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Abstract
Air pollution is classified as one of the most dangerous type on the human health, the environment, and the ecosystem.
However, air pollution results in climate change and affects people’s health. For a number of years, monitoring the air
quality has become a very urgent and necessary topic. Moreover, safety and health have been attracting attention as one of
the important topics to evaluate, firstly, the degree of air pollution and predict pollutant concentrations accurately. Then, it is
crucial to establish a more scientific air quality monitoring to ensure the quality of life. In this paper, new reduced air quality
monitoring is suggested to enhance the Fault Detection (FD) of an air quality monitoring network. Furthermore, a sensor
FD procedure based on Reduced Kernel Partial Least Squares (RKPLS) is proposed to monitor an air quality monitoring
network. The main contribution of the suggested procedure is to enhance the FD of an air quality monitoring network in
terms of computation time and false alarm rate, using just the important latent components, compared to standard Kernel
Partial Least Squares (KPLS).

Keywords Air pollution · Air quality · KPLS · Reduced KPLS · SPE · Fault detection

1 Introduction

Concerning the environment, indoor air pollution is consis-
tently ranked among the top highly important risks that can
destroy public health, life quality, vegetation, and even mon-
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uments. Because of human activities, industrial effluents,
and meteorological factors, air is vulnerable to be polluted
by pollutants like nitrogen oxides (NO2 and NO), ozone,
and carbon oxides. Thus, air quality process monitoring is
becoming increasingly essential and important to protect the
public health and the environment [1–3]. Accordingly, the
development of robust and accurate air quality monitoring
is highly desirable.

Air quality monitoring networks have been reported in
the literature [4–6] to make sure that air quality standards
and preventive measures reduce the undesirable change
effect in many pollutants. As a consequence, using data
of air quality networks is crucial to achieve the desired
objectives.

Moreover, the validation and monitoring of sensor
networks are very important steps. Generally, the research
can be divided to evaluate the air quality monitoring
network, according to the following techniques: process
modeling, sensor Fault Detection (FD), sensor fault
isolation, and correction [7]. In this work, the main purpose
of this manuscript is to propose a new technique to
improve the sensor FD phase. To ensure good public health,
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air quality monitoring has been carried out by several
techniques. In the literature [8, 9], monitoring approaches
can be divided into two significant categories: model-based
and data-driven methods.

For process monitoring, model-based approaches always
utilize the process model predictions to make decisions
concerning the existence or absence of faults [10–12].
However, several data-based monitoring methods have been
developed in the literature [47], such as principal component
analysis (PCA) [13–15], independent component analysis
(ICA) [16], and partial least squares (PLS) [17, 18]. Several
data-based monitoring methods, in the literature, have been
used to construct models that can be often utilized in the
process monitoring step. The data-based approaches to the
monitoring and modeling of real applications, especially
air quality networks, usually depend on the quality of
used data. Especially, the PCA technique tries to extract
linear relations among the considered variables and then
represents them with orthogonal principal components. The
PCA technique is particularly adapted to reveal linear
relationships among the plant variables without formulating
them explicitly, as indicated in [19, 20].

However, the PLS, as a data-driven method, has shown
good performances and has been widely used in modeling,
monitoring, and diagnosis in many fields of chemistry,
analytical, physical, and clinical chemistry, as well as the
air quality system. The PLS method, which can extract
relationships between two sets of variables, inputs/outputs,
can build a linear learning model with linear latent variables
(LVs) [21]. Unlike the PCA, which captures variations in
input data with a descending order of variance, the PLS
model finds an optimum pair of latent variables in the input
data related to the output ones, such that these transformed
variables have the largest covariance.

In this context, several extended PLS techniques have
been proposed in the literature. The statistical process
based on the PLS method has been frequently studied to
have good detection results. In [22], the authors suggested
the monitoring methods with multiblock PLS models and
showed as well the performance of the FD of the PLS
technique. The authors of [23] applied the recursive PLS
algorithm in order to update the PLS model with the latest
process data. Later, another method, called the total PLS
model, was developed by Zhou et al. [24] for output-relevant
process monitoring.

