is driven by a plane movement.
Hence, it generates an additional erosion (a second effect of
impacting particles) on the surface that has already been milled.

Once the maximum depth has been reached, it can be spec-
ified according to Eq. 4 [15].

Maximum depth ¼ Ke�
ffiffiffi
π

p � H Vfð Þ � B Vfð Þ
Pitch

ð4Þ

It should be noted that it is possible to modify the jet’s impact
angle by tilting the cutting head. In their work, Hlavac et al. [19]
use the tilting angle in order to reduce the product shape distor-
tion in water jet cutting. In this study, only an impact angle of 90°
will be considered, while a variable angle will be studied in a
forthcoming work.

2.2 Direction change strategies

The issue studied in the present paper concerns milling
of closed pockets for which changes of direction by 90°
are needed. On a change of direction without circular
arc (Fig. 6a), the machine has to decelerate (Fig. 6c)
down to zero speed, change direction and accelerate to
again reach the specified traverse speed. During the de-
celeration and acceleration phase, the jet remains longer
on the same location than during a continuous trajectory
at constant speed. A greater depth thus inevitably
emerges (Fig. 6a). To avoid this problem, the direction
can be changed using circular arc trajectories (Fig. 6b).

Several solutions are possible to change direction using
circular arc trajectories:

– Concentric arcs (Fig. 6d) allow the distance be-
tween two consecutive passes to be retained. The
quantity of energy of the jet will then be distributed
over the same milled surface quantity, and the depth
will remain constant. However, the pocket corner
radius will depend on the number of passes needed
to produce the pocket and cannot therefore respect a
specification.

– Constant radius arcs (Fig. 6e) allow a set radius to be
maintained. The distance between two consecutive arcs
will not be constant, and the energy distribution of the jet
over a surface quantity will depend on the jet’s position.
This surface quantity will be maximal when the jet is in
the middle of the circular arc. The depth machined will
thus be reduced in the pocket corner that will then show a
bump (Fig. 6g). Failing correction, this pocket corner will
resemble a speed bump.
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– A combination of the previous solutions (Fig. 6f)
allows the pocket corner radius to be controlled.
This solution uses the small radius needed in the
centre of the pocket and limits its value on the
outer radius specified R once it has been reached.
If no correction is applied, the pockets obtained will
have a constant depth as long as the radii remain
concentric but will show speed bumps when the
radius remains constant.

2.3 Change of direction at constant radius

2.3.1 Identification of three distinct areas

When the arcs have a constant radius, the distance be-
tween two consecutive passes will vary according to the
point considered on the trajectory. This distance is cal-
culated as the length of the perpendicular to the mid-
line between two passes. Geometrically, evolution of the
distance has a mathematical relationship with initial
pitch, Pitchini t . In the present work, the initial
pitch Pitchinit will be quite small in relation to the ra-
dius R of the pocket corner (Pitchinit ≪ R).

Figure 7 illustrates the change in distance of two
adjacent toolpaths, i.e. outer toolpath (A1, B1, D1, E1)
and inner toolpath (A2, B2, D2, E2) at a corner of a
milled pocket with constant radius R. Three areas need
to be defined for an angle smaller than 45°, and a

different calculation has to be performed of the distance
for each of them:

– Area 1: the inner path is a circular arc, and the mid-line
and the outer path are line segments. This area corre-
sponds to an angle sector θ1. Angles in this sector are
negative.

– Area 2: the inner path and the mid-line are circular arcs,
the outer path is a straight line. This area corresponds to
an angle sector θ2.

– Area 3: the inner path, the mid-line, and the outer path are
circular arcs. This area is limited at an angle of 45° on the
corner with the angle sector θ3.

For the rest of the trajectory, the calculation is performed
similarly using the symmetry.

