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Abstract
Al-Mg2Si in situ composite is a new metal matrix composite (MMC) with numerous applications in different engineer-
ing fields. MMCs are considered difficult-to-cut materials due to the abrasive nature of the reinforcement (e.g., Mg2Si),
hardness, and built-up edge. Hence, electrical discharge machining (EDM) is one of the alternative ways to machine Al-
Mg2Si. With EDM, it is possible to machine conductive materials with different strength, temperature resistance, and
hardness as well as produce complicated shapes, high-aspect ratio slots, and deep cavities with precise dimensions and
good surface finish. The experiments in this study were designed by response surface methodology (RSM) and ANFIS
was utilized to analyze the nano-powder mixed EDM (NPMEDM) of Al-Mg2Si in situ composite. The study represents
the impacts of NPMEDM parameters on changes in microstructure and material removal rate (MRR). The results
revealed that among all interactions, the current-voltage and current-pulse ON time interactions have the most significant
effect on MRR. Moreover, current has most significant effect, followed by voltage, pulse ON time and duty factor. An
analysis of the Al-Mg2Si microstructure demonstrated that current, pulse ON time, and voltage have remarkable impact
on the microstructure, size of craters, and profile of the machined surface. Moreover, decrease in spark energy leads to
less microstructural change and better surface finish.

Keywords Al-Mg2Simetalmatrix composite (MMC) .Nano-powdermixed electrical dischargemachining (Nano-powdermixed
EDM) .Adaptiveneuro-fuzzy inferencesystem(ANFIS) .Responsesurfacemethodology(RSM) .Material removal rate (MRR) .

Microstructure

1 Introduction

Metal matrix composites (MMCs) are applied widely in di-
verse fields of engineering. They consist of a soft metal matrix
with hard reinforcement materials. The advantages of MMCs
over metals include higher specific strength, stiffness, better
fatigue resistance, superior wear resistance and lower coeffi-
cient of thermal expansion. Al-Mg2Si in situ composite is an
aluminum metal matrix composite (Al-MMC) that has been
receiving increasing attention nowadays owing to its en-
hanced properties that are useful for high-performance appli-
cations. Al-20%Mg2Si in situ composite comprises three im-
portant elements, namely aluminum (Al), magnesium (Mg),
and silicon (Si) in suitable ratios to attain good properties.
Since the Mg2Si phase reinforcement forms itself during mol-
ten metal solidification, the fabricated composite is called “in
situ.” The shape and size of Mg2Si reinforcement particles
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have an important role and influence on the resultant mechan-
ical properties [1, 2].

MMCs are considered difficult-to-cut materials due to
the abrasive nature of the reinforcement (e.g., Al-Mg2Si),
hardness and built-up edge [3, 4]. However, electrical dis-
charge machining (EDM) is one of the alternative ways to
machine Al-Mg2Si because there is no contact between the
workpiece and electrode [5] and it facilitates the fabrica-
tion of high-aspect ratio slots, and deep and complex 3D
cavities [5, 6]. EDM is a high-precision modern machining
process [7] that removes material from the workpiece as
sparks occur between the electrode and workpiece inside
the dielectric [8, 9]. The EDM method has been employed
extensively for machining conductive materials with dif-
ferent strength, hardness, and temperature resistance [5,
10]. It also has the capability to produce complicated
shapes with high accuracy and good surface roughness
[5]. Mohal and Kumar [11] found that mixing multi-
walled carbon nanotubes with dielectric during EDM of
Al-10%SiCp could improve the MRR by 38.22% and sur-
face finish by 46.06% compared to pure dielectric. Singh
et al. [12] reported that adding tungsten powder to dielec-
tric can reduce the tool wear rate (TWR) by up to 51.12%
with EDM of AA6061/10%SiCp composite. In addition,
using dielectric with aluminum powder in the EDM pro-
cess can help enhance the surface roughness and material
removal rate (MRR) [13, 14]. However, despite previous
findings, Hourmand et al. [15] suggested that using nano-
powder with elemental compositions more similar to the
workpiece elemental compositions in the dielectric is the
best choice due to the migration of nano-powder material
to the workpiece.