From another perspective, the Kernel PLS (KPLS)
approaches have become one of the simple, popular, elegant,
and fast techniques at the level of the development of the
soft measurement model for nonlinear systems relative to
other nonlinear approaches [25–27]. The KPLS method
provides, at the same time, good monitoring performances
by finding those LVs that present a nonlinear correlation
with the response variables, besides improving model

understanding. The main advantage of the KPLS method
is that it does not involve any nonlinear optimization [28]
utilizing the kernel function or the stabilization problem,
hence making it as simple as standard PLS.

For the KPLS method, the number of latent variables
selected for KPLS may be larger than that for linear
PLS. However, computation time (CT), selected for the
KPLS method, may increase during the identification phase
according to the number of samples for the storage of the
symmetric kernel matrix of a KPLS monitoring model. To
achieve the modeling and monitoring objectives, a new
Reduced Kernel Partial Least Squares (RKPLS) method is
developed to predict the concentrations of various pollutants
and to help understand the modification of air quality
networks. The main goal of this paper is to use the
advantages of the KPLS technique by introducing it as a part
of a new proposed method for air quality networks. Then,
the suggested RKPLS method is carried out.

In summary, we develop the RKPLS technique that aims
to enhance the data validation of air quality monitoring
networks. In this study, the main principle is to treat the
problem of CT and the storage of variables. The air quality
is a real system that presents several variables. Thus, the
treatment of these variables takes a long time. The aspect of
the suggested method is to select, using a projection of all
LVs, just the important variables. These selected variables
consist in presenting a faster and even more effective
monitoring process.

In the proposed method, we consider only the set
of observations that approximate the retained important
components to produce a reduced size of the kernel
matrix. Nevertheless, for a large and complex system, our
proposal is mainly based on a reduced Gram matrix, so the
training time decreases rapidly with a reduced number of
observations.

To overcome large datasets, a FD method is developed.
The faults sensor or abnormal changes in measured air
quality must be detected effectively and quickly using the
detection index Squared Prediction Error (SPE). In this task,
the FD method uses the SPE index and the Exponentially
Weighted Moving Average (EWMA) to improve this phase.
The FD performances of the developed RKPLS-based SPE
technique and RKPLS-based EWMA-SPE technique are
illustrated in terms of False Alarm Rate (FAR), Good
Detection Rate (GDR), and CT.

The paper is outlined as follows. The concepts of PLS
and KPLS are introduced in Section 2. In Section 3, the
proposed RKPLS method is described. Next, Section 4
details the selection of the kernel parameter principle using
the Tabu search algorithm. In Section 5, the application
results on an air quality monitoring process are given
to illustrate the performance of the suggested reduced
approach. The conclusion is presented in Section 6.
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2 Preliminary

2.1 Standard PLSmethod

First of all, we are interested in the basic PLS method,
which is an extension of the proposed RKPLS method. The
general principle is to extract, using the input and output
data matrices, LVs to build a linear multivariable model.

The input data X = [
x1, . . . , xN

]T ∈ �N×m contain
N samples with m process variables and the output data

Y = [
y1, . . . , yN

]T ∈ �N×J comprise N observations
with J quality variables.

In PLS, we project the input/output data in a low-
dimensional space characterized by an L number of latent
variables [29]. The PLS method decomposes the input and
output data as follows:

{
X = T P T + E

Y = UQT + F
(1)

where T =[t1, t2...tl] and U=[u1, u2...ul] are the score
vectors, P=[p1, p2...pl] andQ=[q1, q2...ql] are the loadings
for X and Y, respectively. Thus, the E and F matrices are,
respectively, the PLS residuals of the input data X and the
output data Y.

2.2 Theory of the KPLSmethod

2.2.1 Kernel function

Actually, systems have a nonlinear structure. Because
of the limitation of the standard PLS for the nonlinear
system, several methods have been developed. According
to the trend and popular methods, the kernel technique has
received a lot of attention [25, 30].

