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Abstract
A narrow-seam identification algorithm is developed to achieve seam tracking in keyhole deep-penetration tungsten inert gas
welding (TIG). The welding images are captured by a high-dynamic-range camera and denoised by a bilateral filter based on a
noise model analysis. The arc area is extracted as a fixed region of interest. Then, an improved Otsu algorithm and a parabolic
fitting algorithm are used to obtain the centerline of the arc. The seam area is extracted as an adaptive region of interest based on a
proposed HOG+LBP algorithm. Thereafter, a continuous single-pixel edge contour is extracted by the canny algorithm, and a
proposed contour curvature evaluation method is used to obtain the corresponding pixel coordinates. After testing and analysis,
the deviation can be reliably detected with an average measurement error within ± 0.04 mm. As a result, the algorithm proposed
in this study can accurately identify the deviation during keyhole deep-penetration TIG welding, and has application prospects in
the narrow-seam welding field.

Keywords Keyhole deep penetration TIG welding . Narrow seam tracking . Adaptive region of interest . Curvature
evaluation method

1 Introduction

Compared with traditional-controlled welding and robot
teaching welding, sensor-based seam-tracking welding
technology is more stable and efficient in actual welding
processes. To achieve seam tracking, visual sensors are
commonly used in the field of robot welding to obtain
the features of the weld pool and weld edge. For active
optical vision, an external auxiliary light source should be
projected onto the weldment. Zhang et al. developed a
structured light 3D vision system to extract the sag geom-
etry behind the pool [1] and used these features to control

the weld fusion via a closed-loop system [2]. Kiddee et al.
[3] proposed a weld-seam tracking system using cross
mark structured light. Ding et al. [4] proposed a shape-
matching algorithm to achieve seam-tracking process that
is adaptive to different groove types. Passive optical vi-
sion provides more detailed information, including the
shapes of the welding arc and groove, and other features,
such as the width of the weld pool [5–7]. These methods
are suitable for detecting seams with obvious shape fea-
tures, such as fillet-weld joints, V-grooves, square
grooves, etc. However, keyhole deep-penetration TIG
welding is butt welding and the weld gap can reach
0.2 mm, which is very narrow, as shown in Fig. 1. The
seam is difficult to detect because the laser beam that
irradiates onto the weldment is almost not deflected. In
addition, the current is relatively high in order to achieve
deep-penetration welding and will produce a strong arc
light, which greatly interferes with the detection of the
laser beam. To solve this problem, high-precision active
optical sensors are needed, but the costs are increased due
to the high cost of the equipment. GAO et al. [8] proposed
an approach to detect the micro-gap weld based on a
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magneto-optical imaging sensor with an excessive size.
Yang et al. [9] studied the average method of arc sensing
to satisfy the need of seam tracking, but only for narrow
gap rotating arc welding.

In this study, passive optical vision sensors are used in
keyhole deep-penetration TIG (K-TIG) welding, and the
arc produced during welding is used directly as the light
source. Images captured by industrial cameras are direct-
ly transferred to industrial computers for image process-
ing, and the geometric features of the seam and arc con-
tour are accurately extracted in order to obtain the devi-
ation between the arc centerline and the welding seam
coordinate.

2 Welding robot system

The welding system used in this experiment is composed
of five parts: a K-TIG welding system, a KUKA robot, a

control cabinet, an industrial computer, and a CMOS cam-
era [10, 11].The schematic is shown in Fig. 2. The
welding torch is fixed on the KUKA robot end effector
and the CMOS camera is fastened on the torch with a
fixture. During the welding process, the torch moves
along the welding seam, i.e., along the y-axis direction
of the O-XYZ coordinates. The installation location and
welding direction are shown in Fig. 3. In this study, the
welding process produces a strong arc light, which causes
the incident light intensity exceeding the upper limit of
ordinary industrial camera sensors [12]. The details of
the weld-pool image are lost because the photosensitive
unit inside the camera achieves light saturation within a
short-exposure time. Therefore, an HDR-CMOS camera
(NSC1003) is used to capture the image details during
the welding process. Afterwards, the regions of interest
(ROI) are segregated for feature extraction. The flowchart
of the narrow-seam identification process in K-TIG
welding is shown in Fig. 4.

