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Abstract
An integral part of modern manufacturing process management is to acquire useful information from machining processes to
monitor machine and tool condition. Various models have been introduced to detect, classify, and predict tool wear, as a key
parameter of the machining process. In more recent developments, sensor-based approaches have been attempted to infer the tool
wear condition from real-time processing of the measurement data. Experiments show that the physics-based prediction models
can include large uncertainties. Likewise, the measurement-based (or sensor-based) inference techniques are affected by sensor
noise and measurement model uncertainties. To manage uncertainties and noise of bothmethods, a hybrid framework is proposed
to fuse together the results of the prediction model and the measurement-based inference data in a stepwise manner. The fusion
framework is an extension to the regularized particle filtering technique, used to facilitate updating the state prediction with a
numerical inference model, when measurement models alone are not satisfactory. The results show significant improvement in
tool wear state estimation, reducing the prediction errors by almost half, compared to the prediction model and sensor-based
monitoring method used independently.
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Nomenclature
A, B, C Prediction model parameters
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
D Dimension of state vector
d Cutting depth
e Measurement noise
F State function.
f Probability density function
fr Feed rate

G Feature model
g(.) Importance density
Hy Measurement model
h Kernel bandwidth
K(.) Kernel density
k Time-step
M Feature mapping
m Number of particles
NRMSE Normalized root mean squared error
PF Particle filter
RPF Regularized particle filter
t Time
tc Cutting time
U Input history
u Input condition
v Cutting speed
x Tool wear state
y Measurement signal
Z Feature history
z Feature vector
α Time step ratio
Δ Signal processing time window
Δt Length of time-step
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δ(.) Dirac delta function
ε Feature model error
θ Momentary time variable
τ Process noise
Ω Particle weight
ω Normalized particle weight

1 Introduction

Metal cutting is a common manufacturing process in industry.
It removes excess material from the surface of a workpiece
using various kinds of cutting tools in order to bring the work-
piece into a specified geometry [1]. However, the unavoidable
development of cutting tool wear, especially flank wear, ad-
versely affects the accuracy and surface finish of machined
products. Therefore, the development of a robust and reliable
online tool condition monitoring system for the prediction of
tool wear is crucial in industrial applications. It can facilitate
the timely decision for tool change, and yield higher produc-
tivity and significant cost savings for manufacturers.

In the literature, a significant amount of research work has
been performed dealing with cutting tool wear prediction.
Various methods and models have been proposed which can
be classified into two categories: physics-based approaches
(prediction models) and sensor-based approaches (measure-
ment-based inference models). The former identifies the deg-
radation function of the tool wear though physics-based laws
or semi-empirical expressions from which the tool wear is
predicted. The latter, on the other hand, use specific optical
sensors to directly measure the tool wear, or use multiple types
of general sensors to indirectly infer the tool wear based on
data-driven models trained using sufficient historical data.

The physics-based approaches, which rely on the math-
ematical description of the physics of cutting, assumes
certain wear mechanisms (abrasion, adhesion, and diffu-
sion) as being responsible. Thus, many researchers have
sought to explore the physical process of wear. Different
researchers have proposed different tool wear models an-
alytically or empirically, which were summarized by Yen
et al. [2] and Palmai [3]. However, it is well accepted that
the cutting tool wear originates mainly from two wear
mechanisms: mechanically activated processes (abrasion,
adhesion) and thermally activated processes (diffusion)
[2–7]. They are generally present in combination [8].
The former is dominant at lower cutting speeds, i.e., low-
er cutting temperatures, and is mainly dependent on the
cutting length and time, lubrication conditions, contact
loads between the tool and workpiece, and the tool-work
material combination. The latter becomes influential as
the cutting temperature increases [2, 3]. However, due to
the inherent complexity and highly nonlinear nature of
machining processes, there is no general agreement in

the literature as to an appropriate analytical model for
the tool wear process [3, 9].

