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Abstract
Plastic injection molding is one of the most used manufacturing processes capable of producing flexible and economical parts
at a large scale. Since this is a highly complex process, it is a natural consequence that there are many conflicting objectives
that are worth considering in the design of such process. Problems where more than three objectives are being considered
at the same time are termed many objective problems (MaOPs) in literature. Unlike for multi-objective problems (MOPs,
problems with two or three objectives), there is no consensus of how to find ideal solutions for general MaOPs. In this paper,
the multi-objective and many objective design of a plastic injection molding process is addressed. To accomplish this task,
the two main contributions of this work are as follows: first, a new optimization model that contains up to seven objectives
is proposed. That is, for the first time, it is considered the many objective design of a plastic injection process. Second, the
usefulness of the Pareto Explorer, a global/local exploration tool for MaOPs, in the current context is demonstrated. For this,
the complete seven-objective optimization problem on several selected scenarios related to the hypothetical decision making
of a plastic gear is considered.

Keywords Plastic injection molding · Multi-objective optimization · Many objective optimization · Decision making

1 Introduction

Plastic injection molding (PIM) is one of the major
processes in polymer processing capable of producing parts
with complex shapes at a relatively low cost. Many daily
use products, e.g., electronics devices, appliances, and
packaging, rely on the technology and production of the
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PIM industry. PIM is a process that consists of six phases:
clamping, filling, packing, cooling, opening, and ejecting.
All phases are not independent with each other; an improper
clamping setting may result in a failing filling phase, and
so on, affecting the performance of the overall process.
Usually, the performance of a PIM process is measured
by outcomes such as qualities of the parts, i.e., appearance
characteristics, and functional properties [27, 28, 32, 52, 53,
62], and productivity indicators, e.g., production cost, cycle
time, and energy consumption [27, 33, 61]. Undoubtedly,
there is a trade-off between quality and productivity (e.g., a
high-quality product rarely results in a low production cost
and vice versa); therefore, the PIM process can be viewed
as a problem where several incommensurate and competing
outcomes need to be simultaneously satisfied.

Such problems are termed multi-objective optimization
problems (MOPs) in literature if two or three objectives
are being considered, and many objective optimization
problems (MaOPs) if more than three objectives are
under consideration. Although MOPs and MaOPs are
in principle defined equally—k objectives have to be
optimized concurrently—these two distinct terms are used
since the solution sets of M(a)OPs, the so-called Pareto sets,
respectively, their images, the Pareto fronts, typically form
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objects of dimension k − 1. Hence, while it is possible
to compute suitable approximations of the Pareto set for
MOPs, this is not the case any more for MaOPs.

In this work, it is argued that in a PIM design, there
are—depending on the scenario—up to seven objectives
worth considering. This means, all of those seven objectives
may lead to significant changes in the final design, and
all of them are in conflict to each other. Hence, it makes
sense to consider the MaOP that is defined by all of these
seven objectives. As mentioned above, it is not possible any
more to compute the entire solution set for such a problem.
As alternative, in this work, the recently proposed Pareto
Explorer (PE) framework is considered [47], a global/local
approach that allows to identify a suitable solution for the
given scenario that is capable of incorporating the decision
makers (DM) preferences. More precisely, PE computes
a sequence of candidate solutions in two steps: first, an
initial solution x0 is computed via a global method (e.g.,
an evolutionary reference point method [17]) that ideally
already roughly meets the criteria of the DM. In a next
step, a local movement along the Pareto set/front starting
from x0 is performed based on the DMs preferences. These
preferences can be articulated via directions in those the
search has to be performed along the solution set. The
directions can either be defined in decision variable or
objective space, or in the weight space. The second step
hence allows to interactively explore the Pareto landscape
around x0 and hopefully helps to find the ideal solution
for the DM according to the given problem. This will be
demonstrated on several selected scenarios related to the
many objective design of a particular plastic gear.

The remainder of the paper is organized as follows: In
Section 2, the background required for the understanding
of this work is stated. In Section 3, the seven-objective
MaOP to be considered for PIM design is presented , and
introduced the case study that it is going to be considered
for the computations. In Section 4, some numerical results
are presented. For this, some MOPs are investigated with
two and three objectives that will be among others to
show the importance of all individual objectives. Next, the
Pareto Explorer is applied on four selected hypothetical
scenarios to demonstrate how to numerically solve a many
objective PIM design. Finally, conclusions are addressed
in Section 5 and possible paths of future research are
given.

