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Abstract
A novel method that uses a Mandami interval singleton type-2 fuzzy logic system (IT2 SFLS) with the support of the central
composite design (CCD) technique and the classic approach of composed base inference (CBI) is made to enhance the modeling
and the construction of the fuzzy rule base. The IT2 SFLS has the potential to outperform the singleton type-1 fuzzy logic systems
(T1 SFLS). The IT2 SFLS systems accounts for the uncertainties that can be added during the systemmodeling and construction:
the uncertain rules created using noisy data. There is noway to take into account this uncertainty in the antecedent and consequent
membership functions of a singleton type-1 fuzzy logic systems. Due to this uncertainty, an additional process is required to filter
the measured data, but the uncertainty is still present in the structure of the T1 system. The main goal of the proposed model is to
enhance the performance obtained in the dimensional features evaluation in a quality assurance process of the manufacturing of
product parts. The experiments developed in a real facility show that the application of the proposed method produced better
results than that obtained by the T1 SFLS benchmarking system.
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1 Introduction

The image processing for quality control is one of the most
complicated tasks because it needs some devices and some
phases such as filtering, segmentation, dimensioning, and

pattern recognition, among others. All these phases provide
uncertainty, which is presented in the form of variations
caused by the devices that are needed to assemble an artificial
vision system. Devices that conform an artificial vision system
are camera, light source, and software to process the images
[1]. In order to identify the variations presented in images,
Jean-Yves Bouguet presented a calibration tool that provides
some necessary parameters to know the variations produced
by the camera. Figure 1 shows the shape of the lens of the
camera which produces a sketch that shows the defects in the
lens. This figure shows the variations in the form of the lens
that provide variations in the image (http://www.vision.
caltech.edu/bouguetj/calib_doc/index.html#ref). An example
of variations in the image acquisition is the spatial position
of the capture device, this position causes distortions on the
size of the sample that appear in the picture [2], e.g., a dark
image can produce the joint of the object and background,
another effect is called parallax, that cause changes in the
dimension of the sample (Fig. 2).

The parallax effect can be interpreted as a spatial posi-
tioning in a 3D environment that changes the geometry of
the object [3] by perspective; this can transform a square
into a rectangle or a rhombus or diamond (Fig. 3). At the
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same point, the distortion causes misclassification because
the object cannot be positioned on the border of a pixel
and these conditions cause loss of information or addition
of it, e.g., Demant et al. in [4] mentions that at least a
width of 570 pixels is needed to identify a barcode to
obtain at least 5 pixels for thin lines due to degradation
in the filtering and segmentation phases, only with this
condition, the identification is accomplished, see Fig. 4.
Other problems are: (A) the conformation of the sensor,
Table 1, (B) the exposition time regulated by the F-
number [5] see Fig. 5, and (C) some perturbations caused
by the environmental conditions produce a variation in the
measurement data in an amount near to a one standard
deviation as is mentioned by the National Institute of
Standards and Technology (NIST) [6]. This condition pro-
duces corrupted data and their values are increased or

decreased due to the displacement of the membership function
to the left or to the right due to the uncertainty [7], (Fig. 6).
This uncertainty is called footprint of uncertainty.

In 2013, a compilation of applications of type-2 fuzzy logic
systems was presented by Melin and Castillo in [8]. In this
work, some artificial vision and pattern recognition systems
are described. The systems [9–14] are used to classify, evalu-
ate, and to accomplish several quality tasks by image process-
ing. The limited production of real applications of fuzzy sys-
tems appears in the type-1 and type-2 fuzzy logic applications
because some [15–24] mention that there are multiple compli-
cations to generate soft computing models. The most men-
tioned complications are the following:

& The hardness to establish the form of membership func-
tions (MF’s), [15–17].

A-A

A-A

1
2
3

7

Fig. 1 Distortion of a lens, adapted from (http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#ref)

Fig. 2 Effects of parallax in a
measure, adapted from [2]
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& The development of the inference module by applying
different techniques such as:

– Artificial neural networks (ANN) [16, 18–20].
– Genetic algorithms (GA) [21–23].
– ANN and GA [24].

& The setting of forms and limits for the MF’s and the infer-
ence module for their FLS. The solution to this problem is
partially proposed by Sahab and Hagras in [17], they pro-
posed that the MF can be generated with a free-form dis-
tribution assembly with a histogram of data. However, it is
not necessarily a solution, the model does not need a par-
ticular form of MF.