Copper (Cu) which has precision-drawn sizes is widely
available in the market and this material has good electri-
cal conductivity. In order to produce the smoothest sur-
face using EDM, a metallic electrode material should be
adopted, like copper, which has the surface finish at least
equal to the desired surface finish of workpiece [16].
Electrode with higher melting temperature has better wear
resistance in EDM method. For instance, the wear rate of
copper is lower than brass because of the higher melting
temperature of copper [17]. In the EDM process, the elec-
trode material should be selected based on the workpiece
material in order to achieve better performance during
machining. In previous research works, copper was select-
ed as an electrode for EDM of Al–MMC with 10% SiCp

[18], 15-35 vol% SiCp/Al composites [19], Al/Al2O3

MMC [20], and Al-MMC with 2.5% and 5% TiC

reinforcement [21]. Hence, copper is a suitable electrode
material for EDM of MMCs based on previous research
work.

Sidhu et al. utilized Lexicographic Goal Programming
(LGP) to optimize the EDM parameters based on the re-
cast layers, surface roughness and material removal rate
(MRR) during EDM of Al-6061 composite. Sidhu et al.
[22] also analyzed the impact of powder mixed electrical
discharge machining (PMEDM) on the microhardness and
surface integrity of 65 vol% SiC/A356.2, 30 vol% SiC/
A359 and 10 vol% SiC-5 vol% quartz/Al with the
Taguchi technique. Singh and Yeh [23] investigated the
effect of input parameters during EDM of 6061Al/
Al2O3p/20p aluminum matrix composite (AMC) using
the Taguchi technique for mul t ip le responses .
Velmurugan [24] selected the central composite rotatable
design as a technique to evaluate EDM input variables
during machining of Al6061 hybrid MMCs with 4%
graphite and 10% SiC particles. Response surface meth-
odology (RSM) was selected to investigate the impact of
parameters during EDM of Al7075 with 0.5 wt% B4C
nanoparticles [25] and 0.5 wt% SiC nanoparticles [26]
as well as an Al-based hybrid MMC (Al6063/SiC/Al2O3/
Gr) [27]. However, Soft computing techniques are useful
when exact mathematical information is not available, and
these differ from conventional computing in that it is tol-
erant of imprecision, uncertainty, partial truth, approxima-
tion, and met heuristics.

Adaptive Neuro-Fuzzy Inference System (ANFIS) is one
of the soft computing techniques that play a significant role in
input-output matrix relationship modeling in EDM of MMCs.
ANFIS is a hybrid of fuzzy logic and artificial neural networks
(ANNs). It uses the mathematical properties of ANNs to tune
rule-based fuzzy systems, which is similar to how humans
process information. Hence, ANFIS benefits from the advan-
tages of fuzzy logic and ANNs and overcomes their limita-
tions [28]. It is a hybrid platformwhich improves the ability to
automatically learn from data to solve actual complicated
problems. ANFIS is one of the most prominent soft comput-
ing methods which can successfully improve prediction out-
puts. This method is appropriate to reduce redundant input
variables and choose the most relevant subset of variables
which are truly relevant to outputs. ANFIS can generate the
complicated nonlinear relationships between input variables
and outputs [29]. ANFIS has been used to model and predict
machining outputs based on inputs in different machining
processes like wire-EDM [28, 30], micro-EDM [31], milling
[32] and turning [33].

Table 1 Chemical composition
of Al-20Mg2Si composite
produced

Element Si Fe Cu Mn Mg Cr Ni Zn Ti Al

Wt.% 7.07 0.64 2.034 0.217 12.710 0.034 0.003 0.614 0.001 Bal.
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Al-Mg2Si is a new metal matrix composite and material
removal rate in EDM is lower than in other machining pro-
cesses. Moreover, this is the first attempt to use ANFIS meth-
od in order to model MRR in nano-powder mixed EDM
(NPMEDM) of MMCs. Hence, one of the aims of this re-
search is to maximize the MRR in NPMEDM of Al-Mg2Si
in situ composite by using ANFIS. Another aim is to validate
the ANFIS model with the model generated using RSM. The
last aim is to reveal the impact of NPMEDM input variables
on the machined surface and microstructure.