Fig. 2 System configuration of
the keyhole deep-penetration
welding

Fig. 1 Schematic diagram of the K-TIG welding process: a cross-section of the process; b top view of the process
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3 Image denoising

Reflections, splashes, electromagnetic pulses, and other typi-
cal environmental influences are produced during the welding
process, resulting in blurry images. In many studies, the weld
images are denoised before feature extraction on the assump-
tion that the type of noise is known [13, 14]. In this case, the
denoising of the image is often very blind because an un-
matched denoising algorithm may be wrongly applied to the
blurry image. In this study, a method of identifying the noise
type in the wavelet domain is used to prevent this problem.
According to existing research, after the blurry images are
wavelet-transformed, the coefficients of high-frequency
subbands vary with different noise types [15]. Moreover, the
image noise generated during welding can be mainly divided
into Gaussian noise and salt and pepper noise. Therefore, by
observing the high-frequency subbands’ histograms of
welding images, the type of noise can be determined. By an-
alyzing Fig. 5b, the type of noise in the original image can be
determined to be Gaussian noise [15]. Therefore, Gaussian
filtering is used for denoising, but the edges of the tungsten
needle and the weld pool are still blurred (as shown in
Fig. 6b). To solve this problem, bilateral filtering that con-
siders spatial information and gray similarity [16] is used

instead. As shown in Fig. 6c, by comparison, bilateral filtering
can remove noise while preserving the edges.

4 Arc detecting

4.1 Regional binarization

As shown in Fig. 3, the relative position of the CMOS
camera and the tungsten needle is fixed so that the tung-
sten needle always appears in a fixed position in the
welding image. As a result, the position of the arc emitted
by the tungsten needle is also in a relatively fixed area in
the welding image. Therefore, a fixed region of interest
(ROI1) can be scheduled in order to accurately extract the
characteristics of the arc (as shown in Fig. 7).

The gray values in ROI1 in different frame images
changes due to the brightness of the arc, weld-pool reflec-
tion, and weldment brightness. The Otsu algorithm [17] is
used to automatically obtain the threshold rather than
using a fixed threshold for segmentation. Then, mathe-
matical morphology is used for edge smoothness.
However, the arc contour feature cannot be effectively
obtained if the Otsu algorithm is used directly (as shown
in Fig. 8a). An inappropriate threshold selection errone-
ously considers the background area near the arc as the
target area. On the basis of this condition, the traditional
Otsu algorithm is improved in a way that the threshold of
the original algorithm is multiplied by an appropriate mul-
tiple r. When the current threshold is assumed to be T, the
improved threshold formula is given as follows:

Tr ¼ r � T ð1Þ

As shown in Fig. 8, after the analysis of a large number of
experiments, the coefficient r = 1.4 is selected and the ideal
segmentation effect is obtained. The divided binary image can
effectively reflect the shape of the arc. Figure 8e is processed
by an edge-pixel search algorithm, and a binary image is ob-
tained containing only the perimeter pixels of the arc (as
shown in Fig. 9).

Fig. 4 Flowchart of narrow-seam
identification process

Fig. 3 Torch, camera fixture installation, and welding direction
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4.2 Arc-edge curve fitting

In the image coordinate system O-UV, the arc characteristic is
approximated with a parabola via the least-squares method.
The coordinates of each discrete point in the image are the

pixel coordinates of the contour line. The fitting formula s (x)
is expressed as follows:

s xð Þ ¼ a0 þ a1xþ a2x2 ð2Þ

Fig. 6 Grayscale stereograms of welding image before and after denoising: a welding image; b Gaussian-filtered image from (a); c bilateral-filtered
image from (a)

Fig. 5 Welding image and histograms of the high-frequency subband: a welding image captured by CMOS camera; b high-frequency subband
histogram of a
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Among the parameters, the pending parameters a0, a1, and
a2 are the regression coefficients. Assuming that f(x) is a

discrete function of n + 1, discrete points in the image by de-
tecting the data of the observation points are as follow:

x j; f x j
� �� �

j ¼ 0; 1; 2;…;N : ð3Þ

A function s*(x) is required for the approximate continuous
model of the discrete function f(x) and to minimize the sum of
squared residuals of s*(x) and f (xj) [18, 19]:

δi ¼ f xið Þ−s* xið Þ i ¼ 0; 1; 2;…; n: ð4Þ

δk k22 ¼ ∑
n

j¼0
δ2j ¼ ∑

n

j¼0
f xið Þ−s* xið Þ� �2

¼ mins∈∅∑n
j¼0 f xið Þ−s* xið Þ� �2 ð5Þ

Among the residuals, δ=[δ0, δ1,…δn]
Tand ∅ is the speci-

fied function space. The fitting parameter values are obtained
via the least-squares method, from which the centerline of the
arc is obtained. The formula is given as follows:

Fig. 8 Arc edge obtained by the Otsu algorithm with different r values: a r = 1; b r = 1.1; c r = 1.2; d r = 1.3; e r = 1.4

Fig. 9 Extracted arc contour
curve in the image coordinate
system O-UV

Fig. 7 ROI1 in welding image capture by the CMOS camera
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Up ¼ −
a1
2a2

ð6Þ

Subsequently, the coordinates of each pixel in Fig. 9 are
extracted and saved in the computer memory. The coordinates
of each point are indicated by the blue points in Fig. 10. The
formula fits these discrete points into a parabola, which ex-
hibits a stable arc shape, as indicated by the red curve in
Fig. 10. After parabolic fitting, this method can effectively
find the arc centerline, as indicated by the green line in Fig. 11.