On the other hand, there has not appeared in literature a
specific method to model an intelligent system. The universal
approximation theorem [25] does not explain the number of
inputs, rules, or fuzzy sets that are needed to generate a reli-
able system. Some efforts were made by several authors to
generate specific algorithms to model this class of systems
[26–38]. To provide a solution for these complications, they
can be used in the limits of specification to get the limits of the
universe of disclosure so that it can be used in some method-
ologies presented in literature, but in this case, the literature
survey provides a few solutions.

The aim of this work is to present a simple method to
model the IT2 SFLS using CCD that allows modeling a
multiple-input-single-output system in a fast and simple
way. In Section 2, the theoretical foundations are present-
ed. Section 3 presents the construction process of the pro-
posed IT2 SFLS/CCD model. Section 4 presents the

experimental results. The conclusion section is presented
in Section 5.

2 Theoretical foundations

The CCD is a technique used in design of experiments (DOE)
to study the interaction between variables called factors. These
factors have specified limits, and these limits are called levels.
Levels, work in an interval. The edges of this interval are
defined as high and low levels. A graphical model has three
factors, by the Euclidean space; usually, these three factors
change every state; the additional factors remain fixed in order
to represent the model in three dimensions [39]. Jang’s [40]
showed a graphic representation of a model matrix used to
create the rules, this model is equivalent to (1), where the
dimension of space (quantity of variables) N represents the
levels and k represents the factors that need to be evaluated,
respectively. In this case, a 2k model was selected. The models
have maximum and minimum levels that are known as treat-
ments or axial points. These points conform the rules of fuzzy
sets. The CCD model is very useful at the beginning of exper-
iments because it only needs a few tests to evaluate the behav-
ior of the model in a confidence interval.

The 2k factorial design belongs to the CCD. The DOE is
obtained by (1) which is a combination between the factor
levels. The principal effects of different points in Fig. 7 are
obtained by the rows of the matrix represented in Table 2. For
technical purposes in the original model [39] when both var-
iables are at low level, they do not have symbolic representa-
tion as they are represented by the number one “1,” in the case
of variable a in low level and b in high level, it is represented
by b; in the case of a in high level and b in lower level, it is

Fig. 4 Positioning of thin lines on
image

a) b) c)

Fig. 3 3D positioning of a piece, adapted from [3]. a Overhead, b
oblique, c perspective.

Table 1 Charged couple device constraints

The sensor of the field of view is too close to the 570 pixels

The loss of information in data transmission is 10%, approximately

The fact of the non-square pixels

The thermal excitation of the neighbor pixels in the sensor due to the
charge of the photon
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represented by a; if both variables are in high level, they are
represented by ab. Finally, the relation matrix is given by (2),
this matrix is obtained from Table 2.

Nk ð1Þ
Where N represents the variables and k represents the

possible states of every variable in the control limits. The
mathematical values for the lower and upper limits are
obtained by (2).

22 ð2Þ

The adaptation of the method proposed by [27–29] pro-
duces the matrix (3). Every point marked in Fig. 7 (ab, b, a,
1) represents a row in the matrix (3). Later to obtain the pro-
cess limits the points (ab, b, a, 1) are replaced with the spec-
ification limits for every variable, those limits represent the
quality control limits and are used as labels for every factor
and finally as fuzzy labels,

2k ¼
a b
a B
A b
A B

2
664

3
775 ¼

y1
yb
ya
yab

2
664

3
775 ð3Þ

Where the lower control limit (LCL) of the first variable is
equivalent or equal to “a,” the upper control limit (UCL) level
of “a,” is equal to “A.” The same case for variable “B,” with
these changes, the points of Fig. 7 are replaced by column 3 of
Table 3 and given by (4),

2k ¼
LCL a LCLb
LCLa UCLB
UCLA LCLb
UCLA UCLB

2
664

3
775 ð4Þ

Where 2k is the matrix that conforms the CCD model and
every pair in the matrix is formed by the possible combina-
tions of the lower and upper limits of control of the input
variables.