The KPLS method is characterized by the kernel matrix
(Gram matrix) which consists in building nonlinear latent
components with an approximately linear computational
cost.

Therefore, the main idea is to transform the nonlinear
data (input and output) in a higher-dimensional space, called
the feature space F, as illustrated in Eq. 2. In this case, the
KPLS method is formulated in a feature space of traditional
PLS to its nonlinear kernel form [31, 48].

Φ : xi ∈ �N → Φ(xi) ∈ F (2)

Furthermore, we cannot determine the nonlinear mapping of
each observation from the batch process. A Mercer kernel
k(., .) is proposed to overtake this problem [32]. Equation 3

presents the product of two mapped samples to determine
the kernel function:

k(xi, xj ) =< Φ(xi), Φ(xj ) >= Φ(xi)Φ(xj )
T (3)

where Φ(xi) ∈ �1×S , i = 1, ..., N and S is the dimension
of the feature space.

In the literature, many kernel functions have been
commonly defined and used. Table 1 presents the different
kernel functions where p, β0, β1, and c are determined using
the cross-validation technique.

In a high-dimensional space and prior to calculation, the
mean centering of the Gram matrix K must be performed,
as presented by Eq. 4:

K ←
(

In − 1

n
1n1

T
n

)
K

(
In − 1

n
1n1

T
n

)
(4)

where 1n is a vector of ones whose length is N , and In is an
N-dimensional identity matrix.

2.2.2 KPLS function monitoring

The PLS kernel algorithm was given by Lindgren et al. [33]
with a large number of samples. The Gram matrix K ∈
�N×N [34] can be presented according to Eqs. 3 and 4, as
follows:

K = Φ(X)Φ(X)T (5)

For nonlinear systems, a traditinal KPLS algorithm is given
as follows:

Algorithm 1 KPLS algorithm

Input: N×M input data matrix X and N×L output data
matrix Y
Output: Input score matrices T, output score matrix U

Step 1: Calculate kernel matrix and then center;
Step 2: Set i=1, K1 = K , Y1 = Y ;
Step 3: Random initialized ui equal to any column of Yi ;
Step 4: ti = KT

i ui , ti = ti/ ‖ ti ‖;
Step 5: ci = YT

i ti ;
Step 6: ui = Yici , ci = ci/ ‖ ci ‖;
Step 7: If ti converges, go to Step 7; else return to Step 3;
Step 8: Deflate K and Y;
Step 9: Repeat steps 3 to 6 to extract more latent variables;
Step 10: Obtain cumulative matrices T and U.

According to Algorithm 1, the deflation step is obtained
by the rank-one reduction of K and Y [28]. Using a new T
score vector, the K and Y matrices are deflated as:

K = K − t tT − KttT + t tT KttT (6)

Y = Y − t tT Y (7)
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Table 1 Different kernel
functions Polynomial kernel Sigmoid kernel Radial basis kernel

K(X, Y ) =< X, Y >p K(X, Y ) = tanh(β0 < X, Y > +β1) K(X, Y ) = exp
(
−‖X−Y‖2

c

)

where In is an N-dimensional identity matrix.
After calculating the loadings and scores, the KPLS

model is described as:

{
Ŷ = KU(T T KU)−1T T Y

Ŷt = KtU(T T KU)−1T T Y
(8)

where Ŷ presents the prediction outputs of the training
samples, Ŷt is the prediction outputs of the testing samples,
and Kt denotes the kernel matrix of the test samples.

3 Suggested RKPLSmethod

In many domains, large datasets have been presented. The
training data, using the kernel method, has had a great
success with an elegant treatment of data for monitoring
systems. As a result, this number of observations must be
stored in a memory.

Specifically, the KPLS technique presents a great
disadvantage when the number of observations increases.
This necessitates the use of large computer memory and
training time [35]. Then, the learning time and CT for
detection go up rapidly with the number of observations.
Despite the fact that the KPLS technique solves the problem
of nonlinearity, the calculation and memory problem that
arise are posed for dynamic processes being monitored.

The dimensional kernel matrix (Gram matrix) is limited
in this method [36, 37].

