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Abstract
The objective of this study is to investigate the feasibility of utilizing the signal features in vibration measurements during the
milling process and the cutting parameters for predicting the surface roughness of S45C steel. The features of vibration signals are
extracted by means of the envelope analysis, statistical computation, such as RMS (root-mean-square), kurtosis, skewness, and
multi-scale entropy (MSE), as well as the frequency normalization. Through the correlation analysis, the features of higher
priority are sifted out so that the prediction computation efforts can be reduced. The sifted vibration signal features are then
collected as the input layer parameters of artificial neural network (ANN) for surface roughness prediction. The prediction results
and accuracy through using different classes of input features are also discussed and compared. The experimental results show
that the surface roughness is affected not only by the cutting parameters, but also by the vibration behavior during the milling
process. Therefore, the cutting parameters combining the essential vibration features can be utilized to enhance the prediction
accuracy of surface roughness during the milling process.

Keywords Milling . Surface roughness . Correlation analysis . Artificial neural network (ANN) . Envelope analysis .Multi-scale
entropy (MSE) . Frequency normalization

1 Introduction

The prediction of surface roughness under milling/cutting pro-
cess is essential for the tooling machine design and
manufacturing process, and has attracted numerous re-
searchers and engineers to dedicate the efforts to the related
studies. Karayel [1] utilized the parameters of cutting speed,
feed rate, and cutting depth for artificial neural network
(ANN) modeling and then controlled the surface roughness
of workpiece. Asiltürk and Çunkaş [2] employed the ANN
and multiple regression method to predict the surface rough-
ness of AISI1040 under different levels of cutting speed, feed
rate, and cutting depth. They indicated that the more accurate
prediction results can be obtained by the ANN model than by
the multiple regression method.

Except for the cutting parameters combining the neural
network models as well as the multiple regression methods,
the signal measurements during the machining can be also
utilized to predict the surface roughness of the workpieces.
A linear regression model was applied for the surface rough-
ness prediction of steel NAK80 by using the displacement
sensors that was installed on the spindle [3]. Abouelatta and
Mádl [4] proposed an approach for the surface roughness pre-
diction of steel workpiece in turning operation. In their study,
the multiple regression prediction model was established
through the cutting parameters as well as fast Fourier trans-
form (FFT)–based spectral features of the vibrating accelera-
tion signals that were measured on the cutting tool. In addi-
tion, Abu-Mahfouz et al. [5] utilized the statistical features of
vibration signals, such as mean, kurtosis, skewness, and stan-
dard deviation, to predict the surface roughness of workpiece
in end milling operation. Their investigation indicated that the
prediction accuracy can be enhanced by combining the prin-
cipal component analysis (PCA) and the cutting parameters of
cutting speed, feed rate, and cutting depth. Alternatively, a
fuzzy net model was used to predict the surface roughness
of alloy in turning operations [6]. The features of the fuzzy
net were extracted from the vibration signals of the spindle,
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and the cutting parameters, including the feed rate and spindle
rotating speed.

According to the previous literature of vibration signal
analysis, the empirical mode decomposition (EMD) method
is capable of separating the complicated signal into the intrin-
sic mode functions (IMFs) of different frequency scales such
that the non-information-included signal components can be
filtered out without the occurrence of phase shift and wave-
form distortion [7]. On the hand, the previous study [8] indi-
cated that the entropy of vibration signals represents the com-
plexity or regularity of the data series that is intuitively related
to the system dynamical behavior. Therefore, the multi-scale
entropy (MSE) of the measured signals can reveal the tiny
variation of machine dynamics in terms of the entropy values
of different scales [9]. Alternatively, the measurements of cut-
ting force were utilized to predict the surface roughness during
the ball-end milling process through the wavelet transform
approach [10]. An ANN-based monitoring system was devel-
oped to predict the dynamic surface roughness by using the
various cutting parameters, material types, coolant fluid, and
machine vibrations as the inputs [11].