On the other hand, instead of struggling on deriving accu-
rate analytical tool wear models, many researchers have tried
to determine empirical or semi-empirical functions to fit the
relationship between the tool wear with several key cutting
parameters based on practical experience and measurements
[3]. Taylor tool life and its extended versions are well-known
semi-empirical functions employed in machining applications
which describe the relationship between tool life with cutting
parameters like cutting speed and feed rate [2, 10]. Various
purely empirical expressions were also reported in the litera-
ture, which directly describe the amount of tool wear as a
function of the cutting time based on experience of the wear-
time curve [11–13]. It was reported by Palmai that the wear-
time formula developed by Sipos in [13] was the best match in
modeling the measurement results [3].

The sensor-based approaches provide alternative ways to
estimate the cutting tool wear. They can be divided up into
direct and indirect methods [14]. The former directlymeasures
the amount of tool flank wear using optical sensors, i.e., mi-
croscopes or computer vision systems, or micro-isotope sen-
sors. These methods can provide accurate tool wear estimates;
however, they are inherently offline, meaning that they cannot
be used while cutting. The latter estimates the tool wear state
from various process parameters which are indirectly correlat-
ed with tool wear, e.g., cutting force, acoustic emission, vibra-
tion, and motor current. Obviously, these methods can be used
for real-time tool wear determination, and consequently, they
have considerable potential to be used in automated machin-
ing systems. Therefore, sensor-based approaches for indirect
tool wear prediction are becoming popular for online tool
wear monitoring. Data-driven models such as support vector
regression [15], artificial neural networks [9, 14], and neuro-
fuzzy inference systems [16–18] are often employed to model
the non-linear dependencies between features extracted from
the sensor signals and cutting conditions. Generally, there are
three main steps with data-driven approaches for cutting tool
wear prediction [14, 19]: (1) use of single or multiple types of
sensor to capture process information, i.e., sensor fusion; (2)
extraction of sensitive features from the sensor information to
reflect the tool condition, i.e., feature extraction; and (3) de-
velopment of reliable and robust decision-making models
using extracted features to predict tool conditions. Recently,
the concept of “intelligent machine tools” has become popu-
lar, which is described as a machine tool with capabilities of
sensing and decision-making to guarantee the optimum ma-
chining process [20]. Since 2006, deep learning has been a
rapidly growing research area, and is adopted by many re-
searchers as a bridge connecting multi-sensor time-series data
and intelligent machine health monitoring [21]. Specifically,
Malhotra et al. proposed a recurrent neural network (long
short-term memory) based encoder-decoder scheme to obtain
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an unsupervised health index from the multi-sensor time-se-
ries data collected from a milling machine [22].

Physics-based approaches suffer from the rarity of accurate
analytical models to describe tool wear processes due to the
inherent complexity of the cutting process and our incomplete
understanding of it. Various forms of empirical formulae have
been introduced to predict the tool wear in the literature but are
still limited in applicability since these prediction models can
include large uncertainties. Although sensor-based data-driv-
en approaches for tool wear prediction have attracted consid-
erable attention in the literature and have been demonstrated to
yield satisfactory prediction accuracy in different machining
applications such as milling, turning, and grinding, data-
driven models require sufficient historical data for training.
Besides, the prediction accuracy of sensor-based methods is
highly affected by the sensor noise and measurement
uncertainties.

The physics-based prediction models are associated with
modeling uncertainty. Similarly, the measurement-based in-
ference models include modeling errors and are affected by
measurement noise. To improve the tool wear estimation re-
sults, hybrid techniques fuse together the results from both
approaches within a sequential data-driven physics-based
model fusion framework (data-model fusing frame work).
Compared to the individual approaches, the fusion framework
is a relatively unexplored methodology in the field of tool
wear prediction. For linear systems with Gaussian noise and
modeling uncertainty, Kalman Filter provides the optimum
results in a closed form [23]; however, for nonlinear non-
Gaussian systems, its application becomes limited. Thanks
to powerful computational resources, simulation-based ap-
proaches such as particle filter (PF) have been successfully
applied on different data-model fusion problems with nonlin-
ear state prediction models and unknown noise structure. For
the tool wear estimation problem, PF has been recently used in
a few research works, mostly by Wang et al. [24–27]. The
shortcoming with the generic PF is that the state prediction
and the measurement models do not take the stochastic inputs
of the system into the modeling structure [28]. Considering
the uncertainties of the measurements on the system inputs,
i.e., the machining condition, in this paper, we have proposed
a generalized PF with the ability to take in the stochastic sys-
tem inputs. The framework is an extension to the regularized
particle filtering (RPF) to facilitate updating the state predic-
tion with a numerical inference model, when lacking measure-
ment models. The results show significant improvement in
tool wear state estimation with prediction errors almost cut
in half, compared to the prediction model and sensor-based
monitoring method.