In the case of missing information about the limits, they
should be generated in an interpolation to obtain the crisp
value of every limit that can be obtained by a regressionmodel
(5) obtained in [40]. The correlation coefficients yield (6–9),

y ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 þ ε ð5Þ

Where y is the output approximation of regression model,
β0, β1, β2, β12 are the regression coeficients, and ε is the error
of aproximation,

Fig. 6 Effects of type-2
uncertainty. Adapted from [6]

Fig. 5 Exposition of the image,
adapted from [5]
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β0 ¼ X ¼ ∑n
i¼1

xi
n
¼ LCLa þ LCLb þ UCLa þ UCLb

n
ð6Þ

Where X is the mean of xi or the control limits (UCL, LCL)
of the variables.

β1 ¼
a− 1ð Þ
2

−
bþ ab

2
¼ UCLa−UCLb

2
−
LCLa þ LCLb

2
ð7Þ

β2 ¼
abþ 1ð Þ

2
−
bþ a
2

¼ LCLb þ UCLb
2

−
LCLa þ UCLa

2
ð8Þ

β12 ¼
1ð Þ−abð Þ
2

−
a−b
2

¼ UCLb−LCLb
2

−
UCLa−LCLa

2
ð9Þ

Where a is the UCLa, ab is the LCLb, (1) is the UCLb, and b
is the LCLa.

As is known, the fuzzy set of type-1 needs only a single
parameter on every variable to obtain a membership function
(10). Moreover, for IT2 fuzzification (Fig. 8), an interval type-
2 fuzzy set [25] is represented by Ã, characterized by an inter-
val type-2membership function μ~A x; uð Þ, where x ∈ X and u ∈
Jx ⊆ [0, 1]:

A ¼ x;μA xð Þð Þj∀x∈X⊆ 0; 1½ � ð10Þ

~A ¼
�
x; u

� �
;μ~A x; uð Þ

n �
j∀x∈X ;∀u∈ jx⊆ 0; 1½ �

o
ð11Þ

Where A is a set that contains the values of the x variable and
their membership values μA(x).

3 Constructing the IT2 SFLS/CCD model

As it is known, a matrix is composed onto a family of equa-
tions that represents several states of a non-linear function.
The case of the IT2 SFLS/CCD requires an interval that con-
tains the uncertainty generated at the inputs in a place of crisp
number. This uncertainty needs to be treated, yet its task re-
quires the calculation of an additional parameter to determine
the spread of the data and the interval limits which are given
by sigma (12),

σxi ¼ ∑n
i¼1

xi−xi
n

 !
ð12Þ

Where σ is the standard deviation of the data, n is the
number of parameters, xi is the mean of the i variable, and xi
is the n state of the variable.

Once obtained, the correlation matrix (2) of the input var-
iable (xi), the additional parameter σxi is calculated the IT2
SFLS rule base. Calculating the lower interval N given by
(13) and �N upper interval limits given by (14), and their re-
spective solution �y upper and y lower interval limits by inter-

polation, which are given by (15 and 16). Then Eq. (3) is
converted into (17) to get the rule base matrix of the IT2 fuzzy
system, and schematic representation of the inputs for the
model is presented in Fig. 8,

N ¼ xi−σxi ð13Þ
�N ¼ xi þ σxi ð14Þ
y ¼ yi−σyi ð15Þ

�y ¼ yi þ σyi ð16Þ

Fig. 7 CCD model graphical adaptation. Adapted from [40]

Table 2 Values for inputs of CCD states of every variable and
combinatorial treatment

Variable Condition Symbolic representation Treatment

X1 X2

A B Low Low ab = 1 A low, B low

A B High Low Ab = a A high, B low

A B Low High aB = b A low, B High

A B High High AB = ab A high, B High

Table 3 Equivalences of CCD states and quality control limits

CCD symbolic
representation

Treatment Quality control limits

ab = 1 A low, B low LCL a LCLb

Ab= a A high, B low LCLa UCLB

aB = b A low, B High LCLA LCLb

AB= ab A high, B High UCLA UCLB

Int J Adv Manuf Technol (2019) 102:3757–3766 3761



Rb ¼

a a b b y1 y1
a a B B yb yb
A A b b ya ya
A A B B yab yab

2
66664

3
77775

For i ¼ 1; a; b; ab

ð17Þ

Where Rb represents the fuzzy rule base matrix, a rep-
resents the lower limit of the IT2 for the variable a, the
upper limit of the IT2 for the variable a is obtained by �a
in the LCLa, A represents the lower limit of the IT2 for the
variable a, the upper limit for the IT2 for the variable a is
obtained by �A in the UCLa, b represents the lower limit of
the IT2 for the variable b, the upper limit of the IT2 for the
variable b is obtained by �b in the LCLb, and B represents
the lower limit of the IT2 for the variable b, the upper limit
of the IT2 for the variable b is obtained by �B in the UCLb.
The interval for the output response is obtained by Y i; �Y i.