Based on the previous studies in the previous literature
related to the surface roughness prediction of milling pro-
cess, it is found that the surface roughness of workpiece is
attributednot only to the combinations of cuttingparameters,
but also to the influence frommachine vibrations in the mill-
ing process. Since the studies of cutting parameters have
been conducted to examine the correlation of surface rough-
ness extensively, the vibration measurement analysis and
feature extraction techniques become the major challenge
of enhancing the accuracy of surface roughness prediction.
In this research, the features that are related to the surface
roughness of workpiece in milling process were extracted
from the vibration signals of spindle and vise as well as their
relative vibrating motions. To advance the state-of-art of the
surface roughness prediction, the EMDmethod was utilized
to remove the signal components that contain noises and
useless information. The features that include the kurtosis,
skewness, and MSE in time domain as well as the spectral
levels in frequency domain were determined and extracted.
On the other hand, in order to remove the factor of feature
variation in the cases of different spindle rotating speed, the
frequency normalization technique [12] was utilized to ex-
tract the rotation speed–related features in the order spectra.
Furthermore, the workpiece in milling process normally re-
veals the periodic surface profiles, it can be inferred that the
vibration signalsmay present the amplitudemodulation phe-
nomenon that is not broadly investigated for the surface
roughness prediction in the previous studies. Therefore, the
features of the corresponding envelope signals were also ex-
tracted in this research.Thecorrelationbetween the extracted
features and the surface roughness was then analyzed by
using the Pearson correlation coefficient.

The proposed prediction approach was verified experi-
mentally by the milling process of S45C steel. The sur-
face roughness of the workpiece was predicted through
the sifted features and using the trained ANN. The pre-
diction of using different classes of input features are
discussed and compared in this study. The results demon-
strate that the proposed approach is effective to accurately
predict the surface roughness of milling process. For the
purpose of further usage and reference, all the vibration
measurements as well as the corresponding surface rough-
ness average (Ra) values and the cutting parameters that
were utilized in this research article are available at the
website (http://web.nchu.edu.tw/~tianyauwu/data/ra_s45c/
ra_s45c.htm).

2 Vibration signal feature extraction
and feature classification

2.1 Envelope analysis

In the cutting process, the blades of tool impact the workpiece
cyclically and thus induce a periodic vibration behavior. It is
normally observed that the vibration measurements contain
the amplitude modulating phenomenon. Therefore, the enve-
lope analysis can be employed to demodulate the vibration
signals and to extract the surface roughness–related features
of signal envelope. The envelope of the vibration signal can be
determined in terms of the complex analytical signal z(t)
which is obtained through the Hilbert transform [13],

z tð Þ ¼ x tð Þ þ jH x tð Þ½ � ¼ A tð Þe j∅ tð Þ; ð1Þ
where x(t) represents the vibration signal, H[.] represents the
Hilbert transform, and A(t) is the envelope of the vibration
signal. For the vibration measurement with amplitude modu-
lation, the envelope analysis is one of the important means to
extract the signal features in the time domain.

2.2 Empirical mode decomposition

The vibration measurements may contain useless noise and
unrelated signal components at different frequencies inevita-
bly. In order to extract the surface roughness–related features
in certain frequency range, the signal decomposition or filter-
ing process is needed to separate the complicated measure-
ment into the signal components of specific frequency bands.
The empirical mode decomposition (EMD) method is an
adaptive signal separation method and is capable of
decomposing the complicated signal into a number of IMFs
of different frequency range, that is [13].

x tð Þ ¼ ∑n
i¼1ci tð Þ þ rn tð Þ; ð2Þ
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where x(t) represents the vibration signal, ci(t) is the i-th IMF,
and rn(t) represents the signal residue or trend. Each IMF
represents a mono-oscillating component within a narrow fre-
quency band, and thus satisfies the following conditions [13]:
(i) The number of extrema and the number of zero-crossings
must be either equal or differ at most by one in the whole data
set; (ii) At any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima is zeros.