2 Experimental details

2.1 Workpiece fabrication

Table 1 represents the chemical composition of Al-
20Mg2Si ingot. The Al-20Mg2Si composite was produced
by melting a commercially available ADC12 alloy (Al-
11.7Si-2Cu) using a 2 kg SiC crucible in an induction

furnace as shown in Fig. 1. After melting, pure aluminum
(99.7 wt%) and pure magnesium (99.9 wt%) were added
to adjust the composite composition. After approximately
5 min of waiting for homogenization and dissolution to
take place, the melt was skimmed and then carefully
poured at 750 ± 5 °C into a mild steel mold that was used
to fabricate the workpiece with dimensions of 200 ×
100 × 30 mm.

2.2 Experimental design and procedure

In the present study, an AG40L Sodick EDM machine was
utilized to produce 6 mm deep holes on the Al-Mg2Si in situ
composite by using copper electrodes with 5.5 mm diameter
and oil-based dielectric fluid mixed with aluminum nano-
powder at 1.5 g/lit as it is recommended by Sodick company
[34]. Moreover, the positive electrode polarity was selected
based on preliminary tests. The current, voltage, duty factor,
and pulse ON time were the NPMEDM parameters used to

Fig. 1 (a) Induction furnace, (b)
melting of Al-20Mg2Si in 2 kg
SiC crucible (top view of
induction furnace)

Table 2 Machining parameter levels and symbols

Symbol Parameters Unit Level

Low Center High

A Voltage (V) V 50 80 110

B Current (Ip) A 3 9 15

C Pulse On time (ton) μs 10 105 200

D Duty factora (Df) % 0.25 0.55 0.85

a Duty factor ¼ Pulse ON time
Pulse ON timeþPulse OFF time � 100 %ð Þ Fig. 2 Machined workpiece under different machining conditions and

view angle for microstructural analysis (arrow direction)

Int J Adv Manuf Technol (2019) 101:2723–2737 2725



analyze the MRR and microstructure. The experiments were
designed by RSM method (27 experiments) comprising 16
two-level factorial design points (=24), 1 center point, 8 axial
points, and 2 additional points. Then, the ANFIS model was
used to analyze the results and generate a 3D graph. The
ANFIS model was validated with the model generated using
RSM [35]. The MRR was calculated according to the amount
of machined workpiece material divided by time of

machining. The workpiece weight was measured by a
“precision electronic balance” with a 0.0001 g weighing
scale. Table 2 displays the machining parameter symbols
and levels adopted according to the primary experiments.
Spark energy is determined by the amount of electrical
power contained in each spark, multiplied by the amount
of time the electrical power is flowing. The equation for
determining spark energy is [16]:

Table 3 Experimental design and results

STD V (V) Ip (A) ton (μs) Df (%) Experimental
MRR(g/min)

Predicted
MRR (g/min)

Residual Error (%)

1 50 3 10 0.25 0.00642893 0.00643 − 1.07E-06 − 0.017
2 110 3 10 0.25 0.000340654 0.000341 − 3.46E-07 − 0.102
3 50 15 10 0.25 0.0168624 0.0169 − 3.76E-05 − 0.223
4 110 15 10 0.25 0.016706 0.0167 6E-06 0.036

5 50 3 200 0.25 0.000960692 0.000961 − 3.08E-07 − 0.032
6 110 3 200 0.25 0.000115659 0.000116 − 3.41E-07 − 0.295
7 50 15 200 0.25 0.057 0.057 0 0.000