Those values represent the lower and upper output or re-
sponse for a specific pair of states (a, b, ab, 1) or treat-
ments of the inputs.

As it is known, the rule base for a T1 SFLS having m
inputs x1, x2, …, xn and one output y, can be described by a
fuzzy rule IF-THEN that shows the mathematical relation-
ship between the input and output of the system which
yields (18). In the particular case of IT2 SFLS, two param-
eters are needed for every input variable and two for the
output that are expressed as fuzzy rules given by (19), it
represents a relation between the input and output spaces
of type-2 FLS [25],

Rule i : IF x1 is a and x2 is b then y is 1 ð18Þ

Rule i : IF x1 is ~F
i

1 and x2 is ~F
i

1 then yi ¼ ~G
l

ð19Þ

Where a is the value of the x variable, ~F
i
1 ¼ m1;m2f g and

~G
l ¼ yi ¼ �yi; yi

n o
:

Using (13–16), (20–23) are obtained,

m1¼a ¼ a−σa ð20Þ
m2¼�a ¼ aþ σa ð21Þ
yi ¼ y−σy ð22Þ
�yi¼yþ σy ð23Þ

Where m1 represents the lower value function, m2 repre-
sents the upper value function, a represents the lower limit of
the variable a, the upper limit of a is obtained by �a, and b
represents the lower limit of the variable b, the upper limit of b
is obtained by �b; the interval for the output response is

Fig. 8 IT2 SFLS antecedents.
Adapted from [25]

Table 4 Parameters for the T1 FLS (mean and standard deviation of the
samples)

Feature X1 (height) X2 (width)

Sigma 2.15 1.31

Lower control limit 263.396 181.090

Mean 274.85 188.15

Upper control limit 286.3 195.200
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obtained by Y i; �Y 1. Those values represent the lower and up-

per output or response for an specific pair of states or treat-
ments of the inputs.

a. Forecasting

Due to the aspects mentioned in the introduction, several
factors provide uncertainty into the system and make the pro-
cess complex in terms of producing an evaluation. One of the
most critical operations on the image processing is the filter-
ing, because of their loss of some information caused by the
transition between the sample and the background. An image
can be used to calculate the dimension of some pieces based
on a pattern that allows to use to generate several states used
for modeling the system using the interpolation produced by
cross multiplication (24),

Y ¼ B∙X
A

ð24Þ

Where A is the mean of Xn, B is Xi, and Y is the new value for
some state of the variable with new state of Xn.

b. Input-output data

The input consists of two parameters (height and width)
that are used to obtain the quality features needed for the
sample. The output was designed in order to be adjusted to a
quality control chart with six intervals delimited by the stan-
dard deviations between the specification limits, Table 4.

The variables are modeled as T1 fuzzy sets. Figure 9a
shows the treatments of Table 2 for generating a reference
system that is used as a benchmark between T1 SFLS. In
Fig. 9b, the noise generated by the processing of the images
that are added to the model in order to obtain the footprint of
uncertainty is shown in Fig. 9b; then the fuzzy sets of type-1
are converted to a IT2 SFLS, Fig. 9c, and expressed in Table 5.
Figure 9d shows an example of the type-2 output and the
values that could be obtained after processing the information
by the expert system, obtaining several values for every
sample.

c. Rule base

The rule base for the hybrid IT2 SFLS/CCDmodel consists
of the treatments generated by the CCD model. For example,
rule 1 is given by (25) for a T1 SFLS, on the other hand, for an
IT2 SFLS the rule yields (26) that includes the lower and
upper limits of the variable to obtain the lower and upper
membership grades required by the IT2 model,

if X 1 is a and X 2is b THEN Y 1 ð25Þ

Fig. 9 Conversion of the system from type-1 to type-2. Adapted from [25]

Table 5 Parameters for the IT2 FLS (mean and standard deviation of
the samples)

Feature M X1 (height) M X2 (width)