The EMD method is equivalent to a band-pass filtering
process and can be used to reconstruct the information-
contained signal within the specific frequency range without
the drawbacks that the normal filtering process may encoun-
ter. It is beneficial to extract the surface roughness–related
features from the signal within the certain frequencies.

2.3 Multi-scale entropy

The concept of entropy in the information theory is usually
applied to estimate the complexity of the observation data
which is capable of characterizing the system dynamical be-
haviors. Shannon proposed the method to compute the entro-
py of the series data, and then the method has been utilized to
measure the complexity or disorderliness of signals [14]. For a
given discrete series S = {x1, x2, ..., xN}, it has N outcomes in
which there exist n classes ({s1, s2, ..., sn}). The entropy of the
series S is computed as:

En Sð Þ ¼ −∑n
i¼1p sið Þlog p sið Þð Þ; si∈S; 1≤ i≤n: ð3Þ

where p(si) represents the probability density function of the
series S, and log represents the logarithmic function. The al-
gorithm of determining the sample entropy (SE) of a series
was developed subsequently by Richman and Moorman [15].
Let S be the same time series of data length of N, and m
sequential points of the time series be a pattern. Therefore,
the pattern space X is defined as [15]:

X ¼
x1 x2 ⋯ xm
x2 x3 … xmþ1

⋮
xN−mþ1

⋮
xN−mþ2

⋱
⋯

⋮
xN

2
64

3
75: ð4Þ

The mean self-similarity quantity is formulated as:

φm rð Þ ¼ 1

N−mð Þ N−mþ 1ð Þ ∑
N−m
i¼1 ∑N−mþ1

j¼1 G dij; r
� �

; ð5Þ

where G(·) represents the Heaviside function, r is the toler-
ance, and dij represents the distance between the i-th and j-th
patterns, formulated as dij=‖Xi −Xj‖. It can be observed that
the self-similarity quantity estimates the repetition degree of
sequential pattern of length m. By calculating the self-

similarity for the pattern space of the length of m + 1, the
sample entropy of the series is thus determined as:

SEn m; rð Þ ¼ −log
φmþ1 rð Þ
φm rð Þ : ð6Þ

Costa et al. [16, 17] proposed the concept of multi-scale
entropy (MSE) to represent the regularity of the data series in
different scales through the coarse-grain process. Their analy-
sis results indicated that the utilization of MSE is capable of
classifying the physiological signals of human beings among
the healthy and pathological people. The coarse-grain process
is mainly to transform the original data series into different
scales. The given data series, S = {x1, x2, ..., xN}, is first seg-
mented into several data sets of length τ. By taking the mean
values of the segmented data according to the following for-

mula, the new series sets y(τ) = {y τð Þ
j } are then obtained:

y τð Þ
j ¼ 1

τ
∑jτ

i¼ j−1ð Þτþ1xi; 1≤ j≤
N
τ
; ð7Þ

where τ is called the scale factor. As observing the formula of
coarse grain, it is equivalent to the process of sliding window
of length τ and taking the average of the data series within the
window in the way of non-overlap. In other words, the coarse-
grain process includes the steps of utilizing the moving aver-
age filter to remove the high-frequency components and hav-
ing down-sampled signal. The MSE is then obtained by cal-
culating the sample entropy SEn of y(τ) with different scale τ,
that is,

MSE S; τ ;m; rð Þ ¼ SEn y τð Þ;m; r
� �

: ð8Þ

It is noted that the tolerance r is set to be fixed while com-
puting the SEn of different scales τ. Therefore, the MSE anal-
ysis is not affected by the original signal amplitude.

