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Abstract
Forecasting the yield is critical for making aircraft parts using three-dimensional (3D) printing. However, the existing methods for
the yield forecasting exhibit a common problem: they employ the logarithmic or log-sigmoid value, rather than the original value, of
the yield to simplify the computation. To address this problem, an advanced fuzzy approach was proposed in this study. The focus of
this study is to investigate the effectiveness of the advanced fuzzy approach for forecasting the yield of a 3D-printed aircraft part. The
advanced fuzzy approach derived the direct-solution (DS) versions of the existing fuzzy yield learning models. These DS versions
use the original yield value directly, thereby optimizing the forecasting performance. The proposed methodology was applied to the
process of making an aircraft part using 3D printing to evaluate its effectiveness. Experimental results revealed significant improve-
ments in the forecasting accuracy of the proposedmethodology compared with the aforementionedmethods. Furthermore, when the
proposed methodology was applied to various fuzzy yield learning models, different improvements were obtained.
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1 Introduction

Three-dimensional (3D) printing has been extensively applied
to the aircraft industry due to its potential for load carrying
applications [15, 20, 25]. Now, it is possible to print multi-
component aerospace (aircraft) structures and components
with large multiple 3D printing systems [19]. However, re-
searchers and practitioners still encounter several challenges
while applying 3D printing in the aircraft industry. For exam-
ple, the majority of the required alloys cannot be 3D-printed
because the melting and solidification dynamics during the 3D
printing process lead to intolerable microstructures with large
columnar grains and periodic cracks [17]. Other challenges
include the following:

(1) how to make an entire airplane,
(2) how to protect intellectual property rights,

(3) how to measure the performance of maintenance and
repair tasks,

(4) how to enhance the precision of printing a 3D object, and
(5) quality control (QC) issues [26]

The last challenge is focused on this study. In this regard,
Yang et al. [28] evaluated a 3D-printed aircraft part in terms of
part density, tensile strength, dimensional accuracy, and sur-
face roughness, while Li et al. [16] considered the good fusion
quality between polylactic acid (PLA) resins and the infiltra-
tion quality of carbon fiber and melting PLAmatrix during the
3D printing process. However, a universally accepted defini-
tion of the “quality” of a 3D-printed aircraft part is still lacking
[7]. In addition, many manufacturers do not have strong con-
fidence in the consistent quality and reliability of 3D-printed
aircraft parts [7].

Among QC issues, how to measure and enhance yield is
obviously the most critical one. Yield refers to the percentage
of jobs that are not scrapped following quality problems in
manufacturing. It is a critical performance measure in numer-
ous manufacturing processes including 3D printing processes.
Therefore, many researchers and practitioners have been en-
deavoring to improve yield. Related studies have usually been
focused on precise and accurate yield analyses. Statistics, sim-
ulation, mathematical programming (MP), fuzzy logic, and
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artificial neural networks (ANNs) are the yield analysis tech-
niques most frequently applied. For example, Yang and Tjia
[27] attempted to improve the yield in the purification of an
active pharmaceutical ingredient (API) by using batch distil-
lation modeling and engineering principles, which are consid-
ered as applied statistics. Chen [2] proposed a fuzzy collabo-
rative intelligence (FCI) approach to forecast the yield of a
semiconductor product. In this method, experts configured
fuzzy feed-forward neural networks to forecast the yield.
The maximal consensus and radial basis function net-
work approach were proposed to aggregate expert fore-
casts. Eberle et al. [10] established a four-step procedure
to improve the yield of a pharmaceutical batch produc-
tion process. In this procedure, statistical analyses were
performed to approximate the relationship between loss
factors (which reduce the yield) and the overall yield.
John et al. [14] simulated the operations of fluid cata-
lytic cracking risers in a modern refinery with various
diameters to determine the diameter that optimized the
yield. Parra et al. [21] studied the reverse water–gas
shift reaction and observed that the moving-bed config-
uration had higher space–time yield (STY) than did the
fixed-bed operation. Furthermore, they formulated a bi-
objective MP model to determine a method for simulta-
neously optimizing the STY and adsorbent loading.

Operators become more experienced over time.
Similarly, quality control engineers become more famil-
iar with quality problems and their possible solutions.
Equipment engineers eventually determine the optimal
settings of machines. All these phenomena contribute
to improvements in yield, which can be generally de-
scribed using a yield learning model. However, consid-
erable uncertainties are associated with yield improve-
ment processes because the aforementioned activities
all involve some extent of human intervention.
Therefore, a probabilistic, stochastic, or fuzzy yield
learning model that can manage such uncertainty must
be used. Among the aforementioned models, the fuzzy
yield learning model has been widely adopted because
of its efficient computation and communication as well
as its ability to incorporate subjective judgments [2, 4,
11].