The rest of the paper is organized as follows. The tool wear
data used in this study are introduced in Section 2. In
Section 3, the inference and prediction models are developed
and explained. Section 4 lays out the extended structure of PF

using inference model to address the stochastic system inputs.
The implementation results and the conclusions are presented
in Sections 5 and 6, respectively.

2 Milling data set

The experiment was done on a milling machine which de-
scribes the tool wear process under various operating condi-
tions [28]. The workpiece material is cast iron. The cutting
speed was constant at 200 m/min (826 rev/min). Two different
depths of cut (1.5 mm and 0.75 mm), and two feed rates
(0.5 mm/rev and 0.25 mm/rev) were investigated. The exper-
imental matrix is 2 × 2. Hence there are four different cutting
conditions, as shown in Table 1. The experiment under each
condition was done a second time with a second set of inserts.
Therefore, there are eight cases with a variable number of runs
per tool life. The number of runs was dependent on the degree
of flank wear that was measured between runs at irregular
intervals up to a set wear limit. There is a total of 108 data
samples (Table 1).

A current sensor was used to acquire the spindle motor
current of the milling machine for each run in the experiment.
The tool flank wear VB was measured offline using a micro-
scope between runs as a generally accepted parameter for
evaluating tool wear [18, 29]. Since the data were collected
from a real milling machine instead of simulation models or
experimental platforms, the cutting tool wear processes
reflected in this dataset are realistic. It provides important
information for researchers to study the relationship between
health states and measurements [22, 30, 31].

2.1 Tool wear measurement

Figure 1 shows the variations in the amount of tool flank wear
over machining time for the four cutting conditions and two
sets of inserts arranged sequentially, which has a total of eight
segments. It can be noticed from that the amount of tool flank
wear generally increases monotonically over the machining
time, which is expected. However, at some instances, there
are obvious irregularities in the tool wear measurements as
shown by the red circles in the figure, which can be attributed

Table 1 Milling dataset [29]

Cutting condition Depth of cut
(d, mm)

Feed
(fr, mm/rev)

Number of runs

1st insert 2nd insert

#1 1.5 0.5 17 9

#2 1.5 0.25 7 10

#3 0.75 0.5 14 14

#4 0.75 0.25 14 23
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to the measurement uncertainty. It can also be noticed that as
the machining burden, i.e., the depth of cut or the feed rate
decreases, the machining time of the tool generally tends to be
longer, meaning that the tool wears out more slowly.

2.2 Spindle motor current and feature extraction

It has been reported by several researchers that the cutting
force is the most sensitive parameter to tool condition [19,
32, 33]. It normally increases with wear of tool. However,
force-based instrumentation and measurements are costly
and comparatively difficult to set up when minimum interfer-
ence to the cutting process is desired. The power-based mea-
surements are therefore typically used in practice as a cost-
effective online monitoring solution [32]. This is expected as
the spindle motor current is well correlated with the cutting
force, and consequently, it is sensitive to the tool wear.

In this study, we select 10 common signal features from the
spindle motor current as listed in Table 2. They include four
time-domain dimensional statistical features (peak to peak,
root mean square, standard deviation, peak); two time-
domain dimensionless features (kurtosis, crest factor); two
frequency-domain features (amplitude of the first harmonic,
average of the first six harmonic amplitudes); and two statis-
tical features based on the β-distribution (skewness and kur-
tosis based on the β-distribution). The first eight are classic
features typically used in the condition monitoring of mechan-
ical systems. The last two were first introduced by
Whitehouse [34], and they were utilized for tool wear moni-
toring by Kannatey and Dornfeld [35]. Figure 2 shows varia-
tions of the 10 features extracted from the spindle current with

machining time, corresponding to the tool wear measurements
as shown in Fig. 1.

3 Inference and prediction models

There are two approaches for estimating tool wear. Within the
first approach, the objective is to predict the future magnitudes
of tool wear based on the operating condition and the cutting
time. The second approach attempts to infer the tool wear
magnitude using the features extracted from the real-time
measurement signals from the system.