8 110 15 200 0.25 0.0204439 0.0204 4.39E-05 0.215

9 50 3 10 0.85 0.00577697 0.00578 − 3.03E-06 − 0.052
10 110 3 10 0.85 0.000821067 0.000821 6.7E-08 0.008

11 50 15 10 0.85 0.0113396 0.0113 3.96E-05 0.349

12 110 15 10 0.85 0.016479 0.0165 − 2.1E-05 − 0.127
13 50 3 200 0.85 0.000620319 0.00062 3.19E-07 0.051

14 110 3 200 0.85 0.000296006 0.000296 6E-09 0.002

15 50 15 200 0.85 0.0193183 0.0193 1.83E-05 0.095

16 110 15 200 0.85 0.0484091 0.0484 9.1E-06 0.019

17 80 9 105 0.55 0.0273418 0.0273 4.18E-05 0.153

18 50 9 105 0.55 0.0317546 0.0318 − 4.54E-05 − 0.143
19 110 9 105 0.55 0.00273291 0.00273 2.91E-06 0.106

20 80 3 105 0.55 0.00283169 0.00283 1.69E-06 0.060

21 80 15 105 0.55 0.0575487 0.0575 4.87E-05 0.085

22 80 9 10 0.55 0.0141248 0.0141 2.48E-05 0.176

23 80 9 200 0.55 0.0222477 0.0222 4.77E-05 0.214

24 80 9 105 0.25 0.0129597 0.013 − 4.03E-05 − 0.311
25 80 9 105 0.85 0.0262095 0.0262 9.5E-06 0.036

26 83 14.5 105 0.55 0.048563601 0.0486 − 3.6399E-05 − 0.075
27 80 15 200 0.55 0.073608069 0.0736 8.069E-06 0.011

Fig. 3 Adaptive network
structure of MRR
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E ¼ VIpton ð1Þ

Where E = Spark energy (Watt time (μs)), V = Voltage
(V), Ip = Current (A), ton = Pulse ON time (μs).

The non-machined and machined workpieces were pre-
pared for metallography within standard operating procedure
for grinding [35]. The ground specimens were then polished
with colloidal silica suspension (0.5 μm). Next, 2% HF acid
was used to etch the polished samples. Metallographic analy-
sis of the microstructure was carried out using a “Nikon-
MIDROPHOT-FXL optical microscope” and a “field emis-
sion scanning electron microscopy (FESEM)” equipped with
“energy dispersive spectroscopy (EDS)” facilities (Supra-
35VP, Carl Zeiss, Germany). XRD (Siemens-D500) was ac-
complished with a Cu Kα line generated at 35 mA and 40 kV.
Figure 2 presents the machined workpiece under different
machining conditions and a view angle for microstructural
analysis (arrow direction).

3 Results and discussion

3.1 ANFIS model for material removal rate

The material removal rate (MRR) values in Table 3 served
as the training dataset to generate the ANFIS model.
Figure 3 shows the fuzzy logic designer based on the
inputs (current, voltage, pulse ON time, duty factor) and
output (MRR). The ANFIS model structure of MRR uti-
lized in this research is shown in Fig. 4. ANFIS employs
five network layers to carry out the fuzzy inference steps
as represented in Fig. 5: “Layer 1 - input fuzzification”,
“Layer 2 - fuzzy set database construction”, “Layer 3 -
fuzzy rule base construction”, “Layer 4 - decision-mak-
ing”, and “Layer 5 - output defuzzification” [32, 36, 37].

Layer 1 The degree to which a particular input fulfils the lin-
guistic label considered for the node is the output of the node.

Layer4Layer1 Layer2 Layer3 Layer5
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Fig. 5 ANFIS architecture for a
Sugeno fuzzy model

Fig. 4 ANFIS model structure of
MRR
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Gauss2mf membership functions are selected to reveal the
linguistic terms as the connections between NPMEDM input
variables, and MRR is nonlinear.

Membership function of first parameter:

Ai xð Þ ¼ exp −0:5 x−ai1ð Þ=bi1ð Þ2
h i

ð2Þ

Membership function of second parameter:

Bi yð Þ ¼ exp −0:5 y−ai2ð Þ=bi2ð Þ2
h i

ð3Þ

Membership function of third parameter:

Ci uð Þ ¼ exp −0:5 u−ai3ð Þ=bi3ð Þ2
h i

ð4Þ

Membership function of fourth parameter:

Di vð Þ ¼ exp −0:5 v−ai4ð Þ=bi4ð Þ2
h i

ð5Þ

where ai1 to ai4, bi1 to bi4 are the parameter sets.
The gauss2mf functions change because these parameter

values are not constant, accordingly representing different
membership function forms on linguistic labels Ai, Bi, Ci,
and Di. In this layer, the parameters are labelled as “principle
parameters”.