Mean interval 272.6 277 186.84 189.46

Upper control limit interval 283.225 288.454 194.238 196.858

Lower control limit interval 260.395 264.69 178.944 182.722
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if X 1 is a; �að Þ and X 2 is b; �b
� �

THEN Y i; �Y 1

� � ð26Þ

Where a represents the variable Xi, a represents the lower
limit of the variable a, the upper limit of a is obtained by �a,
and b represents the lower limit of the variable b, the upper
limit of b is obtained by �b; the interval for the output response
is obtained by Y1 on type-1 fuzzy model T1 SFLS and Y i ; �Y 1

on type-2 fuzzy model. Those values represent the lower and
upper output or response for a specific pair of states or treat-
ments of the inputs.

b. Test

Once the expert system is created, it is tested without train-
ing to generate an approximation and evaluate its perfor-
mance. The tests were conducted with a database of 70 sam-
ples, where 40 samples were used to train the system and 30 to
test the model.

4 Results

The approximations generated by the expert systems after
50 epochs of training show an error rate of 1.5 pixels in the

dimension for the predictions produced by T1 SFLS. On
the other hand, the IT2 SFLS system shows error rates
below 0.5 pixels in the prediction system (Fig. 10). The
solid line shows the goal, the dotted line shows the predic-
tions generated by the T1 SFLS, and the dashed line pre-
sents the evaluation given by the IT2 SFLS expert system.
In contrast, the approximation generated by the T1 SFLS
with 100 epochs of training shows better results and only a
half of the error rate, Table 6, of the IT2 SFLS model with
less computational time, Fig. 11, half of the computational
time used for predictioning in IT2 SFLS is used in T1
SFLS requiring double training (50 epochs of training in
IT2 SFLS vs. 100 epochs of training in T1 SFLS epochs) in
type-1, Table 7.

To evaluate the predictions obtained, the root mean square
error (RMSE) given by (27) is used and the results of the tests
are described in Table 7 and presented in Fig. 12. The obtained
predictions are below the typical variation of 2% as is men-
tioned in [4] as a common variation in that kind of processes;
also, a variation of 2% of the measured feature shows higher
variations as is shown in Fig. 13. These variations are in orders
of two standard deviations but still are on the specified inter-
val. In the case of uncertain inputs, one of the samples can be
qualified as a non-conformity item because of the variation
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Fig. 10 Approximation of the
expert system
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Fig. 11 Computational time used for prediction, (___) T1 SFLS, (. . .) IT2
SFLS

Table 6 Computational
time spent in
approximation

Epochs Time (sec)

T1 SFLS IT2 SFLS

1 0.050 0.548

2 0.082 0.595

5 0.136 0.779

10 0.200 0.842

20 0.316 1.441

50 0.695 2.590

100 1.256 3.860

200 2.126 7.827

500 4.952 18.008
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produced by the measurement system, but it is not the case of
this proposed application. If the uncertain inputs increase the
measurements the conformity interval, it is displaced from
[− 6, 6] to [− 4, 8], then the lower limit with − 2% on the
specification appears in the − 2σ range and still accomplishing
the specification. On the other hand, if the uncertainty de-
creases the value of the measurements, the interval is
displaced from [− 6, 6] to [4, − 8] and the upper limit, in this
case, with + 2% of the specification appears in the range of 2σ.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi−ŷi
� �2
n

vuut
ð27Þ

Where yi represents the approximation, ŷi represents the goal,
n represents the total number of samples, and i represents the
sample processed.

5 Conclusions

The proposal exposed above shows a simplified method to
assemble interval singleton type-2 fuzzy logic systems based
in central composite design. The use of IT2 model addresses
the problem of thin lines and provides a tool to contain the
uncertainty from the positioning of the lines themselves. This
approach solves both problems presented above.

The error converges to the same value after 200 epochs of
training without worrying about the type of system used, see
Table 6 and Fig. 12.

The use of the interval type-2 produces better results due to
the freedom provided by the form of the output in a set, instead
of a crisp value. Also, the IT2 absorbs the uncertainty pro-
duced by the fuzzy rule base design and implementation.

The proposal can be used in an industrial application for
online quality control with the chance to evaluate all samples
with the same criteria over time.