3.1 Physics-based tool wear prediction

Various analytical models have been suggested for predicting
tool wear and wear rate prediction, as surveyed in Section 1. It
is known that the abrasive/adhesive effects influence the ther-
mally activated wear process, and at the same time, the wear
of the flank leads to a temperature rise on the tool. This phe-
nomenon is a positive feedback process leading to instability
of the tool wear state until the end of tool life. In this work, we
use the empirical wear-time model proposed by Sipos [13]. At
a given cutting speed, feed rate, and cutting depth, the model
predicts the tool wear as a function of time.

x tcð Þ ¼ tcexp Aþ Btc þ Ctc2
� �

; ð1Þ

where x is the flank wear depth, tc is the cutting time, and A, B,
and C are the model parameters.

With the available measurement data, we train the model
on the corresponding machining condition and use the trained
model to predict the tool wear for an independent part of data
with the same machining condition. Figure 3 shows the train-
ing and testing data for two different cutting conditions, i.e.,
cutting conditions #1 and #4 as shown in Table 1. Figure 3a, b
correspond to the cutting depth of 1.5 mm and the feed rate of
0.5 mm/rev, whereas Fig. 3c, d correspond to the cutting depth
of 0.75mm and the feed rate of 0.25mm/rev. The Sipos model
was trained on one part and tested on the other part recipro-
cally. Take Fig. 3a as an instance, the measurement data from
the second insert (i.e., training window shown in Fig. 3a) were
used to train the Sipos model, and the predictions were made

Fig. 1 Tool wear measurement data

Table 2 Features extracted from
spindle motor current Index Feature Index Feature

1 Peak to peak (pp) 6 Crest factor (cf)

2 Root mean square (rms) 7 Amplitude of first harmonic (pks1)

3 Standard deviation (std) 8 Average of the first six harmonics (pksa)

4 Peak (max) 9 Skewness based on β-distribution (skwβ)

5 Kurtosis (kur) 10 Kurtosis based on β-distribution (kurβ)
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on the tool wear of the first insert (i.e., modeling window
shown in Fig. 3a). The same model fitting process was repeat-
ed for all eight data segments and the time-based wear predic-
tion models are acquired. It can be found that Sipos model fits
well on the training data; however, the prediction results on
the test data include certain errors, especially for the tool wear
predictions in the end-stage.

3.2 Measurement-based tool wear inference

Tool wear alters the cutting condition and leads to variation of
the cutting force and the vibrational signatures. The causality
relation between the wear, as a fault of the component and
resulting signatures in the extracted signal features is depicted
in Fig. 4. With limitation of access to direct measurement
during the cutting process, we attempt to infer the magnitude
of the wear using the signal features, i.e., the measurable
symptoms of the fault. The so-called inference process is

shown in Fig. 4, starting from the fault symptoms, and ending
to the estimated fault magnitude.

Considering the dimensionality of the selected features and
their nonlinear behavior with cutting time, a trainable numer-
ical model can be a good candidate for the instantaneous in-
ference modeling. For this mapping problem, the adaptive
neuro-fuzzy inference system (ANFIS) structure [36] is
employed for two reasons: we can balance between the degree
of function fitting and the expected generalization accuracy by
choosing an appropriate number of membership functions,
and the high repeatability of the ANFIS model over repeated
training trials, unlike artificial neural networks (ANN).

The selected features in Section 2.2 are the inputs and the
estimated tool wear at the same time is as the output of the
model. Figure 5 shows the structure of the ANFIS model,
based on the following procedure:

– In the input layer, the machining condition vector in-
cludes the feed rate, the depth of cut, and the cutting

Fig. 3 Tool wear prediction
model fitting a, b with 1.5-mm
cutting depth and 0.5 mm/rev feed
rate and c, d with 0.75-mm
cutting depth and 0.25 mm/rev
feed rate (note: measurements in
the training window were used to
train the Sipos model, whereas
predictions were made on the tool
wear in the modeling window
using the trained model)

Fig. 2 Measurement signal
features
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speed: u = (fr, d, v). The measurement feature vector is
z = (pp, rms, std, max , pks1, pksa, skw, kur), as per the
selected features in Section 2.2.