2.4 Pearson correlation analysis

In statistics, the Pearson correlation analysis is employed to
measure the linear correlation between two data sets of vari-
able series. The Pearson correlation coefficient ρAB between
the data setA = {a1, a2,…, an} and data setB = {b1, b2,…, bn}
can be expressed as

ρAB ¼ ∑n
i¼1 ai−�að Þ bi−�b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ai−�að Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 bi−�b

� �2q ; ð9Þ

where �a and �b represent the mean values of data setsA and B.
The range of the correlation coefficient value is between −1
and 1. The two data sets have a total positive linear correlation
if the correlation coefficient value is 1, representing the two
data sets have a completely coincidental trend. While the

Int J Adv Manuf Technol (2019) 102:305–314 307



correlation coefficient value is − 1, the two data sets have a
total negative linear correlation that represents the two data
sets have a totally opposite trend. The correlation coefficient
value of zeros means that the two data sets have no linear
correlation.

2.5 Artificial neural network

The ANN is to imitate the learning mechanism in the biolog-
ical neural networks of the brain. Since the ANNs are capable
of processing the information flows in linear/nonlinear sys-
tems, they have been utilized in versatile applications, such

as data classification, pattern recognition, and decision con-
trol. The back-propagation neural network (BPNN) [18] is
one of the well-knownANN architectures and has been broad-
ly applied to solve the problems in different fields. Figure 1
shows the typical BPNN architecture that consists of one input
layer of the source nodes, one or more hidden layers of the
computation nodes, and one output layer. According to the
numbers of input and output variables in the system, the num-
bers of nodes in the input and output layers can be decided in
the BPNN architecture. The numbers of hidden layers and
nodes are usually decided depending on the computational
efficiency and accuracy.

On the feed-forward stage, the input variables xi are trans-
mitted from the input nodes to the hidden layers. The input of
the j-th node in the hidden layer netj is formulated as

net j ¼ ∑iwijxi þ b j ð10Þ

where wij and bj represent the weight and bias from the i-th
node of the input layer to the j-th node of the hidden layer,
respectively. The output of the j-th node in the hidden layer is
then calculated as

y j ¼ f net j
� � ð11Þ

where f(•) represents the activation function that is often cho-
sen as the sigmoid function,

f tð Þ ¼ 1

1þ e−αt
ð12Þ

if

jf

kf

jiW
kjW

iy jy

Input Layer Hidden Layer Output Layer

xi

Ok

Fig. 1 Typical BPNN architecture

Fig. 2 a Picture of milling
machine in this experiment. b
Picture of tungsten carbide
milling cutter in this experiment. c
Picture of accelerometer
installation on spindle (1–3) and
vise (4–6)
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The output of the k-th node in the output layer is therefore
formulated as

Ok ¼ f netkð Þ ¼ f ∑ jwjky j þ bk
� �

ð13Þ

The error function E is defined as the square of the differ-
ence between the actual output and the desired output,

E ¼ ∑i di−Oið Þ2 ð14Þ
where di is the i-th desired output. In the training process of the
BPNN, if the error function E is large, the algorithm is exe-
cuted at the back-propagation stage. During the back-
propagation algorithm, the output is fed back to the hidden
layers to adjust the weight values, such that the error function
E is minimized. According to the principle of gradient de-
scent, the weight value at the n + 1 step can be derived as [18]

wjk nþ 1ð Þ ¼ wjk nð Þ þ γ f
0
netkð Þ dk nð Þ−Ok nð Þ½ �y j nð Þ ð15Þ

where γ is the learning rate and f ′(•) represents the first deriv-
ative of f(•). The weight values are updated repetitively until
the error function E converges to an acceptable small value.

3 Experimental verification

3.1 Experimental setup

In order to verify the proposed approach and evaluate the
accuracy of predicting the workpiece surface roughness, the
tungsten carbide milling cutter was utilized to cut the steel
S45C in the experiment. Figure 2a, b shows the pictures of
the tooling machine and the cutter used in this experiment.