2 Background

2.1 Plastic injectionmolding

Quality and productivity of PIM depends on the appropriate
integration of factors such as product design, mold design,

material selection, and process parameters setting. Once
mold and material are chosen, the only factor that can be
adjusted are the process parameters (a change of the mold
design can be considerably costly). Process parameters
setting is recognized as a crucial factor to obtain high-
quality products efficiently and economically [52]. This
paper focuses on process parameters optimization from a
many objective optimization perspective. Although there
are several process parameters and outcomes of interest
involved in the PIM process, in the next sub-sections, the
ones considered in this work are briefly described . A full
description and further details about PIM process can be
found in [9, 10, 45].

In the last years, several works have addressed the multi-
objective design of PIM processes, where mainly surrogate
models have been utilized to build the model. For instance,
Tian et al. [52] considered a three-objective problem by
using Taguchi as sample collection method and response
surface methodology (RSM) as surrogate model and
combined with the multi-objective evolutionary algorithm
NSGA-II [16] to obtain the optimal process parameter
combinations. Similarly, Park et al. [41] employed a
RSM surrogate model and NSGA-II for a bi-objective
injection molding problem. Liu et al. [32] addressed the
manufacturing of a plastic optical lens. In this work,
they have used the Taguchi method for collecting data,
artificial neural networks (ANNs), and support vector
machines (SVMs), and, finally, applied NSGA-II to obtain
the Pareto optimal set. Kitayama et al. [26] employed
a Latin hypercube design for data collection, and used
a radial basis ANN to model the outcomes; finally,
they have used the weighted lp-norm method for finding
Pareto optimal solutions. Villarreal-Marroquin et al. [55]
combined physical and simulated data to build a calibrated
predictor using Bayesian methodology to optimize a three-
objective problem. Other works (e.g., [27, 33, 61, 62]) are
quite similar to the ones described above. Nevertheless,
none of these works have addressed the optimization
of the injection molding process with more than three
objectives, (i.e., k > 3). In addition, most of the
works focus their search on finding an approximation
of the Pareto front/set. In contrast, this paper considers
a seven-objective problem and focuses on the related
decision-making process via guiding the search along user-
specified directions along the Pareto set/front of the given
problem.

2.2 Multi-objective optimization

A continuous multi-objective optimization problems (MOP)
can mathematically be expressed as

min
x∈Q

F(x), (1)
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where Q ⊂ R
n is the domain and F : Q → R

k is defined
as the vector of the objective functions

F(x) = (f1(x), . . . , fk(x))T , (2)

where fi : Q → R, i = 1, . . . , k, is called the i-th objective
of the MOP. The domain Q can be expressed as

Q := {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . , m, hj (x) = 0,

j = 1, . . . , p}, (3)

where the gi’s denote the inequality constraints and the hj ’s
the equality constraints.

The optimality of a MOP is defined by the concept of
dominance.

Definition 1

(a) Let v,w ∈ R
k . Then the vector v is less than w

(v <p w), if vi < wi for all i ∈ {1, . . . , k}. The
relation ≤p is defined analogously.

(b) A vector y ∈ Q is dominated by a vector x ∈ Q

(x ≺ y) with respect to Eq. 1 if F(x) ≤p F (y) and
F(x) �= F(y), else y is called non-dominated by x.

(c) A point x ∈ Q is called (Pareto) optimal or a Pareto
point if there is no y ∈ Q which dominates x.

(d) The set PQ of all Pareto optimal solutions is called the
Pareto set and its image F(PQ) the Pareto front.

So far, many different methods have been proposed
to approximate the Pareto set/front of a given MOP.
Scalarization methods, for instance, transform the MOP into
a clever sequence of scalar optimization problems (SOP),
such that a finite size discretization of the solution set can
be computed (e.g., [14, 19, 38]). Continuation methods
perform a search along the Pareto set and are very efficient
if one (or more) solution is at hand [23, 34–36, 44, 56, 57].
There are also set-oriented methods such as evolutionary
strategies [6, 7, 12, 15] and subdivision techniques [18, 25,
51], which instead use sets or populations that gradually
approximate the solution set in one run of the algorithm.