Some parameters can be eliminated with the use of design
experiments techniques, this would avoid all the mathematical
modeling complexities. Because these factors do not have a
relation with the final quality of the sample, e.g., the color of
the sample is not important to determinate the dimension of
the piece, among others. For they do not have the interaction
with the principal variables, the elimination of these variables
cannot produce variations on the final evaluation.

The IT2 system is useful in processes such as the visual
inspection processes where the exact definition of a feature
cannot be interpreted with precision in a mathematical form.
The type-2 model provides the chance to generate a mathe-
matical definition of these features in the form of intervals
defined by crisp limits. Then the function that evaluates the
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Fig. 12 RMSE of prediction (___) T1 SFLS, (. . .) IT2 SFLS

Table 7 Expert systems, approximation RMSE

Epochs MSE (σ)

T1 SFLS IT2 SFLS

1 0.84052361 0.82949805

2 0.83456868 0.82075272

5 0.81566363 0.79255869

10 0.78213732 0.73798459

20 0.70749078 0.60189317

50 0.43913090 0.15540070

100 0.08292205 0.03677361

200 0.02654346 0.03656664

500 0.02715470 0.03545607
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object could be a sentence that describes all necessary features
to evaluate the quality of the goods produced to satisfy the
client expectations.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

1. Gomes JFS, Leta FR (2012) Applications of computer vision tech-
niques in the agriculture and food industry: a review. Eur Food Res
Technol 235(6):989–1000

2. Carlotto MJ (2007) Detecting change in images with parallax. In
Defense and Security Symposium. International Society for Optics
and Photonics, pp 656719–656719

3. Davies ER (2009) The application of machine vision to food and
agriculture: a review. Imaging Sci J 57(4):197–217

4. Demant C, Demant C, Streicher-Abel B (1999) Industrial image
processing. Springer-Verlag, Berlin

5. González Lillo R (2011) Entendiendo la exposición en Fotografía
(1ª parte). http://www.guioteca.com/fotografia/entendiendo-la-
exposicion-en-fotografia-1%C2%AA-parte/

6. Taylor BN (2009) Guidelines for evaluating and expressing the
uncertainty of nist measurement results (rev. DIANE Publishing)

7. Mouzouris GC, Mendel JM (1997) Dynamic non-singleton fuzzy
logic systems for nonlinear modeling. IEEE Trans Fuzzy Syst 5(2):
199–208

8. Melin P, Castillo O (2013) A review on the applications of type-2
fuzzy logic in classification and pattern recognition. Expert Syst
Appl 40(13):5413–5423

9. Jeon G, Anisetti M, Bellandi V, Damiani E, Jeong J (2009)
Designing of a type-2 fuzzy logic filter for improving edge-
preserving restoration of interlaced-to-progressive conversion. Inf
Sci 179(13):2194–2207

10. Melin P, Mendoza O, Castillo O (2010) An improved method for
edge detection based on interval type-2 fuzzy logic. Expert Syst
Appl 37(12):8527–8535

11. Melin P, Mendoza O, Castillo O (2011) Face recognition with an
improved interval type-2 fuzzy logic sugeno integral and modular
neural networks. IEEE Trans Syst Man Cybern A 41(5):1001–1012

12. Mendoza O, Melín P, Castillo O (2009) Interval type-2 fuzzy logic
and modular neural networks for face recognition applications.
Appl Soft Comput 9(4):1377–1387

13. Mendoza O, Melin P, Licea G (2009) A hybrid approach for image
recognition combining type-2 fuzzy logic, modular neural networks
and the sugeno integral. Inf Sci 179(13):2078–2101

14. Melin P, Castillo O (2007) An intelligent hybrid approach for in-
dustrial quality control combining neural networks, fuzzy logic and
fractal theory. Inf Sci 177(7):1543–1557

15. Chua TW, TanWW (2011) Non-singleton genetic fuzzy logic system
for arrhythmias classification. Eng Appl Artif Intell 24(2):251–259

16. Papakostas GA, Boutalis YS, Koulouriotis DE, Mertzios BG
(2008) Fuzzy cognitive maps for pattern recognition applications.
Int J Pattern Recognit Artif Intell 22(08):1461–1486

17. Sahab N, Hagras H (2011) Adaptive non-singleton type-2 fuzzy
logic systems: a way forward for handling numerical uncertainties
in real world applications. Int J Comput Commun 5(3):503–529

18. Choi BI, Rhee FCH (2009) Interval type-2 fuzzy membership func-
tion generation methods for pattern recognition. Inf Sci 179(13):
2102–2122