The specification of the cutter is shown in Table 1. As shown
in Fig. 2c, the accelerometers (Wilcoxon Research 785A)
were stuck on the spindle and the vise to measure the vibration
acceleration during the milling process. The main objective of
this researchwas to utilize the signal processing techniques for
vibration feature extraction and then demonstrate that the ex-
tracted features are eligible to enhance the accuracy of surface
roughness prediction. Therefore, a simplified experiment set-
up was utilized, including cuboid steel block with straight-line
cutting traces and three different clamping torque setting
values of vise. The cutting parameters, including eight various
values of spindle speed and nine various values of feed rate,
can result in varying levels of the feed per tooth and thereafter
the surface roughness variation of workpiece. Table 2 shows
the different combinations of cutting parameters as well as the
estimated removed volume accumulation (RVA) of the same
cutter. The measured vibration signals were recorded by the
data acquisition device (DAQNI 9234) with the sampling rate
of 10 KHz. The milling sequence and direction on the work-
piece are shown in Fig. 3. It is intuitive that the cutter wear is
one of the factors affecting the surface roughness during the
milling process. In this research, the estimated RVA was uti-
lized to represent the simplified cutter wear feature due to the
limitation of instrumentation and quantification for tool wear
inspection, such as the worn edge estimation through the on-
line microscope. Each new cutter was only used in the milling

Table 1 Specification of
tungsten carbide milling
cutter

Diameter of cutter blade 10 mm

Length of blade 30 mm

Total length of cutter 75 mm

Diameter of cutter Hilter 10 mm

Number of blade 4

Helix angle 35°

Table 2 Cutting parameters and
estimated removed volume
accumulation

Cutting parameter Setup value

Spindle speed (rpm) 900, 1000, 1800, 1900, 2000, 2100, 2700, 3000

Feed rate (mm/min) 228, 240, 252, 320, 400, 420, 532, 560, 588

Feed per tooth (mm/tooth) 0.02–0.09 (total 10 levels)

Cutting depth (mm) 0.5, 0.6, 0.7, 0.8, 0.9, 1

Clamping torque of vise (N-m) 18, 30, 75

Removed volume accumulation (RVA) per cutter (mm3) Estimated value: 0–74.8

Fig. 3 Milling sequence and direction

Int J Adv Manuf Technol (2019) 102:305–314 309



process of one block of workpiece (a total of nine cutting
traces) in this experiment, and thus the estimated RVA was
used to simply represent the factor of cutter wear. Once the
milling process was finished for one block of workpiece ac-
cording to the different setup combinations of cutting param-
eters, the surface roughness of workpiece was measured in
terms of roughness average (Ra) by the instrument (Mitutoyo

SV-C3200S4) which is capable of measuring the surface pro-
file of workpiece within the range of 100 mm in X-axis and
8/80/800 μm in Y-axis with the corresponding resolution of
0.0001/0.001/0.01 μm. All the vibration measurements and
the corresponding combinations of cutting parameters as well
as the Ra values that were utilized in this research article are
available at the website (http://web.nchu.edu.tw/~tianyauwu/
data/ra_s45c/ra_s45c.htm). The same techniques and
processes can be employed for the practical applications in
manufacturing engineering.

3.2 Vibration signal feature extraction

The steps of the vibration signal processing and analysis are
divided into two parts. One part contains the signal feature
extraction process in time domain, and the other part includes
the FFT based spectrum analysis and feature extraction in
frequency domain. The flowchart of vibration signal process-
ing and analysis is shown in Fig. 4. The signals that were used
for feature extraction consist of the vibration measurements in
X, Y, and Z directions of the spindle, the vibration measure-
ments in X, Y, and Z directions of the vise, and the relative
vibration signals between the spindle and the vise in the three
directions.

The first step of pre-processing the vibration signals was to
capture the signal segment of 4 s within the stable cutting

Vibration acceleration measurement
(1) Spindle X, Y and Z axes;

(2) Vise X, Y and Z axes;

(3) Relative vibration between spindle and vise

Capture of signal segment within stable cutting 

(4 seconds)

Signal de-trend process

Features in time-domain
(1) RMS; (2) MSE; (3) Kurtosis; (4) Skewness;

Features in frequency-domain
(1) Features unrelated to rotating speed: FFT spectrum

(2) Features related to rotating speed: Order spectrum

Feature selection:
Pearson correlation analysis Cutting parameter:

(1) Feed per tooth;

(2) Cutting depth;

(3) Vise clamping torque;

(4) Removed volume 

Accumulation per cutter;

Ra prediction system:
BP ANN

Vibration signal Signal envelope

Fig. 4 Procedure of signal analysis and feature extraction

Fig. 5 Coherence between the Ra
and cutting depth, spindle speed,
feed rate, and RVA

Table 3 Pearson correlation coefficients between Ra and RMS

Signal category X-axis Y-axis Z-axis

Spindle Envelope 0.43 0.52 0.58

Vibration 0.43 0.48 0.58

Vise Envelope 0.13 0.12 0.22

Vibration 0.10 0.12 0.16

Relative vibration
between spindle
and vise

Envelope 0.08 0.09 0.25

Vibration 0.01 0.08 0.23
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process. The signal segments were then separated through the
EMD method for the de-trend and filtering processes at the
second step. Sequentially, the feature extraction was
employed for the signal itself and its corresponding envelope.

In the time-domain feature extraction, the MSE, root-
mean-square (RMS), kurtosis, and skewness of the vibration
signals and their envelope were calculated as the features.

In the part of frequency-domain feature extraction, the
frequency-domain features consisted of the rotation speed–
related features as well as the rotation speed–unrelated fea-
tures. The spectral distributions of the vibration signals and
their envelope were computed in frequency domain through
the FFT-based spectrum analysis. The spectral magnitude
within 5000 Hz was extracted as the rotating speed–
unrelated features, which consisted of the characteristics of
the structural natural vibration, noises, and disturbances. In

additional, since some of the frequency-domain features are
variating with the rotating speed of the spindle, the FFT-based
spectra were normalized by the rotating frequency to obtain
the order distributions. Therefore, the rotation speed–related
features were extracted from the order distributions.

3.3 Correlation analysis of feature

Figure 5 shows the coherence between the Ra values of work-
piece and different cutting parameters to first demonstrate the
Ra variation with respect to the cutting depth, spindle speed,
feed rate, and RVA. It can be observed that the coherence
between the Ra values of workpiece and different cutting pa-
rameters is not apparent since the highest correlation coeffi-
cient of 0.59 was computed among the different cutting pa-
rameters. It is inferred that the surface roughness cannot be
predicted accurately only by utilizing the cutting parameters;
therefore, the features of vibration signals can be used to en-
hance the prediction accuracy of workpiece surface
roughness.

Once the Ra values of the workpiece surfaces were mea-
sured and all the vibration signal features were extracted in the
time domain as well as the frequency domain, the correlation
analysis was applied for selecting the specific features of high
priority. Tables 3, 4, and 5 show the Pearson correlation coef-
ficients between the Ra values and the RMS, kurtosis, and
skewness features of vibration signals and their envelope sig-
nals on the three axes. As shown in these tables, it can be
inferred that the correlation between RMS features and Ra

values are much higher than those of kurtosis and skewness.
Additionally, it is also noted in Table 3 that the correlation
coefficients of Z-axis are higher than those of X and Y axes.
It is quite reasonable since the Ra values represent the factor of
surface profile on Z direction. Among them, on the other hand,
the correlation coefficients of envelope signals are higher than
those of vibration signals.

Similarly, the correlation coefficients between Ra values
and MSE features within the first 20 scales were calculated
to evaluate the correlation between the surface roughness of
workpiece and the vibration signal complexity in different
scales. The results of higher absolute values of Pearson