For the treatment of MaOPs, some evolutionary algo-
rithms have been proposed, for instance algorithms with
large population sizes [24], methods based on dimension
reduction techniques [49], strategies on space partitioning
[2], or hierarchical approaches [21, 39, 42, 43]. However,
all of these methods suffer from the “curse of dimensional-
ity” and are not capable of computing a suitable finite size
approximation of the entire solution set for large values of k.

In the following, the basics of the Pareto Tracer and
the Pareto Explorer, the numerical tools utilized in this
work for the treatment of MOPs and MaOPs, are described
respectively.

2.2.1 Pareto Tracer

Here, the core elements of PT for unconstrained problems
are stated, and for details including constraint handling, we
refer to [34].

By considering the Karish-Kuhn-Tucker (KKT) equa-
tions for MOPs, one can identify a map F̃ such that the zero
set F̃−1(0) contains the KKT points of Eq. 1 plus their cor-
responding weight vectors. The tangent space of this zero
set at a given KKT point x with associated weight α is given
by the kernel of

F̃ ′(x, α) =
(

Wα JT

0 e

)
∈ R

(n+1)×(n+k), (4)

where J := J (x) ∈ R
k×n denotes the Jacobian of F at x,

e = (1, . . . , 1)T ∈ R
k , and

Wα :=
k∑

i=1

αi∇2fi(x) ∈ R
n×n. (5)

To compute such a kernel vector, let ν ∈ R
n and μ ∈ R

k

such that

F̃ ′(x, α)

(
ν

μ

)
=

(
Wα JT

0 e

)(
ν

μ

)
=

(
0

0

)
. (6)

By the second equation in Eq. 6, it follows that

k∑
i=1

μi = 0, (7)

and by the first equation – assuming that Wα is regular – that

νμ = −W−1
α J T μ. (8)

Note that νμ depends on μ which is still not determined.
The following discussion shows that μ can be used to
steer the search in objective space. First, take into account
that a movement in direction ν in decision space leads
to a movement Jν in objective space (e.g., [46]). Then,
assuming that a vector d ∈ R

k is given, a vector νd ∈ R
k

with Jνμd
= d can be obtained using Eq. 8) via

Jνμd
= −JW−1

α J T μd = d. (9)

Since further μd has to satisfy Eq. 7, μd is completely
determined by solving( −JW−1

α J T

e

)
μd =

(
d

0

)
. (10)

It remains to choose proper directions d in objective space.
For this, it can be used the fact that the weight α is
orthogonal to the linearized Pareto front at F(x) [23]. It thus
makes sense to choose d orthogonal to α in order to steer
along the Pareto front: let α = QR = (q1, . . . , qk)R a
QR-factorization of α, then set

di := qi+1, i = 1, . . . , k − 1, (11)
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and compute the μdi
’s via Eq. 10. Then the resulting vectors

νμdi
are tangential to the Pareto set, and the according

directions in objective space are given by the di’s.
PT is a predictor-corrector method that uses the above

described tangent vectors for the prediction step. For the
corrector, it utilizes the Newton method proposed in [20],
where the Newton direction is computed via solving

min
(ν,δ)∈Rn×R

δ

s.t. ∇fi(x)T ν+ 1

2
νT ∇2fi(x)ν ≤ δ, i =1, . . . , k.

(12)

Since Wα is used, the resulting PC method requires Hessian
information of all objectives in each step. This requirement,
however, can be reduced to the sole use of the Jacobians
when approximating Wα via quasi-Newton updates.

2.2.2 Pareto Explorer

In case the number k of objective is too high, it is not
possible to compute a suitable finite size approximation
of the entire solution set any more. Instead, the Pareto
Explorer [47] aims to find a solution in cooperation with the
decision maker (DM) in two steps

(Step 1) Compute a solution x0 of the MaOP.
(Step 2) Explore the Pareto landscape around x0 via per-

forming movements into user specified direc-
tions.

Step 1 can be performed via a global heuristic such as an
evolutionary reference point method. For Step 2, the above
described PT has been adapted in [47] that allows to perform
best fit movement along the Pareto set/front in directions
defined in decision, objective, and weight space. The key for
this is the fact that the tangent spaces of both the Pareto set
at x and the Pareto front at F(x) can be computed for every
regular solution x which follows by the above discussion
(computation of the predictor for PT). By doing so, Step
2 allows for a fine-tuning of the initial solution x0 from
Step 1.