The main goal of the proposed RKPLS method is to
reduce CT. From N measurement variables defined by the
data matrix, we just choose the important observations. In
this case, we obtain a parameter number of the kernel matrix
equal to the L number of the selected latent components.

As a first step, we consider Eq. 9, which consists in
the approach of the latent variables {wj }j=1..P in the

transformed input data φ
(
x

(j)
Latent

)
∈ φ{xi}i=1...M in order

to get, as a second step, the highest projection value [29].

φ
(
x

(j)
Latent

)
= αj ∗ kj (x), j = 1, 2..L (9)

Generally, we can select the projection of all transformed
data vectors φ{xi}i=1...M from the latent variables wj to

obtain the most loaded samples in terms of information
x

(j)
Latent ∈ {

x(i)
}
i=1...M , as depicted in Eqs. 10 and 11:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ
(
x

(j)
Latent

)

j
= max

i=1,..,M
φ(xi)j

and

φ
(
x

(j)
Latent

)

i �=j
< ς

(10)

where ς is a given threshold.
Furthermore, the RKPLS method consists in determining

the reduced dataset by choosing the variables that have the
highest projection variance in the direction of the selected
latent components.

Then, the reduced data matrix of
{
x

(j)
Latent

}

j=1..L
can be

defined by Eq. 11:

Xr =
[
x

(1)
Latent x

(2)
Latent ... x

(L)
Latent

]T

(11)

Consequently, the reduced data matrix Xr given a
reduced kernel matrix Kr related to the kernel function k

and the number of the selected variables is indicated in
Eq. 12:

Kr =
⎡

⎢
⎣

k(x1, x1) . . . k(x1, xL)
...

. . .
...

k(xL, x1) . . . k(xL, xL)

⎤

⎥
⎦ ∈ RL×L (12)

The main algorithmic steps of the suggested RKPLS are
shown in Algorithm 2 as follows:

Algorithm 2 RKPLS algorithm

Input: N×M input data matrix X and N×L output data
matrix Y
Output: Reduced input score matrices T, reduced output
score matrix U

Step 1: Acquire an initial standardized block of training
data {xi}i=1..N and scale them,

Step 2: Construct the kernel matrix K and scale it,
Step 3: Project {φi}i=1..N on the component latent {wi}

and choose x
(i)
Latent which satisfies Eq. 10,

Step 4: Construct the reduced kernel matrix Kr ∈ RL×L

following Eq. 12,
Step 5: Estimate the reduced KPLS model,
Step 6: Determine the control limits of the SPE chart

present in the next section.
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3.1 FD indices

The traditional PLS–based monitoring method uses, in
general, the Hotelling’s T 2 and the SPE or the Q-statistic,
which are expressed respectively in terms of Mahalanobis
and Euclidian distances [38, 39]. Therefore, the process
monitoring step of the nonlinear PLS version (KPLS and the
proposed RKPLS) is similar to that used in the PLS method.
The T 2 statistic index is, usually, a way of measuring
the projections of the observations in the feature space at
various time samples [40]. T 2 is calculated as illustrated in
Eq. 13:

T 2 = XT Ŵ�̂−1ŴT X (13)

where the diagonal matrix containing the eigenvalues is
defined by

�̂ = diag(λ1, λ2, · · · , λl), and Ŵ is the weights matrix.
The control limit is calculated for the T 2 index, utilizing the
F-distribution, as follows:

T 2
α = l(N − 1)

N − l
Fl,N−l,α (14)

where α is the significance level, l is the number of retained
principal components, N is the number of observation in the
dataset, and Fl,N−l is the Fisher F distribution.

On the one hand, the SPE index allows FD in the residual
subspace. The essential goal is to detect a new event for
a new observation [41]. Furthermore, the SPE is computed
as the sum of squares of the residuals by the KPLS model.
To ensure the FD of the kernel method, the SPE is usually
used in this step. Then, this index is characterized by the
sensibility to model errors and also the addiction to the
retained number.