In the fuzzy yield learning model, the relationship be-
tween time (or other factors) and yield is typically approx-
imated using a fuzzy exponential function, in which pa-
rameters are generally converted into the logarithmic
values to facilitate problem-solving [24]. Chen [3] fitted
the relationship using an ANN that involved the log-
sigmoid values of parameters. Nevertheless, both ap-
proaches present the same problem: the forecasting preci-
sion or accuracy is not optimized. To illustrate this prob-
lem, a hypothetical example is presented in Table 1, where

~Y t is a fuzzy yield forecast, such that ~Y t ¼ Y t1; Y t2; Y t3ð Þ.
Three fuzzy yield learning models exist for the same yield
forecasting problem. Existing methods that use the loga-
rithmic values employ the first model. Chen’s ANN meth-
od, which is based on log-sigmoid yield values, employs
the second model. However, in terms of the fuzzy yield
forecast range Yt3 − Yt1, neither method optimizes the fore-
casting precision. This paper proposes an advanced fuzzy
approach that employs the third model, in which Yt3 − Yt1 is
minimized. The advanced fuzzy approach applies the poly-
nomial fitting technique to several existing fuzzy yield
learning models to directly use the original values of pa-
rameters, thus providing direct-solution (DS) versions. In
the original fuzzy yield learning models, intractable non-
linear programming (NLP) problems are solved, whereas
in the DS models, tractable polynomial programming (PP)
problems are solved. The Karush–Kuhn–Tucker (KKT)
conditions [1] for the PP problems are derived, and they
can be solved using mathematical or optimization soft-
ware. The benefits of applying the proposed methodology
to various fuzzy yield learning models are compared, be-
cause these benefits may differ.

This remainder of the paper is organized as follows:
Section 2 provides preliminary introductions to arithmet-
ic operations on triangular fuzzy numbers (TFNs) and
the polynomial fitting technique. In Section 3, the ad-
vanced fuzzy approach is introduced. The advanced
fuzzy approach converts several fuzzy yield learning
models into PP problems to be solved for the applica-
tion. Then, the effectiveness of the advanced fuzzy ap-
proach is validated using the case of making an aircraft
part using 3D printing, and the results are discussed in
Section 4. The conclusions are provided in Section 5.

2 Preliminary

2.1 Arithmetic operations on TFNs

In this study, the parameters used in the fuzzy yield learning
models were assumed to be TFNs. Therefore, some arithmetic
operations on TFNs are introduced.

Definition 1 TFN
A TFN ~A ¼ A1;A2;A3ð Þ exhibits the following member-

ship function:

μ
~A
xð Þ ¼

x−A1

A2−A1
if A1≤x < A2

A3−x
A3−A2

if A2≤x < A3

0 otherwise

8>>><
>>>:

ð1Þ
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Theorem 1 [29] Arithmetic operations on TFNs
Let ~A and ~B be TFNs; then, the following arithmetic oper-

ations hold:

(1) Fuzzy addition:

~A þð Þ~B ¼ A1 þ B1;A2 þ B2;A3 þ B3ð Þ: ð2Þ

(2) Fuzzy subtraction:

~A −ð Þ~B ¼ A1−B3;A2−B2;A3−B1ð Þ: ð3Þ

(3) Fuzzy multiplication:

~A �ð Þ~B≅ A1B1;A2B2;A3B3ð Þ if A1;B1≥0 ð4Þ

(4) Fuzzy division:

~A =ð Þ~B≅ A1=B3;A2=B2;A3=B1ð Þ if A1≥0;B1 > 0

ð5Þ

(5) Exponential operation:

e
~A≅ eA1 ; eA2 ; eA3
� �

if A1≥0 ð6Þ

(6) Logarithmic operation:

ln~A≅ lnA1; lnA2; lnA3ð Þ if A1 > 0 ð7Þ

2.2 The polynomial fitting technique

The polynomial fitting technique is used to approximate a
nonlinear function with a polynomial function. The approxi-
mation of an exponential function with a polynomial function
was of concern because most yield learning models use expo-
nential functions. The polynomial function f(x) must satisfy
the following requirements:

f xð Þ ¼ ∑
L

l¼0
alxl; ð8Þ

f 0ð Þ ¼ 1; ð9Þ
j f xð Þ−exj≤ε ∀x∈ 0; 2½ �; ð10Þ

where al is a real number; l = 1 ~ L. ε is a small
positive real number. The range [0, 2] was sufficient
for yield forecasting. A numerical simulation was per-
formed using MATLAB 2017. After the simulation, the
polynomial functions f(x), which minimize ε for various
values of L, were obtained and are summarized in
Table 2. The coefficients of determination (R2) of the
approximations are also provided in this table:

R2 ¼ 1−
∑
n

i¼1
exi− f xið Þð Þ2

∑
n

i¼1
exi−

∑
n

i¼1
exi

n

 !2 ð11Þ

R2 provides a measure of how well-observed outcomes
(exi ) are replicated by the model (f(xi)).