Figure 1 shows a hypothetical example for a best fit
movement along the Pareto front from the image F(xi) at
the current iterate xi . Hereby, dy ∈ R

k denotes the desired

direction in objective space specified by the DM, and d
(i)
y ∈

R
k the direction projected to the linearized Pareto front at

F(xi). The projected direction d
(i)
y is used to perform a best

fit movement along the Pareto front of the problem. Note
that the resulting path of solutions xi resembles a path (i.e.,
a one-dimensional object) regardless of the number k of
objectives.

3 Themodel

In the following, the many objective PIM model consisting
of seven objectives that are used for this study is described .
Further on, a plastic gear that is utilized as demonstrator for
the application of the Pareto Explorer is presented .

3.1 Design parameters

The process parameters considered here are the melt
temperature (Tmelt ), the packing time (tpack), the packing
pressure (Ppack), and the cooling time (tcool), which are
briefly defined as follows:

– x1: Melt temperature (Tmelt ): the temperature of the
plastic melt as it enters the mold.

– x2: Packing time (tpack): the period of time where addi-
tional plastic is injected into the cavity to compensate
for inherent shrinkage during injection phase.

– x3: Packing pressure (Ppack): the pressure exerted on
the melt entrance during the packing phase. In this case,
Ppack is considered as the packing pressure applied over
the effective packing time, t1=0.5tpack , in a packing
pressure profile. Figure 2 illustrates an example of a
pressure profile.

– x4: Cooling time (tcool): the period of time after packing
phase and before the mold opening and part ejection. It
can represent up to 50% of the cycle time.

Fig. 1 Best fit direction d
(i)
y for a given direction dy in objective space

for the Pareto Explorer



Int J Adv Manuf Technol (2019) 102:3165–3180 3169

Fig. 2 Packing pressure profile

These process parameters are the most frequently used
parameters considered in previous works (e.g., [26–28, 32,
33, 41, 52, 53, 55, 61, 62] and references therein).

3.2 Objectives

The outcomes of interest (or objectives) are related to
the quality and productivity of the PIM process. The
quality is measured by means of cosmetic and functional
characteristics, while productivity is measured by indicators
such as processing time and energy usage. Cosmetic
characteristics are measured by means of warpage in
the product, shrinkage, and sink marks. Commonly, these
objectives are considered in other works [26, 27, 41, 52, 55,
61, 62]. Functional properties are represented by residual
stresses such as Von Mises and shear stresses [3, 5, 48].
Productivity is measured by the cycle time and clamping
force usage [26, 27, 33, 41, 52, 61]. Likewise, these
outcomes are briefly described next:

– f1: Warpage (mm): produced by non-uniform shrinkage
in the plastic part. Besides, by temperature differences
from one side of the mold to the other. It is mainly
affected by packing time and cooling time.

– f2: Volumetric shrinkage (%): all plastic parts tend to
shrink; however, it is desired to have a minimum and
uniform shrinkage. Non-uniform volumetric shrinkage
leads to warpage and distortion of molded parts. High
values may lead to sink marks or voids. It shows
the percentage of part volume as the part is cooled
from high temperature and high pressure to room
conditions. Positive values represent volume shrinkage
while negative values means volume expansion. It is
affected by melt temperature, packing pressure, and
cooling time.

– f3: Sink marks (mm): Plastic parts could present sink
marks in the finished look. Higher values of this means
high degree on sink. It is an index to evaluate the

packing effect. If it is positive, meaning packing is not
enough, leading to sink marks. If it is negative, it means
overpacking. A well packing keeps the indicator close
to zero. It is affected by packing pressure and packing
time.

– f4: Von Mises stress (MPa): the Von Mises thermal
residual stress of the ejected part. Thermal induced
residual stress is the stress status after the part is
ejected and cooled down to room temperature. Non-
uniform volumetric shrinkage will cause residual stress
if it did not transform into warpage. Higher values of
residual stress cause void defects. Von Misses stress is
the scalar that represents the equivalent stress used for
breakage test of the product, which is defined with the
stress components for each axis. It is affected by melt
temperature and cooling time.