Table 4 Pearson correlation coefficients between Ra and kurtosis

Signal category X-axis Y-axis Z-axis

Spindle Envelope 0.02 − 0.23 0.06

Vibration − 0.26 − 0.01 − 0.27
Vise Envelope 0.03 0.03 0.13

Vibration 0.05 − 0.08 − 0.01
Relative vibration

between spindle
and vise

Envelope 0.05 0.09 0.08

Vibration 0.17 0.14 0.15

Table 5 Pearson correlation coefficients between Ra and skewness

Signal category X-axis Y-axis Z-axis

Spindle Envelope − 0.20 − 0.04 − 0.13
Vibration − 0.08 − 0.17 − 0.13

Vise Envelope − 0.01 − 0.21 0.11

Vibration − 0.28 − 0.21 − 0.14
Relative vibration

between spindle
and vise

Envelope 0.09 0.17 0.19

Vibration 0.17 0.07 0.11

Table 6 Scales of MSE features with high correlation between Ra and MSE (Pearson correlation coefficient ≥ 0.4 or ≤ −0.4)

Spindle
Y-axis

Envelope Scale 1 2
Correlation coefficient − 0.44 − 0.43

Spindle
Z-axis

Envelope Scale 1 2

Correlation coefficient − 0.46 − 0.44
Relative vibration
Y-axis

Envelope Scale 3 4 5 6
Correlation coefficient − 0.44 − 0.44 − 0.41 − 0.41

Relative vibration
Z-axis

Envelope Scale 3 4 5 6 7 8

Correlation coefficient − 0.43 − 0.42 − 0.42 − 0.42 − 0.41 − 0.40
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correlation coefficients are shown in Table 6. It is observed
that the MSE values in certain scales have obvious negative
correlation with the surface roughness of workpiece. Overall
speaking, the envelope signals have more high-correlated fea-
tures with the Ra values than the vibration signals in the time
domain.

The correlation analysis was also employed for all the ex-
tracted frequency-domain features. Tables 7 and 8 show the
order and frequency features in which the Pearson correlation
coefficients between the Ra values and the frequency-domain
features are higher than 0.5. As noted in the two tables, the
vibration signals have higher correlation with the surface
roughness of workpiece than those of their envelope. It is also
observed similarly that the correlation coefficients on Z-axis
are higher than those on X and Y axes. Overall speaking, the
vibration signals have more high-correlated features with the
Ra values than their corresponding envelope signals in fre-
quency domain.

3.4 Prediction result of artificial neural network

In order to demonstrate the Ra prediction performance of
the proposed approach, the ANN was employed to train
the prediction model. In this research, different classes of
features were selected to evaluate the prediction accuracy
for comparison purpose. The features of the first class in
the input layer of ANN include the cutting parameters,
which are feed per tooth, cutting depth, clamping torque
of vise, and the RVA per cutter. The features extracted
from the vibration signals were selected in the second
class if their correlation coefficients to Ra values have
absolute values higher than 0.4. The third class consists
of the features of the cutting parameters as well as the
selected features of the second class. In the Ra prediction
process of ANN model, half the features were randomly
selected for model training, and the remaining half fea-
tures were utilized to verify the Ra prediction results. The

Table 7 Order features with high
correlation between Ra and
magnitude (Pearson correlation
coefficient ≥ 0.5 or ≤ −0.5)

Spindle

X-axis

Vibration signal Order 17 34 38
Correlation coefficient 0.51 0.51 0.50

Spindle

Y-axis

Vibration signal Order 13 17 26 34

Correlation coefficient 0.51 0.52 0.51 0.52

Spindle

Z-axis

Vibration signal Order 13 17 34 38

Correlation coefficient 0.50 0.53 0.52 0.51

Envelope Order 34
Correlation coefficient 0.51

Relative vibration

X-axis

Vibration signal Order 17 34 38
Correlation coefficient 0.50 0.50 0.50

Relative vibration

Y-axis

Vibration signal Order 13 17 34 38

Correlation coefficient 0.52 0.53 0.51 0.50

Envelope Order 34
Correlation coefficient 0.50

Relative vibration

Z-axis

Vibration signal Order 13 17 34 38

Correlation coefficient 0.51 0.54 0.51 0.52

Envelope Order 34 38
Correlation coefficient 0.53 0.50

Table 8 Frequency features with
high correlation between Ra and
magnitude (Pearson correlation
coefficient ≥ 0.5 or ≤ −0.5)