2.3 Solving the PP problem

A PP model can be formulated as follows,
(Model PP)

MinZ ¼ f xð Þ; ð12Þ
subject to

g xð Þ≤0; ð13Þ
h xð Þ ¼ 0; ð14Þ
x∈Rnx ; ð15Þ
where f(x), g(x), and h(x) are polynomial functions of x. The
Lagrangian function for this model is as follows:

L x;μ;λð Þ ¼ f xð Þ þ ∑
i¼1

nh

μihi xð Þ þ ∑
j¼1

ng

λ jg j xð Þ: ð16Þ

Based on Eq. (15), the KKT conditions for the optimal
solutions to this model are derived as follows [9]:

(a) Equality constraints:

∇xL x;μ;λð Þ ¼ 0; ð17Þ

Table 1 Hypothetical example (t = 1)

Model
no.

Equation lnYt3 − ln Yt1 log − sig(Yt3) − log − sig(Yt1) Yt3 − Yt1

1 ~Y t ¼ 0:895; 0:908; 0:922ð Þe− 0:073;0:235;0:398ð Þ
t 0.1375 0.0243 0.1156

2 ~Y t ¼ 0:867; 0:888; 0:909ð Þe− 0:182;0:321;0:460ð Þ
t 0.1408 0.0240 0.1124

3 ~Y t ¼ 0:937; 0:948; 0:958ð Þe− 0:604;0:802;1:000ð Þ
t 0.1542 0.0246 0.1119
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λ jg j xð Þ ¼ 0; j ¼ 1∼ng; ð18Þ

h xð Þ ¼ 0: ð19Þ

(b) Inequality constraints:

g xð Þ≤0; ð20Þ

λ j≥0; j ¼ 1∼ng; ð21Þ

These constraints can easily be obtained analytically by
using mathematical or optimization software.

3 Deriving DS versions of fuzzy yield learning
models

3.1 DS version of the Tanaka–Watada (TW) model

The TW fuzzy yield learning model has the following form
[23]:

~Y t ¼ ~Y 0e−
~b
t ; ð22Þ

where ~Y t is the fuzzy forecast of the average yield within time

period t, with 0≤ ~Y t ≤1 and t = 1 ~ T. ~Y 0 is the asymptotic (or

final) yield that ~Y t should converge to, where 0≤ ~Y 0≤1. ~Y 0 is
generally a real-valued function of the point defect density per
unit area, chip area, or a set of parameters distinctive to the

yield model under consideration [11]. ~b is the learning con-

stant, where ~b ≥ 0. A larger value of ~b indicates an improve-
ment in the yield at a higher learning speed. Without loss of

generality, ~Y 0 and ~b can be expressed using TFNs as

~Y 0 ¼ Y 01; Y 02; Y 03ð Þ; ð23Þ
~b ¼ b1; b2; b3ð Þ: ð24Þ

According to the arithmetic operators on TFNs,

Y t1≅Y 01e−
b3
t ; ð25Þ

Y t2≅Y 02e−
b2
t ; ð26Þ

Y t3≅Y 03e−
b1
t : ð27Þ

Equivalently,

Y 01≅Y t1e
b3
t ; ð28Þ

Y 02≅Y t2e
b2
t ; ð29Þ

Y 03≅Y t3e
b1
t : ð30Þ

The left- and right-hand sides of Eq. (22) can be converted
into logarithmic values as follows:

ln~Y t ¼ ln~Y 0 −ð Þ
~b
t
: ð31Þ

Applying the arithmetic on TFNs to Eq. (30) provides

lnY t1≅lnY 01−b3=t; ð32Þ
lnY t2≅lnY 02−b2=t; ð33Þ
lnY t3≅lnY 03−b1=t: ð34Þ

Based on Eqs. (32), (33), and (34), several MPmodels have

been formulated to derive the values of ~Y 0 and ~b. For exam-
ple, Tanaka and Watada [23] solved the following linear pro-
gramming problem:

(Model TW)

MinZTW ¼ ∑
T

t¼1
lnY t3−lnY t1ð Þ ð35Þ

subject to

lnY t ≥ lnY t1 þ s lnY t2−lnY t1ð Þ; ð36Þ
lnY t ≤ lnY t3 þ s lnY t2−lnY t3ð Þ; ð37Þ
lnY t1 ¼ lnY 01−b3=t; ð38Þ
lnY t2 ¼ lnY 02−b2=t; ð39Þ
lnY t3 ¼ lnY 03−b1=t; ð40Þ
lnY 01≤ lnY 02≤ lnY 03≤0; ð41Þ
0≤b1≤b2≤b3; ð42Þ
t ¼ 1∼T ;