The SPE, obtained from PLS, is given by Eq. 15:

SPE = ‖X − X̂‖2 = ‖(I − ŴŴT )X‖ (15)

In this case, the confidence limit is presented in the
Eq. 16. This index is determined using the χ2 distribution.
The process is considered abnormally functioning for the
SPE index if:

SPE(k) > gχ2
h,α (16)

where g and h are presented respectively by b
2a and 2a2

b
. In

this case, a is the estimated mean of the SPE and b is the
variance of the SPE.

On the other hand, the EWMA can be applied to residues.
The EWMA is used to improve the quality of the FD
procedure and essentially reduce the FAR. This type of filter
is considered to monitor variables in each data point. The
EWMA chart presents many advantages. The performance
of the EWMA is characterized by the ability to better detect

small faults. Furthermore, the EWMA control limit consists
in improving the detection abilities of small faults to the
SPE chart [42]. The general expression of the EWMA
applied to residues is given by:

Zi = λX̄i + (1 − λ)Zi−1, i = 1..N (17)

where λ is chosen such that 0 < λ � 1, i is defined as the
sample number, λ is defined as the smoothing parameter,
X̄i is defined by the average of the ith sample, and
Zi−1 depends on the past information. The initial value is
initialized following the average of the preliminary samples.

3.2 Flowchart of proposedmethod

To detail the principle of the RKPLS method, a flowchart
is shown in Fig. 1. The flowchart represents the necessary
steps of the FD for the suggested RKPLS.

4 Selection of kernel parameter using Tabu
search algorithm

4.1 Principle

The kernel function is the core of the kernel method which
helps it get an optimal solution. In general, the RBF kernel,
as a nonlinear kernel function, is a reasonable first choice.
Parameter σ is a key element of the RBF kernel and directly
exerts considerable influence on the generalization ability
of the KPLS method. The selection of the kernel function
and the corresponding parameter are the key of KPLS. The
σ parameter of the kernel function has an effect on the
partitioning outcome in the feature space. If the value of
σ is too large, it will lead to overfitting. If the value of σ

is too small, it will lead to underfitting. In this part, we
present an approach to select what is an optimal Gaussian
kernel parameter to use when applying the proposed RKPLS
technique. The optimal kernel parameter is defined as the
one that can improve the fault detection performance. For
many industrial applications, minimizing the false alarm
rate may be the greatest performance criterion. Therefore,
the choice of the Gaussian kernel parameter needs to be
selected based on the given application. The Tabu search
algorithm is applied to optimize the kernel parameter to use
when applying the RKPLS algorithm.

4.2 Initial solution

In this study, the determination of the initial solution
in the Tabu search algorithm is to optimize σ for the
current RKPLS model. Firstly, an initialization solution is
presented randomly. To reduce the search space referring
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Fig. 1 Representation of
RKPLS fault detection model Air quality system

XY

Training data Testing data

Kernel function

Xr and Kr using 

Eq.(9) and Eq.(10)

EWMA-SPE

Residual

Threshold limits

SPE index
Compare 

index to its 

threshold

No fault in 

process

Declared fault

Data input and output

Reduced step

SPE Monitoring chart

EWMA-SPE Monitoring chart

to the previous literature using the RKPLS model, it is
recommended to introduce the constraints of parameter σ ,
which respectively attribute to the range σ ∈ [

2−6, 26
]
.

The solution is computed by appending the nearest unused
neighbor values of the parameter while improving the FD
performance. The process is repeated until all the neighbors
are visited.

5 Application

In this section, the RKPLS monitoring scheme is evaluated
on the air quality network process.

5.1 Description of air quality monitoring

AIRLOR, the air quality monitoring network located in
Lorraine (France), consists of 20 stations located in rural,
peri-urban, and urban sites. Each monitoring station, for
this model, consists of a set of sensors for measuring the
concentrations of pollutants: carbon monoxide (CO), oxides
of nitrogen (NO and NO2) measured by the same analyzer,
dioxide sulfur (SO2), and ozone (O3) [38, 43]. On the
other hand, some stations (more precisely seven stations)
are dedicated to the recording of additional meteorological

parameters. Figure 2 shows an example of an air quality
station.