– For the fuzzy inference process, a first-order Sugeno
model is employed in the structure.

– In the second layer, generalized bell-shaped membership
functions are used and two membership functions have
been considered for each variable, as the design parame-
ter of the model.

– Linear fuzzy rules are used in the third layer for the pos-
sible combination of the membership functions.

– The weights of the rules are generated in layer four, as the
results of multiplication of membership function outputs.

– Summation of the fuzzy rule outputs, weighted with the
corresponding weights in layer four, yield the inference
result on the tool wear in layer five.

The training data are introduced to the model in the training
process so that the internal parameters of the model, i.e., the
membership functions and the fuzzy rules parameters, are set
up. The model can then be used for the tool wear estimation,
upon feeding the inputs.

With the available tool wear data and the corresponding
signal features, the ANFISmodel is trained on seven tool wear
data segments and tested on the remaining one segment.
Figure 6 shows three cases of training and testing of the mod-
el. Take Fig. 6a as an instance, the measurements except the
second segment (as shown in Fig. 1) are used to train the
ANFIS model, and the tool wear prediction based on the
trained model is tested on the second segment. It can be found

that the ANFIS model fits well on the training data; however,
the inference results on test data include larger errors as espe-
cially shown in Fig. 6c.

4 Fusion framework development

Tool wear estimation based on the instantaneous measure-
ments of the sensors includes errors due to the measurement
noise and the inference model uncertainty. Similarly, the
physics-based tool wear rate prediction results may contain
errors due to model uncertainty and the stochastic nature of
the machining condition. Based on the two available sources
for tool wear prediction, the results of either approach can be
fused together within a sequential recursive algorithm.

4.1 State estimation with data-model fusion

During the cutting process, from the dynamic system point of
view, the combination of the work-piece and the machine-tool
can be considered as the system in this study, where the tool
wear level is the hidden state vector x of the system. The
machining condition, including the cutting speed and depth
and the feed rate, forms the variable input vector u of the
system. The sensor(s) signal(s) is the system output measure-
ment vector y and it can be estimated as:

y tð Þ ¼ Hy x tð Þ; u tð Þð Þ þ e ð2Þ

where,Hy is the measurement model of the system and e is the
measurement noise, including the measurement noise and
modeling uncertainty.

Feature extraction is a mapping process from the measure-
ment space to the feature space. Feature vector z can be ex-
tracted through post-processing the measurement signal over
the immediate elemental time window [Δ].

Fig. 5 ANFIS model to estimate
the tool wear, given the
machining condition and the
extracted features from the
measurements

Fig. 4 Tool wear phenomenon leading to observable symptoms
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z tð Þ ¼ M y θð Þjtθ¼t−Δ
� �

: ð3Þ

From Eqs. 1 and 2, the feature model G is defined as:

z tð Þ ¼ G x tð Þ; u tð Þð Þ þ ε: ð4Þ
where ε is the feature model error resulting from the measure-
ment error. For a given material and machine-tool setup, the
rate of tool wear depends on the machining condition u, as
explained in Section 3.2.

x˙ tð Þ ¼ F x tð Þ; u tð Þð Þ þ τ : ð5Þ

Tool wear can be assumed as a first-order Markov process,
where the rate of wear depends on the current state of the wear
and the machining condition. The state space model at a time
step k is therefore:

zk ¼ G xk ; ukð Þ þ εk ; ð6Þ

xk ¼ F xk−1; ukð Þ þ τ k : ð7Þ

In Section 3.1, it was explained that the tool wear can be
inferred from the instantaneous measurements of the system.
The inverse of the feature model represents the inference mod-
el.