Table 2 Polynomial functions
f(x) with various values of L L f(x) ε R2

1 f(x) = 1.0000 + 2.4019x 1.5853 0.8883

2 f(x) = 1.0000 + 0.4123x + 1.3231x2 0.2721 0.9973

3 f(x) = 1.0000 + 1.1412x + 0.1112x2 + 0.4533x3 0.0355 0.9999

4 f(x) = 1.0000 + 0.9765x + 0.6043x2 + 0.0229x3 + 0.1145x4 0.0037 0.9999
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where Yt is the average yield (i.e., the actual value) within time
period t, and s is a predefined real constant representing the
required satisfaction level, with 0 ≤ s ≤ 1. The objective func-
tion minimizes the sum of the ranges of the logarithmic values
of the fuzzy yield forecasts.

The DS version of the TW model is as follows:
(Model DS-TW)

MinZDS−TW ¼ ∑
T

t¼1
Y t3−Y t1ð Þ ð43Þ

subject to

Y t ≥Y t1 þ s Y t2−Y t1ð Þ; ð44Þ

Y t ≤Y t3 þ s Y t2−Y t3ð Þ; ð45Þ

Y 01 ¼ Y t1 þ 0:9765

t
b3Y t1 þ 0:6043

t2
b23Y t1

þ 0:0229

t3
b33Y t1 þ 0:1145

t4
b43Y t1; ð46Þ

Y 02 ¼ Y t2 þ 0:9765

t
b2Y t2 þ 0:6043

t2
b22Y t2

þ 0:0229

t3
b32Y t2 þ 0:1145

t4
b42Y t2; ð47Þ

Y 03 ¼ Y t3 þ 0:9765

t
b1Y t3 þ 0:6043

t2
b21Y t3

þ 0:0229

t3
b31Y t3 þ 0:1145

t4
b41Y t3; ð48Þ

0≤Y 01≤Y 02≤Y 03≤1; ð49Þ
0≤b1≤b2≤b3; ð50Þ
t ¼ 1∼T :

The objective function directly minimizes the sum of the
ranges of the fuzzy yield forecasts. Equations (46), (47), and
(48) are obtained by applying the polynomial approximations
in Table 2 to Eqs. (28), (29), and (30).

Theorem 2 The DS-TW model is valid for b3 ≤ 2.
Proof
The third requirement of the polynomial fitting technique is

x ≤ 2. In constraint Eq. (28),

x ¼ b3
t
≤2: ð51Þ

Because t ≥ 1,

b3≤2t≤2⋅1 ¼ 2: ð52Þ

Hence, Theorem 1 is proved.

The Lagrangian function of the DS-TWmodel is as follows:

LYt ;λ ¼ ∑
T

t¼1
Y t3−Y t1ð Þ þ ∑

T

t¼1
λ1t Y t1 þ s Y t2−Y t1ð Þ−Y tð Þð Þ þ ∑

T

t¼1
λ2t Y t−Y t3−s Y t2−Y t3ð Þð Þð Þ

þ ∑
T

t¼1
μ1t Y 01−Y t1−

0:9765

t
b3Y t1−

0:6043

t2
b23Y t1−

0:0229

t3
b33Y t1−

0:1145

t4
b43Y t1

� �� �

þ ∑
T

t¼1
μ2t Y 02−Y t2−

0:9765

t
b2Y t2−

0:6043

t2
b22Y t2−

0:0229

t3
b32Y t2−

0:1145

t4
b42Y t2

� �� �

þ ∑
T

t¼1
μ3t Y 03−Y t3−

0:9765

t
b1Y t3−

0:6043

t2
b21Y t3−

0:0229

t3
b31Y t3−

0:1145

t4
b41Y t3

� �� �

þλ3 Y 02−Y 03ð Þ þ λ4 Y 01−Y 02ð Þ þ λ5 b2−b3ð Þ þ λ6 b1−b2ð Þ
ð53Þ

The KKT conditions are as follows:

(a) Equality constraints:

∂L
∂Y 01

¼ ∑
T

t¼1
μ1t þ λ4 ¼ 0 ð54Þ

∂L
∂Y 02

¼ ∑
T

t¼1
μ2t þ λ3−λ4 ¼ 0 ð55Þ

∂L
∂Y 03

¼ ∑
T

t¼1
μ3t−λ3 ¼ 0 ð56Þ

∂L
∂b1

¼ λ6− ∑
T

t¼1
μ3t

0:9765

t
Y t3 þ 1:2086

t2
b1Y t3 þ 0:0687

t3
b21Y t3 þ 0:4580

t4
b31Y t3

� �� �

¼ 0

ð57Þ
∂L
∂b2

¼ λ5−λ6

− ∑
T

t¼1
μ2t

0:9765

t
Y t2 þ 1:2086

t2
b2Y t2 þ 0:0687

t3
b22Y t2 þ 0:4580

t4
b32Y t2

� �� �

¼ 0

ð58Þ
∂L
∂b3

¼ − ∑
T

t¼1
μ1t

0:9765

t
Y t1 þ 1:2086

t2
b3Y t1 þ 0:0687

t3
b23Y t1 þ 0:4580

t4
b33Y t1

� �� �
−λ5

¼ 0

ð59Þ
(b) Inequality constraints:

Y t1 þ s Y t2−Y t1ð Þ−Y t ≤0; ð60Þ

Y t−Y t3−s Y t2−Y t3ð Þ≤0; ð61Þ

Y 01−Y 02≤0; ð62Þ

Y 02−Y 03≤0; ð63Þ

Y 03−1≤0; ð64Þ

b1−b2≤0; ð65Þ

b2−b3≤0; ð66Þ

λ1t∼λ2t;λ3∼λ6;μ1t∼μ3t ≥0: ð67Þ
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The solutions to the KKT conditions, that is, the op-
timal solutions to the DS-TW problem, can be easily
obtained analytically by using mathematical or optimi-
zation software. The DS model exhibits this advantage
over the original model.

3.2 DS versions of other fuzzy yield learning models

The DS versions of other fuzzy yield learning models can be
similarly derived. For example, Peters [22] solved the follow-
ing quadratic programming (QP) problem to fit a fuzzy yield
learning process:

(Model P)

MaxZP ¼ s ð68Þ
subject to

∑
T

t¼1
lnY t3−lnY t1ð Þ≤Td; ð69Þ

s ¼
∑
T

t¼1
st

T
; ð70Þ

lnY t ≥ lnY t1 þ st lnY t2−lnY t1ð Þ; ð71Þ
lnY t ≤ lnY t3 þ st lnY t2−lnY t3ð Þ; ð72Þ
lnY t1 ¼ lnY 01−b3=t; ð73Þ
lnY t2 ¼ lnY 02−b2=t; ð74Þ
lnY t3 ¼ lnY 03−b1=t; ð75Þ
lnY 01≤ lnY 02≤ lnY 03≤0; ð76Þ
0≤b1≤b2≤b3; ð77Þ
0≤st ≤1; ð78Þ
t ¼ 1∼T ;

where d is the prespecified required average range, with d ≥ 0.
The objective function maximizes the average satisfaction
level. The DS version of this model is as follows:

(Model DS-P)

MaxZDS−P ¼ s ð79Þ
subject to

∑
T

t¼1
Y t3−Y t1ð Þ≤Td; ð80Þ

s ¼
∑
T

t¼1
st

T
; ð81Þ

Y t ≥Y t1 þ st Y t2−Y t1ð Þ; ð82Þ
Y t ≤Y t3 þ st Y t2−Y t3ð Þ; ð83Þ

Y 01 ¼ Y t1 þ 0:9765

t
b3Y t1 þ 0:6043

t2
b23Y t1

þ 0:0229

t3
b33Y t1 þ 0:1145

t4
b43Y t1; ð84Þ

Y 02 ¼ Y t2 þ 0:9765

t
b2Y t2 þ 0:6043

t2
b22Y t2

þ 0:0229

t3
b32Y t2 þ 0:1145

t4
b42Y t2; ð85Þ

Y 03 ¼ Y t3 þ 0:9765

t
b1Y t3 þ 0:6043

t2
b21Y t3

þ 0:0229

t3
b31Y t3 þ 0:1145

t4
b41Y t3; ð86Þ

0≤Y 01≤Y 02≤Y 03≤1; ð87Þ
0≤b1≤b2≤b3; ð88Þ
0≤st ≤1; ð89Þ
t ¼ 1∼T :

Moreover, the objective function can be replaced with
another function that is more suitable for practical ap-
plications, such as the mean absolute percentage error
(MAPE):

MinZDS−P2 ¼
∑
T

t¼1
jY t−

Y t1 þ Y t2 þ Y t3

3
j

T
; ð90Þ

for which the fuzzy yield forecast is defuzzified using
the center of gravity (COG) method.