– f5: Shear stress (%): the source of the residual stress
in molded parts. If the shear stress is not distributed
evenly, it can cause some dimensional problems. Too
high shear stress might tend to drastically deform
molecular chains even to break and then weaken the
strength of the plastic part. It is mainly affected by melt
temperature.

– f6: Cycle time (seconds): the total time of a process
run, this includes the filling time, mold opening time,
packing time, and cooling time. It is affected by packing
and cooling times which can represent up to 70% of
total cycle time.

– f7: Clamping force (Ton): the maximum force of
machine (clamping unit) to keep the mold closed
against the cavity pressure during injection/packing
phases. It can be considered as great influence for
energy saving. It is affected by packing pressure and
packing time.

3.3 Case study: a plastic gear

As a case study in this work, it utilized the design of a
particular plastic gear. Figure 3 shows the chosen plastic
gear with dimensions 25.01 × 24.87 × 5.00 mm. An
overview of the molding die, runner system, and cooling
channels is shown in Fig. 4.

A finite element (FE) model containing 32,025 elements
is developed for simulating the injection molding process
in MOLDEX3D R15 2018 (www.moldex3d.com). The
material used is a type of polypropylene (PP) supplied by A.
Schulman whose trade name is POLYFLAM RPP 374ND
CS1. The properties of the material are listed in Table 1.
The process parameters, their ranges, and units, utilized as
design variables, are listed in Table 2. Tables 3, 4, and 5
list the rest of the process parameters considered during the
numerical simulation. Similarly, Table 6 lists the outcomes

www.moldex3d.com
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Fig. 3 Plastic gear

of interest. Figure 5 illustrates an example of the warpage
scale in the simulation software.

3.3.1 Building the model

The main goal of a surrogate model is to be as accurate as
possible via using as few samples as possible. One of the
major steps on the process of constructing a surrogate model
is the sample collection. In this work, there are a total of 150
samples collected at selected values of x ∈ D, where

D :=

⎧⎪⎪⎨
⎪⎪⎩

x ∈ R
4 :

190 ≤ x1 ≤ 230
3 ≤ x2 ≤ 5

60 ≤ x3 ≤ 100
8 ≤ x4 ≤ 14

⎫⎪⎪⎬
⎪⎪⎭

. (13)

Fig. 4 Overview of molding die, runner system, and cooling channels

Table 1 Material properties of PP

Density [g/cm3] 1.35

Eject temperature [◦C] 90

Thermal conductivity [erg/(sec cm ◦C)] 35000

Elastic modulus [dyne/cm2] 3e+010

Poisson ratio 0.38

Heat capacity [erg/(g ◦C)] 1.5e+007

Melt temperature range [◦C] 200–220

Mold temperature range [◦C] 40–80

Table 2 Design variables

Process parameter Design variable Range

Melt temperature [◦C] x1 190–230

Packing time [sec] x2 3–5

Packing pressure [MPa] x3 84–140

Cooling time [sec] x4 8–14

Table 3 Process parameters

Process parameter Value

Filling time [sec] 0.10

Mold temperature [◦C] 60.0

Maximum pressure machine [MPa] 140.00

Injection volume [cc] 1.89

VP switch by volume filled [%] 98.00

Mold opening time [sec] 5.00

Ejection temperature [◦C] 90.0

Air temperature [◦C] 25.0

Table 4 Flow rate profile

Section Time [%] Flow rate [%]

1 20 30

2 40 60

3 80 90

4 100 30

Table 5 Packing rate profile

Section Time [%] Flow rate [MPa]

1 50 x3

2 80 70

3 100 35
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Table 6 Objective functions

Outcome Function Optimization

Maximum warpage deformation [mm] f1 Minimize

Maximum volumetric shrinkage [%] f2 Minimize

Maximum Von Mises stress [MPa] f3 Minimize

Sink marks displacement [mm] f4 Minimize

Maximum claming force [ton] f5 Minimize

Cycle time [sec] f6 Minimize

High shear stress [%] f7 Minimize

to evaluate y ∈ R
7 via D-optimal [8, 50] and Latin

hypercube [37] experimental designs. Hence, these samples
are used to generate surrogate models of fi , i = 1, . . . , 7,
of the outcomes of interest which make them suitable for an
optimization algorithm.