Spindle

X-axis

Vibration
signal

Frequency (Hz) 580.8
Correlation

coefficient
0.50

Spindle

Y-axis

Vibration
signal

Frequency (Hz) 580.8

Correlation
coefficient

0.53

Spindle

Z-axis

Vibration
signal

Frequency (Hz) 580.8 1012 3755 3853 3984

Correlation
coefficient

0.51 0.51 0.51 0.52 0.50

Relative
vibration

Y-axis

Vibration
signal

Frequency (Hz) 3853 3984
Correlation

coefficient
0.50 0.50

Relative
vibration

Z-axis

Vibration
signal

Frequency (Hz) 580.8
Correlation

coefficient
0.50
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performance of the Ra prediction was assessed by the
mean absolute percentage error (MAPE), that is

MAPE ¼ 1

n
∑n

i¼1

yi−xi
yi

����
����; ð16Þ

where yi represents the actual measured Ra value, xi rep-
resents the predicted value, and n is the total number of
experimental cases. The previous study of Lewis [19] in-
dicated that the different MAPE values reveal the different
levels of prediction performance which can be organized
in Table 9.

Figure 6 shows the Ra prediction result of using the cutting
parameters (the first class) as the input layer of back-
propagation ANN (BP ANN) model. Although this figure
shows that the MAPE in this experiment is 29% representing
a reasonable prediction result, it still exists an amount of error
that is unsatisfactory for the industrial applications. Therefore,
it is intuitively inferred that the surface roughness of the work-
piece is affected not only by the cutting parameters, but also
by another factors, such as the oscillating phenomena induced
from the tooling environment.

In the second experiment, the features of vibration signals
were selected as the input layer of BPANN model according
to the Pearson correlation analysis as shown in Tables 3, 4, 5,
6, 7, and 8. The Ra prediction result of using the features of this
class is shown in Fig. 7. The MAPE of 25% presents that the
prediction result is reasonable. It also demonstrates that the
prediction accuracy can be improved through using the vibra-
tion signal features in the time domain as well as the frequency
domain.

By combining the features of the first and the second clas-
ses, the Ra prediction result of using the features of the third
class as the input layer of BPANN model is shown in Fig. 8.

With the input features of the third class, the MAPE is im-
proved to 18% representing an accurate prediction. Therefore,
it is inferred that the Ra prediction performance can be en-
hanced by utilizing the cutting parameters and the vibration
signals features. Namely, the surface roughness of the work-
piece during the milling process is governed by the tooling
setup conditions and the tooling environmental influence,
such as the vibration manners. Therefore, an accurate predic-
tion of workpiece surface roughness can be achieved by ana-
lyzing the information of machine vibration as well as the
cutting parameters.

4 Conclusion

For the purpose of predicting the surface roughness of S45C
steel in milling process, the features were extracted from the
measured vibration signals and their corresponding envelopes
in time domain as well as frequency domain. Through the
Pearson correlation analysis, the certain features were selected
according to the correlation coefficient values. The correlation
analysis results show that more features on Z-axis have high
correlation with the Ra values than those on the other two axes.
Furthermore, the vibration signals have more highly correlat-
ed features with the Ra values than their corresponding enve-
lope signals in the frequency domain while the corresponding
envelopes have more highly correlated features with the Ra

values than the vibration signals in the time domain. The re-
sults of surface roughness prediction demonstrate that the

Fig. 6 Ra prediction result by using features of the first class

Table 9 MAPE value
vs. levels of prediction
performance

MAPE Prediction performance

< 10% Highly accurate

10%–20% Accurate

20%–50% Reasonable

> 50% Not accurate

Fig. 7 Ra prediction result by using features of the second class

Fig. 8 Ra prediction result by using features of the third class
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accuracy of Ra prediction can be enhanced through combining
the selected vibration signal features and the cutting parame-
ters as the input layer of the BP ANN model. The online
measurement of cutter wear is expected to be fulfilled in the
further studies so that the cutter wear can be accurately quan-
tified instead of the estimated RVA.
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