2.3.2 Evaluation of the distance in three different areas

Considering the origin (OC2, X, Y), the equation of the circle
corresponding to the inner toolpath (C2) can be written (Eq.
5):

C2ð Þ : x2 þ y2 ¼ R2 ð5Þ

Considering the same origin (OC2, X, Y), the equation of
the circle corresponding to the outer toolpath (C1) and the
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Ri
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Fig. 6 Different changes of direction
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equation of the circle corresponding to the mid-line (Cm) can
be written (Eq. 6):

C1ð Þ∶ x−xo1ð Þ2 þ y−yo1ð Þ2 ¼ R2

Cmð Þ∶ x−xomð Þ2 þ y−yomð Þ2 ¼ R2 ð6Þ

From Fig. 7, the coordinates of centre points OC1 and OCm

belonging to (C1) and respectively to (Cm) can be expressed
(Eq. 7):

OC1ð Þ : xo1 ¼ yo1 ¼ Pitchinit

OCmð Þ : xom ¼ yom ¼ Pitchinit
2

ð7Þ

In addition, the vertical line (A1B1) is established (Eq. 8):

A1 B1ð Þ : x ¼ Rþ Pitchinit ð8Þ

The normal to the circular arc (Cm) at each point M is
defined by the straight line (D) passing through the point

OCm (xom, yom) and its equation can be written according to
θ (Eq. 9):

Dð Þ : y ¼ tan θð Þ � x−
Pitchinit

2

� �
þ Pitchinit

2
for 0≤θ≤

π
4

ð9Þ

Using Eqs. 5 to 9, the distances Pitcharea(θ), for the three
areas 1, 2 and 3, can be evaluated. Results are shown in
Table 1. The detailed calculation can be found in Appendix.

These expressions can be simplified when the initial pitch
is very small compared with the corner radius (Pitchinit ≪ R).
Corresponding results are presented in Table 2.

From Table 2, it can be established that when the initial
pitch is very small compared with the corner radius
(Pitchinit ≪ R), the distance between two consecutive passes
does not depend on the magnitude of the corner radius R. A
computation of the distance along the middle line using the
symmetry in relation to the middle of the corner is performed.
A representation is given (Fig. 8a) for different values of the

Fig. 7 Changes of direction at constant radius

Table 1 Distance in three areas

Angle (θ) Pitcharea(θ)

Area 1
θ∈ atan −Pitchinit=2

R−Pitchinit=2

� �
; 0

h i
Rþ Pitchinit−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− R−Pitchinit=2ð Þtanθþ Pitchinit=2½ �2

q
Area 2

θ∈ 0; atan Pitchinit=2
RþPitchinit=2

� �i i
RþPitchinit=2

cosθ þ
ffiffi
2

p
2 Pitchinitcos

π
4 −θ
� �

− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2−2Pitchinit2sin2 π

4 −θ
� �q

Area 3
θ∈ atan Pitchinit=2

RþPitchinit=2

� �
; π4

i i ffiffiffi
2

p
Pitchinit:cos π

4 −θ
� �
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initial pitch and shows that these distances mainly depend on
the initial pitch value. Introducing Pitcharea(θ) in (Eq. 4), it can
be definedDepth(θ) in relation with angle θ (Eq. 10). Since the
reference origin is on the upper surface, the Depth(θ) is de-
fined negative.

Depth θð Þ ¼ −Ke�
ffiffiffi
π

p � H Vfð Þ � B Vfð Þ
Pitcharea θð Þ ð10Þ

From Eq. 10, for different values of Pitchinit, Depth(θ) was
plotted on Fig. 8b usingH(Vf) = 0.154 mm, B(Vf) = 1.577 mm
et Ke = 1.1. These values are derived from the coefficients
determined by the rapid calibration procedure (see Sect. 3.1).

Let us study the relative variation in depth. Let Depthinit be
the depth obtained with a pitch equal to Pitchinit (Eq. 11).

Depthinit ¼ −Ke�
ffiffiffi
π

p � H Vfð Þ � B Vfð Þ
Pitchinit

ð11Þ

The relative variation in depth is defined by:

ΔDepth θð Þ ¼ Depth θð Þ−Depthinit
Depthinit

¼ Pitchinit
Pitcharea θð Þ−1 ð12Þ

By reporting in Eqs. 12, 10 and 11, we obtain, according to
the values of Pitcharea(θ) of Table 2, equations of the relative
depth variation. Corresponding results are presented in
Table 3.

These expressions show that the relative depth variation is
independent of Pitchinit. A single and unique curve (Fig. 9)
can thus be plotted to represent the relative depth variation in
relation to angle θ.