Fig. 2 Air quality monitoring station
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5.2 Air quality settings

The air quality, in general, is a secondary pollutant produced
by complex photochemical reactions between primary
pollutants, more precisely the nitrogen oxides NO, NO2,
and VOC emitted into the atmosphere [44, 45]. Then,
the sensors, principally of the ozone concentration (O3)
and nitrogen oxides (NO and NO2), monitor and detect
the functioning abnormalities. On the one hand, O3 is
a secondary pollutant whose spatial distribution of the
maximum values is rather homogeneous at our local scale.
Whereas, the nitrogen oxides are primary pollutants which
are more localized because their concentrations directly
depend on the sources of emissions. Owing to its adverse
health effects, tropospheric ozone has become one of the
most studied topics in the recent decade. However, we can
wonder about the performances of technical KPLS, which
is the interest of the following section.

The air quality is produced through a complex series
of reactions involving nitrogen oxides (NO2 and NO) and
volatile organic compounds (VOC) which are formed in
the lower atmosphere by chemical reactions and secondary
pollutants [44, 46].

In turn, each monitoring station contains a set of sensors
dedicated to measuring the following concentrations of
pollutants: CO (carbon monoxide), NO and NO2 (oxides of
nitrogen), SO2, and O3, respectively [1].

In this paper, we consider just six neighbor measurement
stations. In this situation, matrix X contains 18 variables,
respectively, named υ1 to υ18, of O3 and nitrogen oxides
(NO2 and NO) collected from each station.

Furthermore, the essential purpose is to detect the
functioning abnormalities of the sensors, principally those

of the nitrogen oxides (NO and NO2) and the ozone
concentration O3. Then, sensor faults, whose magnitude is
approximately 20% of measurement for O3, are simulated
and 1080 samples are obtained.

To validate the two objective functions, the size and FAR,
from the Tabu search algorithm, the optimal value of σ is
equal to 25.37.

Nevertheless, the training dataXtraining has 200 samples,
among 1080, and the same choice for the testing data
Xtesting . For the next simulation results, two fault scenarios
representing two different types of faults are generated to
show the performance of the developed FD method.

– For the first example, fault 1 is a step bias of the
sensor measuring ozone O3 of variable υ7. The fault
is introduced between instances 50 and 100. Figures 3
and 4 show the detection index SPE for this fault.

– For the second example, the sensor measuring the
nitrogen oxides NO2, of the variable υ12, is assumed to
be faulty with a step bias representing the fault 2. The
fault is introduced between instances 150 and 200.

5.3 Case 1: Fault in ozone O3

As a first try, we present a fault in ozone O3 for the station
3 in sample intervals of [50 to 100].

The FD results of the KPLS-based SPE and KPLS-based
EWMA-SPE techniques are depicted in Fig. 3.

The FD results of the proposed RKPLS-based SPE and
RKPLS-based EWMA-SPE techniques are illustrated in
Fig. 4. More precisely, these figures represent, respectively,
the time evolution of the SPE different indices and the
evolution of the different EWMA-SPE indices.
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Fig. 4 Monitoring faults in ozone O3 using proposed RKPLS in sample intervals of [50 to 100]

The compared performances of the suggested RKPLS for
the air quality system in terms of FAR, GDR, and CT are
summarized in Table 2.

The proposed RKPLS provides a reduced kernel
matrix with 44 observations. According to Table 2, the
suggested RKPLS method has a less FAR compared to the
classical KPLS. To show the performance of the proposed
RKPLS methods, we determine the CT of the different
methods. However, the RKPLS-based SPE and RKPLS-
based EWMA-SPE techniques show better FD results
compared to the conventional KPLS-based SPE and KPLS-
based EWMA-SPE techniques for the test of faults in ozone
O3, as illustrated in Figs. 3 and 4.