19. Ghasemi MJ, Tajozzakerin HR, Omidian AR (2010) An iranian
national number plate localization and recognition system for pri-
vate vehicles. Int J Acad Res 2(6):13–19

20. Mendez GM (2007) Interval type-1 non-singleton type-2 TSK
fuzzy logic systems using the hybrid training method RLS-BP. In
Analysis and Design of Intelligent Systems Using Soft Computing
Techniques. Springer, Berlin Heidelberg, pp 36–44

21. Castillo O, Melin P (2012) Optimization of type-2 fuzzy systems
based on bio-inspired methods: a concise review. Inf Sci 205:1–19

22. Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy
logic-genetic algorithm for grade estimation. Comput Geosci 42:
18–27

23. Martínez R, Castillo O, Aguilar LT (2009) Optimization of interval
type-2 fuzzy logic controllers for a perturbed autonomous wheeled
mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174

24. Melin P, Sánchez D, Castillo O (2012) Genetic optimization of
modular neural networks with fuzzy response integration for human
recognition. Inf Sci 197:1–19

25. Mendel JM (2001) Uncertain rule-based fuzzy logic systems: intro-
duction and new directions. Prentice-Hall, Upper Saddle River

26. Buragohain M, Mahanta C (2008) A novel approach for ANFIS
modelling based on full factorial design. Appl Soft Comput 8(1):
609–625

27. Praga-Alejo R, González GD, Pérez VP, Cantú SM, Flores HB
(2012) Modeling a fuzzy logic system using central composite de-
sign. In proceedings of 1st annual world conference of the Society
for Industrial and Systems Engineering. Washington DC, USA

28. Montes Dorantes PN, Praga-Alejo R, Nieto Gonzalez JP, Méndez
GM (2013) Modelado de sistemas adaptativos de inferencia neuro-
difusa usando diseño central compuesto. Res Comput Sci 62:259–
269

29. Montes Dorantes PN, Nieto González JP, Praga-Alejo R, Guajardo
Cosio KL, Méndez GM (2014) Sistema inteligente para
procesamiento de imágenes en control de calidad basado en el
modelo difuso singleton tipo 1. Res Comput Sci 74:117–130

30. Dorantes M, Noradino P, Nieto Gonzalez JP, Mendez GM (2014)
Fault detection systems via a novel hybrid methodology for fuzzy
logic systems based on individual base inference and statistical
process control. Latin America Transactions, IEEE (Rev IEEE
Am Lat) 12(4):706–712

31. Makadia AJ, Nanavati JI (2013) Optimisation of machining param-
eters for turning operations based on response surfacemethodology.
Measurement 46(4):1521–1529

32. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
33. Benneyan JC (1998) Use and interpretation of statistical quality

control charts. Int J Qual Health Care 10(1):69–73
34. Zarandi MF, Alaeddini A, Turksen IB (2008) A hybrid fuzzy adap-

tive sampling–run rules for Shewhart control charts. Inf Sci 178(4):
1152–1170

35. Senturk S, Erginel N (2009) Development of fuzzy and control
charts using α-cuts. Inf Sci 179(10):1542–1551

36. Gülbay M, Kahraman C (2007) An alternative approach to fuzzy
control charts: direct fuzzy approach. Inf Sci 177(6):1463–1480

37. Dongale TD, Kulkarni TG, Kadam PA, Mudholkar RR (2012)
Simplified method for compiling rule base matrix. Int J Soft
Comp Engg 2(1):39–43

38. Macvicarwhelan P (1978) Fuzzy sets, concept of height, and hedge
very. IEEE Trans Syst Man Cybern 8(6):507–511

39. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft com-
puting; a computational approach to learning and machine intelli-
gence. Prentice-Hall, Upper Saddle River

40. Montgomery DC (2004) Diseño y Análisis de experimentos.
Limusa-Wiley, Hoboken

http://www.guioteca.com/fotografia/entendiendo-la-exposicion-en-fotografia-1%C2%AA-parte/
http://www.guioteca.com/fotografia/entendiendo-la-exposicion-en-fotografia-1%C2%AA-parte/

	Interval...
	Abstract
	Introduction
	Theoretical foundations
	Constructing the IT2 SFLS/�CCD model
	Results
	Conclusions
	References