Donoso et al. [8] solved another QP model to fit a fuzzy
learning process:

(Model D)

MinZD ¼ w1 ∑
T

t¼1
lnY t2−lnY tð Þ2 þ w2 ∑

T

t¼1
lnY t3−lnY t1ð Þ2 ð91Þ

subject to

lnY t ≥ lnY t1 þ s lnY t2−lnY t1ð Þ; ð92Þ
lnY t ≤ lnY t3 þ s lnY t2−lnY t3ð Þ; ð93Þ
lnY t1 ¼ lnY 01−b3=t; ð94Þ
lnY t2 ¼ lnY 02−b2=t; ð95Þ
lnY t3 ¼ lnY 03−b1=t; ð96Þ
lnY 01≤ lnY 02≤ lnY 03≤0; ð97Þ
0≤b1≤b2≤b3; ð98Þ
t ¼ 1∼T ;

where w1 and w2 are the prespecified weights, with
w1 + w2 = 1 and w1, w2 ∈ [0, 1]. The objective function
minimizes the weighted sum of the squared deviations
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from the core and the squared ranges. The DS version
of Model D is as follows:

(Model DS-D)

MinZDS−D ¼ w1 ∑
T

t¼1
Y t2−Y tð Þ2 þ w2 ∑

T

t¼1
Y t3−Y t1ð Þ2 ð99Þ

subject to

Y t ≥Y t1 þ s Y t2−Y t1ð Þ; ð100Þ
Y t ≤Y t3 þ s Y t2−Y t3ð Þ; ð101Þ

Y 01 ¼ Y t1 þ 0:9765

t
b3Y t1 þ 0:6043

t2
b23Y t1

þ 0:0229

t3
b33Y t1 þ 0:1145

t4
b43Y t1; ð102Þ

Y 02 ¼ Y t2 þ 0:9765

t
b2Y t2 þ 0:6043

t2
b22Y t2

þ 0:0229

t3
b32Y t2 þ 0:1145

t4
b42Y t2; ð103Þ

Y 03 ¼ Y t3 þ 0:9765

t
b1Y t3 þ 0:6043

t2
b21Y t3

þ 0:0229

t3
b31Y t3 þ 0:1145

t4
b41Y t3; ð104Þ

0≤Y 01≤Y 02≤Y 03≤1; ð105Þ
0≤b1≤b2≤b3; ð106Þ
t ¼ 1∼T :

Chen and Lin [4] formulated two NLP problems by using
their FCI approach:

(Model CLI)

MinZCLI ¼ ∑
T

t¼1
lnY t2−lnY t1ð Þo kð Þ ð107Þ

subject to

lnY t ≥ lnY t1 þ s kð Þ lnY t2−lnY t1ð Þ; ð108Þ
lnY t ≤ lnY t3 þ s kð Þ lnY t2−lnY t3ð Þ; ð109Þ
lnY t1 ¼ lnY 01−b3=t; ð110Þ
lnY t2 ¼ lnY 02−b2=t; ð111Þ
lnY t3 ¼ lnY 03−b1=t; ð112Þ
lnY 01≤ lnY 02≤ lnY 03≤0; ð113Þ
0≤b1≤b2≤b3; ð114Þ
t ¼ 1∼T :

(Model CLII)

MaxZCLII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t¼1
stm kð ÞmðkÞ

s
ð115Þ

subject to

∑
T

t¼1
lnY t2−lnY t1ð Þo kð Þ≤Td kð Þo kð Þ; ð116Þ

lnY t ≥ lnY t1 þ st lnY t2−lnY t1ð Þ; ð117Þ
lnY t ≤ lnY t3 þ st lnY t2−lnY t3ð Þ; ð118Þ
lnY t1 ¼ lnY 01−b3=t; ð119Þ
lnY t2 ¼ lnY 02−b2=t; ð120Þ
lnY t3 ¼ lnY 03−b1=t; ð121Þ
lnY 01≤ lnY 02≤ lnY 03≤0; ð122Þ
0≤b1≤b2≤b3; ð123Þ
0≤st ≤1; ð124Þ
t ¼ 1∼T ;

where o(k), s(k), m(k), and d(k) are optimization parameters
specified by expert k, with k = 1 ~K; o(k),m(k) ∈ Z+, s(k) ∈ [0,
1], and d(k) ≥ 0. In Model CLI, the objective function mini-
mizes the high-order sum of ranges, whereas in the Model
CLII, the objective function maximizes the generalized mean
of the satisfaction levels. The DS versions of these twomodels
are as follows:

(Model DS-CLI)