5 Identification of the welding seam

During the welding process, it is difficult to obtain the
seam features with conventional image processing

methods because the seam width is too narrow. In addi-
tion, due to the large intensity of the K-TIG welding arc,
the grayscale of the image changes in the direction along
the seam. In this study, it is determined that in the area
where the weld seam meets the weld pool, the molten
metal fills in the gap and forms a concave feature that
can be used to detect the weld seam. The shapes of the
concave feature can be divided into three types according
to different seam widths (as shown in Fig. 12).
Therefore, the area where the weld seam meets the weld
pool can be segmented as the region of interest (ROI2)
for the extraction of the weld seam. However, the posi-
tion of ROI2 will change as the weld seam position
changes in the image during the welding process, so it
is necessary to use an adaptive ROI2 use rather than a
fixed ROI2.

Fig. 10 Midline extracted from
the parabolic curve after fitting

Fig. 11 Extraction of the arc
centerline
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5.1 SVM training and ROI2 extraction

To obtain ROI2, a segmentation algorithm with an adaptive
window is proposed in this study. A fixed-size window (128 ×
64) is used to traverse a welding image, obtaining multiple win-
dows of the image corresponding to different locations in the
welding image. Then, the image features are extracted from
these windows with the feature extraction algorithm. The
SVM is used to classify the windows of the images based on
these extracted features [20].

First, the SVM needs to be trained by the image samples.
Image samples that contain the weld seam and the molten pool
are positive samples, while the other samples are negative
samples. The numbers of positive and negative samples are
1000 and 1200, respectively, and all the training samples are
128 × 64 in size [21].

Then, the trained SVM is used to obtain ROI2 from
new welding images by a similar principle. Several win-
dows are extracted from every new welding image and
processed by the feature extraction algorithm. These win-
dows are classified into two categories by the trained
SVM. By averaging the position coordinates of the cate-
gory of windows that contain the intersection of the weld
and the weld pool, a new window is obtained, which is
the desired ROI2.

5.2 Feature extraction algorithm

To extract ROI2 more accurately, an appropriate feature de-
scription algorithm must be selected to extract the image fea-
tures. HOG and LBP are two commonly used feature descrip-

Fig. 13 Principle of the HOG algorithm and LBP algorithm

Fig. 12 Different shapes of the concave feature with various seam widths: a small seam width; b moderate seam width; c large seam width
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tion algorithms. These two algorithms are used separately for
testing in this paper.

Histogram of oriented gradient (HOG) can maintain
good invariance on both geometric and optical deforma-
tions of an image, so it can be used to describe the local

features of the windows. The windows with a size of
128 × 64 pixels will be divided into 128 units of 8 × 8
pixels, and then the 2 × 2 area units will be combined into
a connecting block for a total of 105 pixel blocks [22] (as
shown in Fig. 13). In each cell, the gradient directions of

Fig. 14 Testing results: a
windows extracted by HOG; b
ROI2 extracted by HOG; c
windows extracted by LBP; d
ROI2 extracted by LBP; e
windows extracted by HOG+
LBP; f ROI2 extracted by HOG+
LBP

Table 1 Comparison between
HOG, LBP, and HOG+LBP HOG LBP HOG+LBP

The number of windows identified in 10 images 33 49 51

The number of windows correctly identified 31 40 49

Accuracy 93.93% 81.63% 96.07%
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all the pixels are weighted based on the magnitude of the
amplitude and then divided into nine sections, that is, nine
features. The feature vectors of all cells in the block are
connected to obtain the HOG feature of the block. Finally,
the gradient histograms for all cells are formed as 3780
dimensional high-dimensional descriptors-vectors. These
vectors are used as the features of windows and are put
into SVM for training and classifying. After testing, this
method can make the detection accuracy of the window
reach 93.2%. However, in a single-weld image, only a
small number of windows can be successfully detected,
which means one or two wrongly detected windows have
a greater influence on the position of ROI2 (as shown in
Fig. 14a, b).