xk ¼ G−1 uk ; zkð Þ þ ε0k ; ð8Þ

We assume the past measurements on the machining setup
condition Uk ≜ {u1, u2,…, uk} and the output features Zk
≜ {z1, z2,…, zk} are available from the records. At the same
time, the initial tool wear condition and the current machining
condition have known distributions as fx(x0) and fu(uk), respec-
tively. From Bayes’ theorem, the current tool wear level xk,
given the updated records of the measurementsUk and Zk, can
be calculated as:

f x xk jUk ; Zkð Þ ¼ f u;z uk ; zk jxkð Þ f x xk jUk−1; Zk−1ð Þ
f u;z uk ; zk jUk−1; Zk−1ð Þ : ð9Þ

where,

f u;z uk ; zk jxkð Þ

¼ f z zk jxk ; ukð Þ
f x xkð Þ ∫ f x xk jxk−1; ukð Þ f x xk−1ð Þdxk−1; ð10Þ

f x xk jUk−1; Zk−1ð Þ
¼ ∫ f x xk jxk−1ð Þ f x xk−1jUk−1; Zk−1ð Þ dxk−1; ð11Þ

f u;z uk ; zk jUk−1; Zk−1ð Þ
¼ ∫ f u;z uk ; zk jxkð Þ f x xk jUk−1; Zk−1ð Þdxk : ð12Þ

As a property of the first order Markov process, the current
tool wear level only depends on the state in the previous step
and the current system input, as given in Eq. 7. The previous
state xk − 1 is independent from the current input uk. Therefore,
the probability and the marginal probability of fx(xk) and fx(xk|
xk − 1) in Eqs. 10 and 11 can be found as:

f x xkð Þ ¼ ∫∫ f x xk jxk−1; ukð Þ f x xk−1ð Þ f u ukð Þ dxk−1 duk ð13Þ
and

f x xk jxk−1ð Þ ¼ ∫ f x xk jxk−1; ukð Þ f u ukð Þ duk : ð14Þ

Starting from the first step, upon receiving the new mea-
surements, the posterior probability density can be found se-
quentially for the corresponding time steps by Eqs. 9–14.
Figure 7 shows the process of data-model fusion for stepwise
tool-wear prediction as laid out above.

For linear state space models with Gaussian noise, the op-
timal solution for the state probability can be found in closed
form by Kalman Filter [23]. For nonlinear non-Gaussian sys-
tems, the particle filter (PF) provides a computational platform
for state estimation. In generic PF, the state space model lacks
the effects of system input. In other words, the state evolution
model in Eq. 7 shall not include uk as an input to themodel and
consequently, with generic PF, the state evolution model
should either be downgraded to an autonomous model with
no independent input, or the independent input (uk) should be
treated as a deterministic variable [37]. In a previous work, the
authors have extended PF framework to the general class of

Fig. 6 Tool wear inference with ANFIS model, testing on the a second
segment, b fifth segment, and c eighth segment as shown in Fig. 1, and
training on the remaining segments
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non-autonomous dynamic systems in order to address the ef-
fects of stochastic inputs [37, 38]. Due to the effect of the
machining condition on the tool-wear process, the system in-
put cannot be ignored in the state evolution model, and the
above-mentioned extended PF framework for non-
autonomous dynamic system is adopted in this work.

4.2 PF on systems with stochastic input

In PF technique, the probability density functions are con-
structed discretely with weighted state representatives, known
as particles. The posterior density in Eq. 9 is therefore present-
ed as:

f x xk jUk ; Zkð Þ≈∑m
i¼1ω

i
kδ xk−xik
� �

; ð15Þ

where x1k ;…; xmk and ω1
k ;…;ωm

k are the particles and their
corresponding weights, respectively. For a continuous repre-
sentation of the posterior density for a D-dimensional state,
the rescaled kernel function Kh(x) = h−DK(x/h) can be used,
where h > 0 is the bandwidth [39].

f x xk jUk ; Zkð Þ≈∑m
i¼1ω

i
kKh xk−xik

� �
: ð16Þ

Continuous representation of the density functions for
updating the particle weights leads to a revised type of PF,
known as regularized particle filter (RPF) [40].