Generation of a surrogate model can be seen as a multi-
dimensional non-linear optimization problem which can be
solved via least squares. Therefore, the problem can be
formally defined as

min
β

‖f (x, β) − y‖2
2 = min

β

∑
i

(f (xi, β) − yi)
2, (14)

where x is the input sample vector, y is the output sample
vector, β is the parameter vector, and f is the surrogate
model. The problem presented in Eq. 14 can be solved
using different methods [30, 59]. Polynomial and artificial
neural networks models [1, 4, 11, 13, 29, 31, 40, 54, 58,
60] represent some of the most popular surrogate models
in engineering. Table 7 shows the results of the surrogate
models generated for each one of the outcomes of interest.

Table 7 Objective functions

Function Surrogate model R2 training R2 testing

f1 Quadratic 0.99 0.99

f2 Quadratic 0.99 0.99

f3 Shallow neural network 0.98 0.93

f4 Quadratic 0.98 0.98

f5 Shallow neural network 0.82 0.89

f6 Linear 1.00 1.00

f7 Quadratic 0.93 0.93

4 Numerical results

In this section, there are some numerical results presented
for hypothetical scenarios of the PIM design. For this,
it is first considered selected sub-problems with two and
three objectives. The consideration of these MOPs might
be interesting in case the decision maker has a strong
preference on just a few objectives. Further, the results
show that all the objectives are indeed in conflict and that
the entire problem consisting of seven objectives cannot be
treated any more with traditional methods. In the second
sub-section, some numerical results of the Pareto Explorer
on the seven-objective MaOP on selected scenarios are
shown.

4.1 Multi-objective PIM design

When considering a MOP (i.e., a problem with two or
three objectives), one is interested in a suitable finite size
approximation of the entire Pareto front as this offers the
decision maker a good overview of the possible optimal

Fig. 5 Warpage in the plastic
part
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Fig. 6 Obtained Pareto fronts by PT and NSGA-III for the MOP defined by f2 and f6

Table 8 Parameters of the
selected MOEAs Algorithm Parameter Value

NSGA-III Population size 92

Reference points 91

Crossover probability 1

Mutation probability 1/n

Distribution index for crossover 20

Distribution index for mutation 20

PT τ 0.01

x0 (210.00, 4.00, 80.00, 11.00)T

Fig. 7 Obtained Pareto fronts by PT and NSGA-III for the MOP defined by f1 and f5
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designs. The choice of the solver depends in this case on the
surrogate model. If all objectives are linear or quadratic, one
can expect that the Pareto front consists of one connected
component, and a local solver such as PT can be chosen.
If at least one objective is expected to be multi-modal, then
the Pareto front may fall into several connected components,
and a global solver such as an evolutionary algorithm may
be of advantage. This is demonstrated on two examples.

First, the MOP that is defined by the two objectives f2

(quadratic) and f6 (linear) is considered. Figure 6 shows the
numerical results of the PT and the evolutionary algorithm
NSGA-III [16]. See Table 8 for the chosen parameter
setting of both algorithms. NSGA-III and PT yield almost
identical results and are capable of approximating the
Pareto front perfectly. A huge difference, however, is in
the computational effort needed to compute the results.
NSGA-III is given a budget of 50,000 function evaluations.
In contrast, PT required 190 function and another 190
Jacobian calls. If counting one Jacobian call by 4 function
evaluations (as this can be done if the Jacobians were
evaluated via automatic differentiation [22]), then the PT
result would have been obtained via total of less than 1,000
function evaluations which is significantly less as for the
evolutionary algorithm.

Second, the MOP that is defined by f1 (quadratic) and
f5 (defined by neural network model and multi-modal).
Figure 7 shows the results obtained by PT and NSGA-III.
Again, PT spends much less function evaluations (around
4,000 counting one Jacobian call as 4 function calls as
above) than NSGA-III (50,000). However, as PT was run
with one single starting point, it only detects one part of
the Pareto front that consists of 2 connected components.
As it does not detect the 2nd component, it computes also
some solutions that are only locally optimal. NSGA-III, on
the other hand, is capable of detecting both components and
delivers a suitable approximation of the solution set.

Some other Pareto fronts for other sub-problems can be
seen in Fig. 8.