MinZDS−CLI ¼ ∑
T

t¼1
Y t2−Y t1ð Þo kð Þ ð125Þ

subject to

Y t ≥Y t1 þ s kð Þ Y t2−Y t1ð Þ; ð126Þ
Y t ≤Y t3 þ s kð Þ Y t2−Y t3ð Þ; ð127Þ

Y 01 ¼ Y t1 þ 0:9765

t
b3Y t1 þ 0:6043

t2
b23Y t1

þ 0:0229

t3
b33Y t1 þ 0:1145

t4
b43Y t1; ð128Þ

Y 02 ¼ Y t2 þ 0:9765

t
b2Y t2 þ 0:6043

t2
b22Y t2

þ 0:0229

t3
b32Y t2 þ 0:1145

t4
b42Y t2; ð129Þ

Y 03 ¼ Y t3 þ 0:9765

t
b1Y t3 þ 0:6043

t2
b21Y t3

þ 0:0229

t3
b31Y t3 þ 0:1145

t4
b41Y t3; ð130Þ

0≤Y 01≤Y 02≤Y 03≤1; ð131Þ
0≤b1≤b2≤b3; ð132Þ
t ¼ 1∼T ;
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(Model DS-CLII)

MaxZCLII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t¼1
stm kð ÞmðkÞ

s
ð133Þ

subject to

∑
T

t¼1
Y t2−Y t1ð Þo kð Þ≤Td kð Þo kð Þ; ð134Þ

Y t ≥Y t1 þ st Y t2−Y t1ð Þ; ð135Þ
Y t ≤Y t3 þ st Y t2−Y t3ð Þ; ð136Þ

Y 01 ¼ Y t1 þ 0:9765

t
b3Y t1 þ 0:6043

t2
b23Y t1

þ 0:0229

t3
b33Y t1 þ 0:1145

t4
b43Y t1; ð137Þ

Y 02 ¼ Y t2 þ 0:9765

t
b2Y t2 þ 0:6043

t2
b22Y t2

þ 0:0229

t3
b32Y t2 þ 0:1145

t4
b42Y t2; ð138Þ

Y 03 ¼ Y t3 þ 0:9765

t
b1Y t3 þ 0:6043

t2
b21Y t3

þ 0:0229

t3
b31Y t3 þ 0:1145

t4
b41Y t3; ð139Þ

0≤Y 01≤Y 02≤Y 03≤1; ð140Þ
0≤b1≤b2≤b3; ð141Þ
0≤st ≤1; ð142Þ
t ¼ 1∼T :

Similarly, the KKTconditions for these DS versions can be
analytically derived and solved.

4 Application of the proposed methodology
to making an aircraft part using 3D printing

The case of making an aircraft part using 3D printing was
adopted to validate the effectiveness of the proposed

methodology. 3D printing has been widely applied to the de-
sign, manufacturing, and maintenance of aircraft [13, 18]. The
quality issues of 3D-printed aircraft parts are always a critical
concern to the researchers and practitioners in this field. In this
case, each 3D-printed aircraft part was judged as “acceptable”
or “unacceptable.” The percentage of acceptable 3D-printed
aircraft parts in a batch is defined as the yield of the batch. The
yields of ten batches are illustrated in Fig. 1.

The data of the first five periods were used to generate each
model. The remaining data were used for testing or evaluating
the forecasting performance. The parameter settings in the
models are summarized in Table 3. For a rational comparison,
the parameter settings in the DS model were identical to those
in the original model. Moreover, the values of the same pa-
rameter in various models were the same.

The fuzzy yield learning models fitted using these methods
are summarized in Table 4.

The experimental results yielded the following findings:

(1) The values of b3 in all models were lower than 2.
Therefore, according to Theorem 2, the approximation
of the exponential function with a polynomial function
was valid.
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Fig. 1 The yields of ten batches