Layer 2 Every node calculates the firing strength of its own
rule. In this layer, the nodes are labelled “rule nodes” The top
and bottom neurons’ outputs are as below:

Top neuron w1 ¼ A1 xð Þ � B1 yð Þ � C1 uð Þ � D1 vð Þ ð6Þ

Fig. 6 (a) Initial and (b) final membership function plots of voltage, current, pulse ON time and duty factor
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Second neuron w2 ¼ A1 xð Þ � B1 yð Þ � C1 uð Þ � D2 vð Þ ð7Þ
Bottom neuron w2 ¼ A4 xð Þ � B4 yð Þ � C4 uð Þ � D4 vð Þ ð8Þ

Layer 3 In this layer, N is the label of each node to demonstrate
the firing levels’ normalization. The top and bottom neurons’
output is normalized as bellow:

Top neuron1 ¼ w1= w1 þ w2 þ :::þ wnð Þ ð9Þ

Second neuron2 ¼ w2= w1 þ w2 þ :::þ wnð Þ ð10Þ

Bottom neuronn ¼ wn= w1 þ w2 þ :::þ wnð Þ ð11Þ

Layer 4 The top and bottom neurons’ output is the result of the
normalized firing level as well as the single-rule output of the
first and second rules, respectively.

Top neuron1z1¼1 a1xþ b1yþ c1uþ d1vð Þ ð12Þ

Second neuron2z2¼2 a2xþ b2yþ c2uþ d2vð Þ ð13Þ
Bottom neuronnzn¼n anxþ bnyþ cnuþ dnvð Þ ð14Þ

Layer 5 In this layer, the individual node calculates the general
system output as the total of all incoming signals, i.e.

z¼1z1þ2z2…þnzn ð15Þ

The hybrid neural net parameters (that specify the member-
ship function shape of the premises) are trained by descent-type
means if a crisp training set {(xk, yk, uk, vk) k = 1,. ..,k} c is used.
The error function for pattern k is calculated by:

Ek ¼ ok−zk
� �2 ð16Þ

Where zk is the output calculated by the hybrid neural net
and ok is the real output [5].

Three levels including low, medium, and high can be con-
sidered in order to show the membership functions of each
input variable through the architecture. Figure 6 illustrates the
initial and final membership function plots of the four

Fig. 7 3D graphs of MRR using
ANFIS: (a) voltage-current, (b)
voltage-pulse ON time, (c)
voltage-duty factor, (d) current-
pulse ON time, (e) current-duty
factor, (f) pulse ON time-duty
factor
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NPMEDM input variables resulting from training via
gauss2mf. The changes in the final membership function
shape after training reveal that current has the most significant
effect, followed by voltage, pulse ON time and duty factor.

Figure 7 demonstrates the 3D graphs for MRR based on all
NPMEDM parameters. The interactions of current-voltage
and current-pulse ON time have the highest effect on the
MRR among all of the interactions, followed by the current-
pulse ON time interaction, as represented in Fig. 7. The dis-
charge gap between workpiece and electrode is adjusted by
the voltage [38] and increases by increasing the voltage.
Based on Fig. 7(a) band (c), high MRR is achievable when
the voltage is around 80 V (middle range) because the gap
voltage is in a suitable range based on other NPMEDM pa-
rameters, and the debris and chips can be removed easily from
the gap between the workpiece and electrode. It is obvious
from Fig. 7 that current has the most significant impact on
MRR. Figure 7 (a, d, and e) shows that MRR augments re-
markably with amplification of current due to the augmenta-
tion of spark energy [15]. MRR is reduced with increasing
voltage beyond 80 V, as the gap between workpiece and elec-
trode is larger than a suitable value. The effect of the current-
pulse ON time interaction (Fig. 7(d)) is much higher that the
effect of the voltage-pulse ON time and pulse ON time-duty
factor interactions (Fig. 7(b) and (f)). Hence, selecting the
current-pulse ON time interaction (Fig. 7(d)) is the best way
to interpret the impact of pulse ON time on MRR. It is clear

from Fig. 7(d) that when the current is approximately 3 A (low
level), the MRR increase trend is very slow with rising pulse
ON time. However, when the current is approximately 15 A
(high level), the rising pulse ON time has the highest impact
on MRR. Thus, augmenting the pulse ON time leads to en-
hanced MRR because the spark energy rises [27] as well. On
the other hand, the duty factor has the least impact on MRR
among all NPMEDM parameters. Figure 7(c, e, and f) illus-
trates that high MRR is achievable when the duty factor is
approximately in the middle range. This is because pulse
OFF time is in a suitable range and there is enough time to
solidify the chips and debris and remove them from the gap
between the workpiece and electrode as well as deionize the
dielectric.