To construct the posterior density, the particles xik are prop-
agated from the previous time step using the state prediction
model in Eq. 7, and the corresponding weights are updated
upon the new measurements on uk and zk. From Bayes’ theo-
rem, the weights can be updated as:

ωi
k∝ω

i
k−1 f u;z uk ; zk jxik

� �
f x xik jxik−1
� �

=gx xik jxik−1; uk ; zk
� �

: ð17Þ

gx xik jxik−1; uk ; zk
� �

is the importance density and it is cho-

sen as a design decision of the filter. In generic PFs, f x
xik jxik−1
� �

is taken as the importance density, that leads to:

ωi
k∝ω

i
k−1 f u;z uk ; zk jxik

� �
: ð18Þ

The likelihood density function fu, z needs to be found over
the multi-dimensional space of the system input and output
measurements. This is computationally too expensive, even if
the joint distributions of all measurements are available. With
the objective of deriving a solution with a lower dimensional-
ity for the likelihood density function, the importance density
function is suggested as
gx xik jxik−1; uk ; zk
� � ¼ f x xik jxik−1

� �
= f x xik

� �
. The weight update

Eq. 17 is then:

ωi
k∝ω

i
k−1 f u;z uk ; zk jxik

� �
f x xik
� �

: ð19Þ

Using Bayes’ theorem, for a given particle at time step k,
the weight is therefore found as:

ωi
k∝ω

i
k−1 f x xik juk ; zk

� �
: ð20Þ

Equation 20 enables updating the particle weights upon
receiving new measurements on the inputs and outputs of
the system, using the marginal probability of the particles. In
this research, the state probability density is a one-dimensional
function for the tool-wear level. The process of RPF with the
proposed modified particle weight updating technique is pre-
sented in Table 3.

5 Implementation results and analysis

In this section, the developed fusion framework is applied for
tool-wear state estimation, and the results are compared with
those of the inference and the prediction models of Section 3.

For the stepwise state estimation process, the discretized
form of the state prediction model is derived from Eq. 1:

xk ¼ 1þ αkð Þ exp BΔtk þ C
2

αk
þ 1

� �
Δtk2

� �
xk−1; ð21Þ

where Δtk = tk − tk − 1 and αk =Δtk/tk − 1 are the time step and
the time step ratio in the equation. Eq. 21 predicts the state
with multiplication of an updating factor to the previous state.
This function is highly sensitive to the errors, as it accumulates
the error at each step and carries forward. To mitigate

Fig. 7 Data-model fusion
framework for tool-wear
prediction
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accumulation of the error, the prediction model in Eq. 1 is
expanded by the Taylor series and the first term is utilized as
the estimate for the state prediction model. The discretized
result, as shown in Eq. 22, is employed for stepwise state
prediction in the developed framework.

xk ¼ xk−1 1þ 1þ Btk−1 þ 2Ctk−12
� �

αk
� 	

; ð22Þ

The ANFIS model from Section 3.2 uses the features from
the latest measurement to infer the expected state as required
for Eq. 8:

xk ¼ ANFIS uk ; zkð Þ; ð23Þ
where uk = [fr, d]k and zk = [pp, rms, std, max , skw, cf, pks1,
pksa, skwβ, kurβ, ]k are the machining setup and the selected
features at time step k respectively.

The RPF framework is set up as per Table 2 with 500
particles. The framework is then used separately for the eight
tool wear cases. Figure 8 shows the results of the prediction

and the inference models, as well as the trajectories of ran-
domly selected 10 particles for the tool wear test #8 (i.e.,
cutting condition #4 and second insert as shown in Table 1).
The particles at each time step represent the distribution of the
estimated state. The probability density of the state and sample
representing particles for two different times are shown in the
figure. The expected value of the state is calculated and
assigned as the estimated tool wear magnitude for the corre-
sponding time step. The green pointers in the figure show the
estimated values. Figure 9 shows the actual tool wear values
and the results for all eight tool wear tests. The estimated
results of the fusion framework appear to be the closest to
the actual values.

For quantitative comparison of the performance, modeling
errors of the methods are calculated and compared. The errors
are calculated with three measures: the normalized root mean
squared error (RMSE), the normalized mean absolute error
(MAE), and the normalized maximum error. Figure 10 shows
the normalized root mean squared results for the eight seg-
ments. In general, the result shows that the RPF effectively
reduces the modeling error. In the segments #3, #4, #6, and #7,
the measurement-based inference leads to large errors.
Updating the estimation results with the erroneous measure-
ments tends to increase the PRF errors for the corresponding
segments. However, the RPF errors do not tangibly increase
from the errors of the Sipos prediction model.