Finally, a three-objective problem defined by the
objectives f1, f5, and f6 is considered . Since f5 is
multi-modal, it is first run NSGA-III to obtain a rough
approximation of the two-dimensional Pareto front, see
Fig. 9. In order to refine the obtained solutions, PT is
applied where it was fed this algorithm with each of the
individuals from the final population of NSGA-III. As it
can be seen, a much better approximation of the entire
Pareto front can be obtained. To obtain this result, it has
been given NSGA-III a budget of 150,000 function calls
which has led to 100 non-dominated solutions. In the second
step, PT has used 64,369 function evaluations and 5877
Jacobian evaluations (leading to 87877 function evaluations
when using automatic differentiation) leading to a total
of 1948 non-dominated solutions. It is thought that this
combination is most effective for three-objective problems
that is confirmed with other computations.

From all results, it can be seen that all objectives are
in conflict with each other. Thus, one cannot expect to be
able to compute suitable finite size approximations of the
entire Pareto set/front for problems with more objectives.
That is the reason the applications of the Pareto Explorer are
considered for this case in the next section.

4.2 Many objective PIM design

Here, the entire design problem that consists of seven
objectives is examined. As one cannot expect any more to
compute suitable approximations of the entire solution set
(which can then be presented to the decision maker), it
has to be restricted to some selected hypothetical scenarios
that can occur. It is stressed, however, that these are just
illustrators for a possible decision making. The decision-
making process for a given problem will heavily depend

Fig. 8 Some Pareto fronts for three selected bi-objective sup-problems
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Fig. 9 Example of PT and
NSGA-III for f1, f5, and f6
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Table 9 Computational cost of
the PE for the Scenarios 1–4 S1 S2 S3 S4

Solutions 323 218 212 205
Function evaluations 324 226 227 217
Jacobian evaluations 324 226 227 217

Table 10 Comparison of the
model values (FM ) against the
simulated values FS for the
PIM

Initial configuration

x0 210.0000 4.0000 80.0000 11.0000
FS(x0) 0.2016 5.6565 9.7470 0.0717 0.8690 20.1000 11.9460
FM(x0) 0.2040 5.7271 9.7329 0.0713 0.8774 20.1000 11.8221

Case 1
x323 230.0000 3.0000 60.0000 13.0163
FS(x323) 0.1887 5.2977 8.3664 0.0854 0.7680 21.1163 12.4440
FM(x323) 0.1896 5.3191 8.1392 0.0854 0.7437 21.1163 12.9238

Case 2
x218 212.7412 3.3488 60.0000 9.6531
FS(x218) 0.2442 6.5442 9.2361 0.0769 1.0300 18.1019 7.4741
FM(x218) 0.2425 6.4453 9.6549 0.0767 0.9258 18.1018 11.7376

Case 3
x212 213.3452 3.3421 60.0000 9.6950
FS(x212) 0.2437 6.5210 9.1729 0.0772 1.0300 18.1371 7.9492
FM(x212) 0.2419 6.4289 9.6057 0.0770 0.9199 18.1371 11.7847

Case 4
x205 217.3894 3.2880 60.7034 9.8649
FS(x205) 0.2414 6.4710 9.1775 0.0787 1.0100 18.2529 8.9651
F(x205) 0.2404 6.3740 9.4653 0.0787 0.8806 18.2529 11.7933

Fig. 10 Graphical result for the
first scenario
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on the given setting and on the preferences of the decision
maker.

For all cases, it has been chosen to take x0 =
(210.00, 4.00, 80.00, 11.00)T as initial solution, which is
the middle point for each variable in the considered range
of the sampling process. Hence, x0 is chosen as initial
solution for Step 1 of the PE. This is done for simplicity
and to have the same starting point for all scenarios
and to show the effect of the different steerings. It is
stressed, however, that in principle any other starting point
could be taken or computed. For the demonstration of
Step 2 of the PE, there are considered the following four
scenarios:

Scenario 1 (S1): For this scenario, it is intended to
minimize the values of f1 and f5 at the same
time. Thus, the direction that is considered is dy =
(−1, 0, 0, 0, −1, 0, 0)T with a step size τ = 0.03. That

is, it is of interest solutions that reduce both the warpage
and the shear stress (in the same amount) during the
search along the Pareto front.