Based on the above, it can be concluded that current
has the most significant effect, followed by voltage, pulse
ON time and duty factor. Moreover, the interactions of
current-voltage and current-pulse ON time have the
highest effect on MRR among all interactions, followed
by the current-pulse ON time interaction. In addition, this
result is quite similar to a previous publication by the
authors [35], where voltage, current, the two-level inter-
action of current and voltage, the second-order effect of
voltage and two-level interaction of current and pulse ON
time are the most significant factors on MRR. Finally, the
highest MRR can be achieved when pulse ON time and
current are at high levels (200 μs and 15 A) as well as

Fig. 8 Fuzzy rule viewer of ANFIS prediction of MRR based on NPMEDM parameters
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when the voltage and duty factor are in middle ranges
(around 80 V and 0.55%).

Figure 8 represents the fuzzy rule viewer of ANFIS model
of MRR prediction based on NPMEDM parameters. The
MRR predicted was 0.0736 g/min from the fuzzy rule viewer
in Fig. 8 when the voltage was 80 V, the current 15 A, the
pulse ON time 200 μs and the duty factor 0.55%. Table 3
compares the actual MRR and predicted MRR. It is clear that
there are small dereferences between actual MRR and predict-
ed MRR. The highest value of error is 0.349% which is very
low and desirable because more accurate prediction of MRR

can be achieved with lower error. Hence, the predicted values
of MRR in NPMEDM of Al-Mg2Si MMC are very accurate.

Figure 9 shows 3D graphs of MRR based on current-volt-
age, current-pulse ON time and voltage-duty factor using
ANFIS (a-c) and RSM (a-c). In Fig. 9, the 3D graphs of
MRR generated by ANFIS (ANFIS a, b, and c) are validated
with the graphs generated by RSM (RSM a, b, and c) in a
previous publication [35]. It is clear that the 3D graphs gener-
ated by both methods are almost similar. The small difference
between the 3D graphs is logical, because the analysis process
with ANFIS is totally different from RSM. Hence, the ANFIS

Fig. 9 3D graphs of MRR based
on current-voltage, current-pulse
ON time and voltage-duty factor
using ANFIS (a-c) and RSM (a-c)
methods [35]

Fig. 10 Optical micrographs of
Al-20Mg2Si composite before
NPMEDM at (a) low and (b) high
magnification
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model is validated for MRR prediction in NPMEDM of Al-
20Mg2Si composite.

3.2 Microstructure characterization before NPMEDM

Figure 10 illustrates the microstructure of Al-20Mg2Si com-
posite before NPMEDM at low and high magnification. In
addition, Fig. 11 shows SEMmicrographwith the correspond-
ing elemental mapping of as-cast Al-20Mg2Si composite. The
EDS profile of particles observed in Fig. 11 reveals that in the
molecular structure of Mg2Si particles the atomic ratio of Mg
is approximately twice that of Si. As seen in Figs. 10 and 11,

the microstructure comprises primarily Mg2Si particles and
eutectic Mg2Si with a mostly lamellar morphology as marked
in Fig. 11. The elemental mapping shows the distribution of
Al, Mg, and Si elements in the microstructure. The prop-
erties of the composite are mostly correlated to the rein-
forcement particles embedded in the aluminum matrix. The
size, shape, and distribution of primary Mg2Si particles are
important factors affecting the mechanical properties and
machinability of the fabricated composite. Moreover,
Fig. 12 illustrates the composite’s XRD pattern, which in-
dicates the existence of Mg2Si and aluminum phases in the
fabricated Al-20Mg2Si composite.