In segments #1, #2, and #8, the prediction errors are larger
than the errors of the inference model. In segment #8 in par-
ticular, the prediction error significantly increases for the last
four predictions. This leads to 0.97 RMSE, which is unaccept-
ably large for a prediction model. In the same segment, the
RMSE of the measurement-based inference is 0.48. The RPF
manages to reduce the error down to 0.26.

Figure 11 compares the overall performance of the methods
over the eight experiments. The results show that fusion of the
Sipos prediction model and the measurement-based inference
leads to smaller errors than either methods used for the fusion.
This can be observed for all three metrics of the error as shown
in Fig. 11a. A useful metric to compare the modeling perfor-
mance is the coefficient of determination denoted as R2. It is
the proportion of the variance of the dependent variable that is

Fig. 8 Trajectories of randomly selected 10 particles and tool-wear
estimations on the eighth segment with RPF (note: the RPF-estimated
tool wear in the time frame 493–499 min is shown as green pointers. In
addition, the probability density of the state and sample representing
particles for time step 458 and 518 min are also shown in the figure.
The vertical axis has the same scale of the “wear (mm)”, representing
the span of particle estimated values at that time step, whereas the
horizontal axis shows the probability density from 0 to 2 of the particle
estimations. The total area under the probability density plot equals 1)

Table 3 RPF with modified
particle weight updating
technique

xik ;ω
i
k

� �
 �
i¼1:m ¼ RPF xik−1;ω

i
k−1

� �
 �
i¼1:m; uk ; zk

h i

• Draw state prediction error τ ik∼ f τ xk ; ukð Þ
• Propagate priors (Eq. 6) xik ¼ F xik−1; uk

� �þ τ ik
• Infer the expected state (Eq. 7) xk ¼ G−1 uk ; zkð Þ
• Update particle weights Ωi

k ¼ f ε0 xik−xk
� �

• Normalize the weights ωi
k ¼ Ωi

k= ∑
m

i¼1
Ωi

k .

• Regularize posterior density f x xk juk ; zkð Þ≈ ∑
m

i¼1
ωi
kKh xk−xik

� �
.

• Resample xik ;ω
i
k ¼ 1=m

� �
 �
i¼1:m∼ f x xk juk ; zkð Þ
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predictable from the independent variable. The better the per-
formance of a model at predicting the variable of interest, the
more the coefficient of determination approaches to 1.
Figure 11b compares the coefficient of determination for the
three methods. The coefficient of determination for the RPF is
0.886 whereas this coefficient for the prediction and the infer-
ence models are 0.429 and 0.289, respectively.

6 Conclusions

A hybrid data-driven physics-based model fusion framework
was developed and applied for estimation of tool wear in this
work. This model fuses together the prediction results of an
empirical wear-time model (i.e., Sipos model) and a
measurement-based inference model (i.e., ANFIS model) in
a stepwise manner to manage uncertainties and noise of both

methods. The proposed fusion structure is an extension of the
PF technique, to which the stochastic characteristic of the
system input is taken into account. With this approach, the
weights of the particles are updated using the state probability
distribution function, instead of the multi-dimensional mea-
surement likelihood that is not available.

A set of tool wear measurement data and the corresponding
features extracted from the spindle current measurements
were adopted to verify the performance of the developed
framework. The results were compared with the results of
the individual measurement-based inference model and
Sipos tool-wear prediction model. The results show consider-
able improvement in tool wear estimation results using differ-
ent modeling error metrics. On average, the RMSE of the
fusion framework drops to 0.22, whereas it is 0.42 for the
Sipos prediction model and 0.56 for the measurement-based

Fig. 9 Tool wear prediction
results with: measurement-based
inference with ANFIS, Sipos
prediction model, and data-model
fusion with RPF

Fig. 11 Overall modeling performance. a Normalized errors. b
Coefficient of determinationFig. 10 Normalized root mean squared error of modeling
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inference model. Likewise, MAE and the maximum error
metrics show the fusion framework outperforms the individ-
ual models with resulting smaller prediction errors.
Comparison of the performances using the coefficient of de-
termination shows superior results for the fusion framework
with R2 = 0.886, while this metric for the prediction and the
inference models are 0.429 and 0.289, respectively. In future
research, application of the fusion framework will be extended
to tool wear prognostics and estimation of the remaining use-
ful life of the cutting tool.
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