Table 3 Parameter
settings in the models Model Parameter setting

TW s = 0.3

DS-TW s = 0.3

P d = 0.25

DS-P d = 0.25

D w1 = 0.5; w2 = 0.5; s = 0.3

DS-D w1 = 0.5; w2 = 0.5; s = 0.3

CLI o(k) = 2; s = 0.3

DS-CLI o(k) = 2; s = 0.3

CLII o(k) = 2; d(k) = 0.25; m(k) = 2

DS-CLII o(k) = 2; d(k) = 0.25; m(k) = 2

Table 4 Fuzzy yield learning models fitted using the aforementioned
methods

Method Fuzzy yield learning model

TW ~Y t ¼ 0:7503; 0:9491; 0:9491ð Þe− 0:5424;0:5424;0:5424ð Þ
t

DS-TW ~Y t ¼ 0:7419; 0:9472; 0:9472ð Þe− 0:5398;0:5398;0:5398ð Þ
t

P ~Y t ¼ 0:7416; 0:7416; 1:0000ð Þe− 0:0000;0:2957;0:2957ð Þ
t

DS-P ~Y t ¼ 0:7405; 0:7405; 1:0000ð Þe− 0:0000;0:2950;0:2950ð Þ
t

D ~Y t ¼ 0:7740; 0:8828; 0:9791ð Þe− 0:5424;0:5424;0:5424ð Þ
t

DS-D ~Y t ¼ 0:7732; 0:8742; 0:9785ð Þe− 0:5398;0:5398;0:5398ð Þ
t

CLI ~Y t ¼ 0:7662; 0:9037; 0:9694ð Þe− 0:5424;0:5424;0:5424ð Þ
t

DS-CLI ~Y t ¼ 0:7419; 0:9472; 0:9472ð Þe− 0:5398;0:5398;0:5398ð Þ
t

CLII ~Y t ¼ 0:7416; 0:7416; 0:9523ð Þe− 0:2957;0:2957;0:2957ð Þ
t

DS-CLII ~Y t ¼ 0:7405; 0:7405; 1:0000ð Þe− 0:2378;0:2950;0:2950ð Þ
t
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(2) Among the original models, Model CLII was most dif-
ferent from its DS version, as illustrated in Fig. 2, indi-
cating that the fitted fuzzy yield learning model may be
reasonably different after considering the original value,
rather than the logarithmic or log-sigmoid value, of the
yield. By contrast, Model CLI and its DS version were
very similar, as illustrated in Fig. 3.

(3) The forecasting performances of all methods were com-
pared using the mean absolute error (MAE), MAPE, root
mean squared error (RMSE), and the average range,
which were calculated as follows:

MinMAE ¼
∑
T

t¼1
jY t−Ŷ tj
T

; ð143Þ

MinMAPE ¼
∑
T

t¼1

jY t−Ŷ tj
Y t

T
⋅100%; ð144Þ

MinRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t¼1
Y t−Ŷ t

� �2
T

vuuut
; ð145Þ

Min The Average Range ¼
∑
T

t¼1
Y t3−Y t1ð Þ
T

; ð146Þ

The COG method was applied to defuzzify each fuzzy
yield forecast as follows:

Ŷ t ¼ Y t1 þ Y t2 þ Y t3

3
; ð147Þ

The results are summarized in Fig. 4. The forecasting ac-
curacy of the DS model was superior to that of the original
model in terms of MAE, MAPE, and RMSE. The forecasting
precision of the DS model was also comparable to that of the
original model.

(4) The forecasting precision, which was measured as
the average range of fuzzy yield forecasts, did not
always exhibit similar results. This result was not
unexpected, because the existing fuzzy yield learn-
ing models maximize the sum of satisfaction levels,
rather than minimizing the average range, to opti-
mize the forecasting precision. The direct minimi-
zation of the average range is difficult in the
existing fuzzy yield learning models.
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(5) The most substantial advantage of the DS models over
the original models was the reduction in the MAPE.
Model DS-CLII exhibited an MAE reduction of 33.4%
when compared with Model CLII. The MAPEs of the
DS models were, on average, 7.7% lower than those of
the original models.

5 Conclusions

Yield is a crucial performance measure for many manufactur-
ing processes. The yield of products must be continually mon-
itored, enhanced, and forecasted. This study aimed to resolve
a crucial problem in yield forecasting; that is, the use of the
logarithmic or log-sigmoid value, instead of the original value,
of the yield to simplify the computation. To this end, an ad-
vanced fuzzy approach was proposed. The advanced fuzzy
approach derived the DS versions of some existing fuzzy yield
learning models. These DS versions directly employ the orig-
inal value of the yield, thereby optimizing the forecasting
performance.

To evaluate its effectiveness, the proposed methodology
was applied to the case of making an aircraft part using 3D
printing. On the basis of the experimental results, the follow-
ing conclusions were obtained:

(1) The forecasting accuracy was substantially improved by
directly considering the original value of the yield.
Therefore, theMAE,MAPE, and RMSE results obtained

by solving DSmodels were superior to those obtained by
solving the original model.

(2) The treatments in this study were most effective when
applied to the CLII model discussed by Chen and Lin [4]
and least effective when applied to the CLI model of
Chen and Lin [4].

Although the proposed methodology can theoretically be
applied to other fields for modeling various learning process-
es, the polynomial fitting technique may not always achieve
the required level of accuracy and modifications may be nec-
essary. Several FCI methods for yield forecasting, including
that of Chen and Wang [6], are based on the logarithmic or
log-sigmoid value of the yield. The forecasting accuracy of
such FCImethods can be enhanced by directly considering the
original value of the yield. In addition, the joint applications of
3D printing and cloud computing to the aircraft industry are
receiving attentions [5, 12], to which the proposed methodol-
ogy may apply to enhance the effectiveness.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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