2.4 Conclusion on change of direction at constant
radius

The geometric study of the distance between two consecutive
passes with the constant radius R and the use of the simplified
model for depth (Eq. 11) allow the following results to be
established:

1. The distance between two adjacent toolpaths does not
depend on that radius (R) but depends on the initial pitch
(Pitchinit).

2. The relative depth variation is only dependant of angle θ
(Table 3 and Fig. 9).

3. The milled depth in a pocket corner can be predicted with
a given constant radius by using the initial depth defined
by (Eq. 11) and Pitcharea(θ).

a) Pitch variation b) Depth variation

Fig. 8 Pitch and depth variations in constant radius strategy

Table 2 Distance in three areas
considering Pitchinit ≪ R Angle (θ) Pitcharea(θ)

Area 1 θ ≅ 0 ≅Pitchinit
Area 2

θ∈ 0; atan Pitchinit=2
RþPitchinit=2

� �i i
≅Pitchinit

2 1þ ffiffiffi
2

p
cos π

4 −θ
� �� �

Area 3
θ∈ atan Pitchinit=2

RþPitchinit=2

� �
; π4

i i
¼ ffiffiffi

2
p

Pitchinit:cos π
4 −θ
� �
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2.5 Adaptive speed control during change of direction
at constant radius

Let Vfinit be the traverse speed to obtain a depth Depthinit from
a pitch Pitchinit (Eq. 11). In the circular area, traverse speed is
modified to have a constant depth. This leads to:

Depth θð Þ ¼ Depthinit ð13Þ

By reporting Eqs. 2, 10 and 11 in 13, traverse speed mod-
ified Vf(θ) is defined by:

Vf θð Þ ¼ Vf init
Pitcharea θð Þ
Pitchinit

� � 1
HvþBvð Þ

ð14Þ

Consider now a pocket whose initial depth is Depthinit and
a tolerance ±TDepth (Fig. 10a). On milling of the pocket corner,
the depth diminishes and its variation reaches the upper limit
Depthinit + TDepth for an angular value θ0. The initial speed is
then modified considering a corrected depth Depth(θ0) calcu-
lated by equation (Eq. 15).

Depth θ0ð Þ ¼ Depthinit−TDepth ð15Þ

Using (Eq. 10), the modified traverse speed is:

Vf θ0ð Þ ¼ TDepth−Depthinit
� �

Pitcharea θ0ð Þ
Ke

ffiffiffi
π

p
BoHo

� � 1
HvþBvð Þ

ð16Þ

When the tolerance is lower (Fig. 10b), the approach must
be iterative and several changes in speed are required. The
representation in Fig. 10 assumes instantaneous speed
changes.

3 Experimental validation

3.1 Experimental validation of adaptive speed control

The machine configuration is defined by a Flow MACH4-C
machine (Fig. 11), a nominal pressure of 100 MPa and an
abrasive with grain size 120 mesh and flow 0.34 kg/min.
The cutting head is equipped with a nozzle diameter
0.3302 mm and a focusing tube of diameter 1.016 mm and
101.6 mm in length.

The material is Ti6Al4V titanium alloy as previously de-
scribed. The rapid calibration procedure described in article
[15] was applied. Coefficients Ho = 69.255, Hv = − 0.935,
Bo = 1.662, Bv = − 0.008 and Ke = 1.1 were determined.
Based on a pitch equal to 0.6B(Vf) as recommended in [15],
the traverse speed is 688.3 mm/min to obtain a pocket depth of
0.5 mm (Eq. 4).

Five different milling operations were conducted (Fig. 12):

– Milling with concentric radii (R varying from 0.05 to
20 mm) to check obtaining a flat bottom when the dis-
tance between successive trajectories remained constant.

Fig. 9 Relative depth variation
for a constant radius strategy

Table 3 Relative depth variation in the three areas

Angle (θ) ΔDepth(θ)

Area 1 θ ≅ 0 ≅0
Area 2

θ∈ 0; atan Pitchinit=2
RþPitchinit=2

� �i i
≅ 2

1þ ffiffi
2

p
cos π

4−θð Þ −1

Area 3
θ∈ atan Pitchinit=2

RþPitchinit=2

� �
; π4

i i
1ffiffi

2
p

cos π
4−θð Þ−1
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– Milling with constant radius R = 20 mm to show the
speed bump.