Scenario 2 (S2): Here, the goal is to minimize f2 and f6

at the same time. Thus, the direction that is considered is
dy = (0, −1, 0, 0, 0, −1, 0)T with a step size τ = 0.01.

Scenario 3 (S3): Here, it is wanted to minimize the
functions f1, f5, and f6 at the same time. The considered
direction is then dy = (−1, 0, 0, 0, −1, −1, 0)T with a
step size τ = 0.01.

Scenario 4 (S4): Finally, it is desired to minimize the
functions f3, f5, and f6 at the same time. The direction
is thus dy = (0, 0, −1, 0, −1, −1, 0)T with a step size
τ = 0.01.

The computational cost of these scenarios are presented
in Table 9 and a comparison of the values with our model
and the values with the simulator are presented in Table 10.

Fig. 11 Graphical result for the
second scenario
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It can be seen from Fig. 10 that both f1 and f5 improve
their values with respect to the initial F(x0). However, at the
end of the optimization process, obtained the best value for
f5 is considered , while for f1 the best value was reached in
a previous step.

It is seen in Fig. 11 that the functions f2 and f6 are clearly
in conflict. Then, when it is reduced, the value of f6, the
value of f2 begins to increase. At the end of the optimization
process, the best value for f6 and the worst value for f2 are
obtained.

It is seen in Fig. 12 that the functions f1 and f6 are
directly in conflict, while f5 the value depends of both
functions. At the end of the optimization process, the best
value for f6 and the worst value for f1 are obtained; for
the case of f5 the initial and the final values are similar,
but along the steps such value has a lot of variation. Notice

that the result for this scenario is almost the same than the
previous one.

It can be seen in Fig. 13 that PE reduces two of the
three functions. It is noticed that the values of f6 and f3 are
always reduced, while the change in f5 is not constant. At
the end of the optimization process, the best value for f3 and
f6 is obtained, while the best values for f5 is obtained in a
previous step. However, notice that in some step the value of
f1, f5, and f6 are improved with respect of the initial one.

As it can be seen, the movement has been performed
in all cases according to the desired direction. It has been
presented here the entire path of solutions; however, in a
real decision-making process, the DM can of course chose
at any time either to accept a computed candidate solution
or to change the direction in which the steering has to be
performed.

Fig. 12 Graphical result for the
third scenario
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Fig. 13 Graphical result for the
last scenario

5 Conclusions and future work

In this paper, it has been for the first time that the many
objective design of a plastic injection molding process
are considered. For this, a model that consists of seven
objectives that all have a potential significant impact on the
decision-making process and that are in conflict to each
other has been proposed . The peculiarity of multi-objective
and many objective optimization problems is that their
solution sets, the Pareto sets, and Pareto fronts typically
form (k − 1)-dimensional objects, where k is the number of
objectives considered in the problem. Hence, it is

not possible any more for k = 7 to compute suitable
finite size approximations of the entire Pareto sets/fronts.

It has been demonstrated on the case study of a particular
plastic gear that the Pareto fronts of related MOPs can
be reliably computed either via a continuation-like method
or a global search heuristic depending on the type of the
surrogate model. More precisely, the Pareto Tracer can
be chosen for linear and/or quadratic models, while the

evolutionary algorithm NSGA-III is preferred over the local
method for multi-modal models that typically arise from
neural network models. For problems with k = 3 objectives,
a combination of both techniques led to the best results.

When considering the complete model (k = 7), none
of these classical methods can be chosen any more due
to the “curse of dimensionality” as described above. As
alternative, it has been proposed to utilize the Pareto
Explorer, a global/local method that iteratively finds new
candidate solutions along the Pareto set/front depending on
the decision makers preferences. For this, four different
scenarios were investigated , and in all cases a movement
from the initial solution into the desired search direction has
been observed.

It is conjectured from these results that the Pareto
Explorer can serve as a powerful tool for the many objective
design of plastic injection molding.

Future work on the plastic injection molding process
must focus on the integration of design variables related to
product design, mold design, material selection, and process
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parameters setting. Besides, it is desired to consider as many
objectives as a case study to make it possible (acceptable
simulation time). Further, the PE implementation can be
extended to illustrative cases to handle movements in
directions in decision space and weight space in order to
increase the set of alternatives given the preferences of the
decision maker.
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