5.4 Case 2: Fault in nitrogen oxides (NO2)

Here, we present a fault in the nitrogen oxides NO2 for
station 4 in sample intervals of [150 to 200]. To evaluate the
obtained results, Fig. 5 depicts the FD results of the KPLS-
based SPE and KPLS-based EWMA-SPE techniques.

Afterwards, Fig. 6 shows the FD results of the
proposed RKPLS-based SPE and RKPLS-based EWMA-
SPE techniques. These figures represent, respectively, the
time evolution of the different SPE indices and the evolution
of the different EWMA-SPE indices.

The detection results out of both simulated methods,
KPLS and RKPLS, using the SPE and EWMA-SPE
statistics in the failure condition are provided in Table 3.

The result of the application of the suggested RKPLS
method to the air quality process is demonstrated in Figs. 5
and 6. For this test, the FD results show also that the
suggested RKPLS technique gives a GDR for a single fault
in the nitrogen oxides NO2 compared to the KPLS with
some FAR.

Furthermore, Table 3 shows that the proposed RKPLS-
based SPE and RKPLS-based EWMA-SPE techniques
provide better results compared to both conventional KPLS-
based SPE and EWMA-SPE.

Finally, the reduced technique based on SPE and
EWMA-SPE shows better fault detection performances

Table 2 Summary of good
detection rates, false alarm
rates, and computation time for
TEP data for case 1: fault in
ozone O3

Chart/fault detection metric FAR (%) GDR (%) CT (s)

KPLS-based SPE 17.63 84 0.2387

KPLS-based EWMA-SPE 14 100 0.2387

RKPLS-based SPE 8.66 100 0.1348

RKPLS-based EWMA-SPE 4 100 0.1348
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Fig. 6 Monitoring a faults in the nitrogen oxides NO2 using proposed RKPLS in sample intervals of [150 to 200]

Table 3 Summary of good detection rates, false alarm rates, and computation time for TEP data for case 2: fault in nitrogen oxides NO2

Chart/fault detection metric FAR (%) GDR (%) CT (s)

KPLS-based SPE 17.67 94 0.2263

KPLS-based EWMA-SPE 15.33 95.58 0.2263

RKPLS-based SPE 10.66 97.9 0.1368

RKPLS-based EWMA-SPE 5.33 100 0.1368
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with FAR, GDR, and also CT, as illustrated in Tables 2
and 3.

6 Conclusion

To avoid the high levels of air pollution, in this paper,
we have proposed a new fault detection method applicable
to the air quality process monitoring using the RKPLS
technique. To control the pollution rate and protect human
health, a reduced KPLS method has been opted for. The
purpose of this suggested method is to detect the functioning
abnormalities of the sensors, principally those of the ozone
concentration (O3) and nitrogen oxides (NO and NO2).
Afterwards, a reduced optimized RKPLS technique has
been suggested in order to extend the advantages of the
KPLS models to the air quality process.

This paper aims to improve RKPLS for fault detection.
Nevertheless, the RKPLS-based SPE and RKPLS-based
EWMA-SPE fault detection performances are assessed
and compared to those of the classical KPLS-based SPE.
Firstly, an optimal and reduced kernel parameter using
the important latent components has been selected in
order to enhance the use of the classical KPLS model.
Secondly, the developed detection method has utilized,
at the first time, the different indices of the SPE and
then has combined the various indices of the SPE and
EWMA to detect and modify the average residual of the air
quality model. The developed RKPLS-based SPE method
has shown improved FD at the level of FAR, GDR, and
the CT, mostly, when compared to the KPLS-based SPE.
However, using the EMWA, we get better FD results in
all cases, compared to the methods based on the SPE.
The RKPLS-based EMWA-SPE technique has indicated a
slightly weak FAR. Furthermore, the performance of the
RKPLS method is good compared to KPLS. To do that, the
results have demonstrated the efficiency of the developed
technique in terms of FAR, GDR, and CT compared with
the conventional fault detection KPLS. The relevance of the
suggested monitoring technique has been shown for fault
detection on air quality monitoring network data.

In fact, the RKPLS method is suggested in a static
version. For a dynamic nonlinear system, an online version
can be proposed.
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