– Three milling operations with speed correction for radii
R = 25 mm, R = 20 mm and R = 15 mm to validate the
method. For these three cases, a tolerance of ± 0.05 mm
was considered and four adaptations of the speed were
needed to respect that (Fig. 12).

Measurements of the profiles milled were conducted using an
Alicona IF profilometer (Fig. 13). This autofocus instrument
allows a square zone with 25-mm sides to be mapped taking
the coordinates of pixels some micrometres square to within an
accuracy of a few micrometres. Precise mappings of the zones
measured can be constructed (Fig. 14) by making several acqui-
sitions. To measure a profile, two straight lines are plotted on the
surfacemeasured (Fig. 13) and the intersection of their projection
over the measured surface is then constructed. This intersection

constitutes the profile measured, and its plot can be generated
considering the Y and Z coordinates.

3.2 Results and discussion

The results are shown in Fig. 14. A recalibration was
made in the Y direction (Fig. 13) to compare the pro-
files measured whose abscissa is in millimetres and the
theoretical profiles whose abscissa is in degrees.

The maximum obtained depth was 0.57 mm (Fig. 14). This
is slightly greater than the target depth of 0.5 mm and is the
result of a pressure of 110 MPa during the tests instead of the
programmed pressure of 100 MPa. The variation comes from
the machine that is a cutting machine not provided with a
pressure control loop for which the manufacturer chose to
increase that parameter to ensure cutting. The modelled pro-
files were therefore adjusted considering an erosion coeffi-
cient Ke of 1.22 instead of 1.1 (Eq. 4). The profiles measured

Fig. 11 FLOW MACH4C
machine

a) b)

Fig. 10 Correction of the pocket corner depth
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were extremely close to the modelled profiles. This shows,
firstly, that the prediction of the initial speed bump defect is
accurate and, secondly, that the correction method proposed is
effective. The results confirm that the radius R does not influ-
ence the defect and that the latter is only related to the pitch.
The profiles show that the changes in speed are barely percep-
tible on the milled surface. The SOD = 100 mm forms a spot
of approximately 7 mm in diameter. Therefore, each point of
the surface is milled at least 0.61 s, regardless of the changes
in traverse speed. Smoothing effect is thus produced on the
surface.

4 Conclusion

The study presented highlights the issue of changes of
direction during abrasive waterjet milling of pocket

corners. It shows that right-angled changes of direction
are not suited to the process as they require a passage
through a zero rate that generates an excess depth. It is
also shown that concentric arcs alone are not possible
since the outer radius is then determined by the scan-
ning pitch and the number of previous passes. This
radius cannot then respect a given specification. The
paper emphasises the need to mill pocket corners using
a constant radius. In this case, a speed bump type defect
will appear on the pocket corner bottom. This defect is
related to a variable distance between two consecutive
toolpaths. This variation in distance leads to a variation
in the distribution of the jet’s energy that itself leads to
a variation in the milled depth. The geometric study of
the distance between two passes shows that this varia-
tion in distance is not related to the circular arc radius
and depends only on the scanning pitch considered. The
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study defines a rational curve to model the variation in
depth whatever the pocket corner radius and pitch con-
sidered. An adaptive method for speed correction com-
bined with a tolerance on the depth is also adopted.
Finally, experimental validation is presented to show
the relevance of the geometric approach allowing the

initial defect to be predicted. The performance of adap-
tive control is also validated by tests. The results show
that the entire study is coherent and a forthcoming pa-
per will develop a comprehensive milling strategy to
mill rectangular pockets consistent with a tolerance on
the milled depth.
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Appendix

Using Eqs. 5 to 9, the variation between the outer toolpath and
inter toolpath for the three areas 1, 2 and 3 can be evaluated
(Fig. 7):

1. Area 1: distances in this area, Pitcharea1, are calculated
considering the angle θ ∈ [θ1, 0] with θ1 defined by:

θ1 ¼ atan
−Pitchinit=2
R−Pitchinit=2

� �
ð17Þ

In this area, segments are always parallel to the X-axis and,
from Eqs. 5 and 8, the length of these segments is identified
by:

Pitcharea1 ¼ Rþ Pitchinit−
ffiffiffiffiffiffiffiffiffiffiffiffi
R2−y2

q
ð18Þ

Relation between y and θ is given by:

tan θð Þ ¼ − Pitchinit=2−yð Þ
R−Pitchinit=2

ð19Þ

Replacing y from Eqs. 19 in 18, Pitcharea1 is obtained by:

Pitcharea1 ¼ Rþ Pitchinit−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− R−Pitchinit=2ð Þtanθþ Pitchinit=2½ �2

q
ð20Þ

For θ = θ1, Pitcharea1 = Pitchinit and for θ = 0, Eq. 20 be-
comes:

Pitcharea1 ¼ Rþ Pitchinit−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− Pitchinit=2½ �2

q
ð21Þ

Considering Pitchinit ≪ R, Eq. 21 can be written:

Pitcharea1≅Pitchinit 1þ 1=
�
8R

� ��
≅Pitchinit ð22Þ

2. Area 2: distances in this area, Pitcharea2, are calculated
considering the angle θ ∈ [0, θ2] with θ2 defined by:

θ2 ¼ atan
Pitchinit=2

Rþ Pitchinit=2

� �
ð23Þ

This angular position θ is linked to Pitcharea2 by the length:

cosθ ¼ Rþ Pitchinit=2
OCmAþ AB

ð24Þ

Considering the triangle OC2OCmA, it can be established:

OCmA2−
ffiffiffi
2

p
Pitchinitcos

3π
4

þ θ

� �
OCmAþ 1

2
Pitchinit2−R2

� �
¼ 0

ð25Þ

Solving Eq. 25, it is possible to calculate OCmA:

OCmA ¼
−

ffiffiffi
2

p
Pitchinitcos

π
4
−θ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2−2Pitchinit2sin2

π
4
−θ

� �r
2

ð26Þ

As Pitchinit ≪ R, Eq. 26 becomes:

OCmA≅
−

ffiffiffi
2

p
Pitchinitcos

π
4
−θ

� �
þ 2R

2
ð27Þ

Substituting OCmA (Eq. 27) into Eq. 24, it is possible to
calculate the length:

Pitcharea2 ¼ AB≅
R 1−cosθð Þ þ Pitchinit

2
1þ

ffiffiffi
2

p
cosθcos

π
4
−θ

� �h i
cosθ

ð28Þ

As Pitchinit ≪ R , the calculated angle θ is small and the
length AB can be approximated:

Pitcharea2≅
Pitchinit

2
1þ

ffiffiffi
2

p
cos

π
4
−θ

� �� �
ð29Þ

3. Area 3: distances in this area, Pitcharea3, are calculated
considering the angle θ∈ θ2; π4

	 

. From Fig. 7, the dis-

tances, Pitcharea3, are defined by:

Pitcharea3 ¼ EF ¼ OCmF−OCmE ð30Þ

Considering the triangle OC1OCmF, the expression can be
established:

FOCm
2 þ OC1OCm

2−2OC1OCm:FOCm:cos
π
4
−θ

� �
¼ FOC1

2

ð31Þ

Considering that OC1OCm ¼
ffiffi
2

p
Pitchinit
2 and FOC1 ¼ R, a

new expression is established:

FOCm
2−

ffiffiffi
2

p
Pitchinit:cos

π
4
−θ

� �
:FOCm þ 1

2
Pitchinit2−R2 ¼ 0

ð32Þ
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Similarly, considering triangle OC2OCmE, it can be written:

EOCm
2 þ

ffiffiffi
2

p
Pitchinit:cos

π
4
−θ

� �
:EOCm þ 1

2
Pitchinit2−R2 ¼ 0

ð33Þ

Subtracting Eq. 33 from Eq. 32, a simplified expression is
established:

FOCm
2−EOCm

2
� �

−
ffiffiffi
2

p
Pitchinit:cos

π
4
−θ

� �
: FOCm þ EOCmð Þ ¼ 0

ð34Þ

The distance Pitcharea3 can be calculated by:

Pitcharea3 ¼ EF

¼ FOCm−EOCm¼
ffiffiffi
2

p
Pitchinit:cos

π
4
−θ

� �
ð35Þ
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