Fig. 11 SEM micrograph with corresponding elemental mapping of Al-20Mg2Si composite and EDS profile of Mg2Si particles

Fig. 12 XRD pattern of as-cast
Al-20Mg2Si composite
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3.3 Microstructure characterization after NPMEDM

The spark energy rises with the augmentation of pulse ON
time, current and voltage, whereas the duty factor has no effect
on the spark energy based on the equation for computing
spark energy (E =VIpton [16]) [15]. In addition, the discharge
gap between the workpiece and electrode augments with ris-
ing voltage, because the discharge gap is adjusted by the volt-
age [35]. Selecting an appropriate voltage based on the duty
factor, pulse ON time and current leads to higher MRR and
can help the spark energy reach the workpiece. MRR en-
hances with increasing voltage up to an optimum value when
the pulse ON time and current are at high levels because the

discharge gap increases and debris can be removed easily
from the discharge gap. Meanwhile, MRR is reduced with
increasing voltage beyond the desired range as the discharge
gap exceeds the appropriate value and the workpiece receives
less spark energy [35].

Figure 13 illustrates cross sections of the surfaces ma-
chined at various NPMEDM parameters. Figure 13 shows
the microstructure and surface of a machined workpiece in
various machining conditions. In Fig. 13, by comparing the
low voltage (experiments 1, 3, 5, 7, 9, 11, 13, and 15) and high
voltage (experiments 2, 4, 6, 8, 10, 12, 14, and 16) at the same
pulse ON time, current and duty factor, higher voltage appar-
ently produces bigger craters and a non-uniform surface in the

Fig. 13 Microstructure of
machined Al-20Mg2Si
(experiments 1–16)
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machined region owing to the augmented spark energy [15]
and discharge gap [35]. Hence, the machined surface deterio-
rates with increasing voltage. Evidently, the size of craters
increases when the current rises from 3 A (experiments 1, 2,
5, 6, 9, 10, 13 and 14) to 15 A (experiments 3, 4, 7, 8, 11, 12,
15 and 16) as the spark energy increases. Changing the pulse
ON time from 10 μs (experiments 1–4 and 9–12) to 200 μs
(experiments 5–8 and 13–16) leads to a rise in spark energy,
bigger craters and the rougher surface. The duty factor does
not have a remarkable impact on the surface produced when it
rises from 0.25% (experiments 1–8) to 0.85% (experiments 9–
16). The worst profile uniformity is obtained in experiments
15 and 16 when the voltage, pulse ON time and current are

high. Figure 14 shows the effects of EDM parameters on the
spark energy, size of craters, and MRR based on the results
achieved. Hence, changing the NPMEDM parameters only
influences the microstructure in the machined region (recast
layer) and has no effect on other areas. Moreover, the recast
layer thickness depends on spark energy, whereby a decrease
in spark energy leads to less microstructural change and recast
layer thickness.

NPMEDM parameters exhibit three different effects on
Mg2Si reinforcement, including spalling, cut-off and the alu-
minum layer covering the Mg2Si reinforcement, as shown in
Fig. 15. In Fig. 15(a), Mg2Si reinforcement spalling from the
aluminum (Al) matrix is observed. Figure 15(b) shows how an

Fig. 13 continued.
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Al layer covers the Mg2Si reinforcement and reinforcement
cut-off is observed on the machined surface.

4 Conclusion

In this work, the effects of NPMEDM input variables were
analyzed on MRR and microstructural changes during
NPMEDM of Al-Mg2Si in situ composite. The ANFIS
model of MRR was validated by the generated model with

the RSM method. According to the ANFIS model of MRR,
the interactions of current-voltage and current-pulse ON
time had the most significant effect on MRR among all
interactions. Current was the most effective, followed by
voltage, pulse ON time and duty factor. The highest MRR
was achieved when pulse ON time and current were high
(200 μs and 15 A) and the voltage and duty factor were in
middle ranges (around 80 Vand 0.55%). An analysis of the
Al-Mg2Si microstructure demonstrated that pulse ON time,
current and voltage had remarkable effects on the

Fig. 14 Effects of EDM parameters on the spark energy, size of craters, and MRR

Fig. 15 Effects of NPMEDM
parameters on Mg2Si
reinforcement: (a) Spalling at
110 V, 3 A, 10 μs, 0.25%, (b) Al
layer and cut-off at 110 V, 3 A,
200 μs, 0.25%
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microstructure, size of craters, and profile of the machined
surface and has no effect on other areas. Moreover, de-
crease in spark energy leads to less microstructural change
and better surface finish.
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