Local binary pattern (LBP) has significant advantages,
such as rotation invariance and grayscale invariance. The
detection window is divided into 32 × 32 cells. For each
pixel, the gray values of the adjacent 8 pixels are com-
pared with said pixel and marked as 1 and 0, respectively.
The resulting 8-bit binary number is used as the LBP
value for this pixel. Then, the frequency histogram for
each number in the cell is calculated [23]. The statistical
histogram of each cell is connected as a feature vector,
which is the LBP texture feature vector of the entire map
(as shown in Fig. 13). These vectors are put into SVM for
training and classifying. The result of the testing shows
that compared with the HOG algorithm, the LBP algo-
rithm can detect more windows, but the detection accura-
cy rate is reduced to 82.4% (as shown in Fig. 14c, d).

From the above test results, it can be seen that the HOG
algorithm has a narrow detection range, and the target win-
dows can be detected with a high accuracy. However, some
of them will be missed. The LBP algorithm has a wider

detection range, and more windows can be detected, but
window misdetection still exists. In this study, the HOG+
LBP algorithm is used to obtain the comprehensive fea-
tures. First, the coordinate center of the windows detected
by HOG is obtained. Then, among the windows obtained
by LBP, the windows that are more than 100 pixels away
from this coordinate center are removed. Finally, the re-
maining windows extracted by LBP are combined with
the windows extracted by HOG. As shown in Fig. 14e, f,
ROI2 can be extracted more precisely. Moreover, the target
windows can be extracted by the HOG+LBP algorithm
with higher accuracy as shown in Table 1.

5.3 Identification of weld characteristics

Since the SVM algorithm has identifies the weld seam
area, and the gray value of the weld seam is lower than
that of the surrounding area, the coordinates of the middle
line of the weld seam can be obtained using the traditional
edge detection algorithm. The weld-seam image in
Fig. 12b is selected as an example for the following image
process, i.e., the single-pixel weld-seam edge is obtained
after filtering, threshold segmentation, and the application
of the canny algorithm without pseudo-edges or external
connectivity areas (as shown in Fig. 15). During the butt-
welding process, although the gap width of the base metal
is small (less than 0.5 mm), some of the molten metal fills
into the seam, so the grayscale of a small section of the
seam is almost the same as the weld pool. Therefore, the
edges of the area are extracted by image segmentation and
an edge detection algorithm.

The edge features are symmetrically distributed on the
left and right sides of the seam and mutated in the middle.

Fig. 15 Welding-seam
identification and processing: a
welding image; b extraction of the
weld pool and the weld area; c
threshold segmentation; d edge
feature extraction
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Therefore, a method based on the contour curvature eval-
uation is proposed. The edge obtained by the canny algo-
rithm consists of a single layer of discrete pixels. The
coordinates of the pixels are extracted and the approxi-
mate curvature of each discrete pixel is calculated. The
method for calculating the curvature approximation is
called the three-point method, which uses the coordinates
of three pixels adjacent to the contour to approximate the

curvature value [24]. m pixel coordinate points Q1, Q2…
Qi…Qm are found on the contour, where the coordinate of
Qi is expressed as (xi, yi).The curvature equation can be
expressed as follows:

ki ¼
y
0 0
i x

0
i−x

0 0
i y

0
i

�� ��
y02
i þ x02

ið Þ3=2
���

���
ð7Þ

Fig. 16 Welding process curvature evaluation: a curvature value for Fig. 12a; b curvature value for Fig. 12b; c curvature value for Fig. 12c
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x0i ¼ xiþn−xi−n
x
0 0
i ¼ xiþn þ xi−n ¼ 2xi

y0i ¼ yiþn−yi−n
y
0 0
i ¼ yiþn þ yi−n−2yi

8>><
>>:

ð8Þ

where n = 1, 2…m. In this experiment, n = 3, which
means the curvature is calculated every three points. In
the three situations shown in Fig. 12, curvature evalua-
tion method is tested (as shown in Fig. 16). The point
where the curvature is the greatest can be considered as
the position of the weld. In summary, the curvature eval-
uation method can effectively detect the weld-seam po-
sition, although the position of the seam changes.
Therefore, the pixel coordinates of the weld-seam point
can be obtained.

6 Experiment and analysis

A series of experiments were conducted in order to ver-
ify the accuracy of the deviation-detection algorithm pro-
posed in this paper. In this experiment, 8-mm thick 304
stainless steel plates are selected as the experimental
weldment, and a K-TIG deep-penetration welding system
is used for welding with the welding current of 500 A.
Under the control of the KUKA robot, the torch moves

linearly along a preset trajectory. The trajectory is delib-
erately designed as a diagonal line, which cause the tra-
jectory to not coincide with the weld, but instead inter-
sect with the weld (as shown in Fig. 17).

In the X-direction, the starting point of the trajectory
deviates from the seam by 1.5 mm while the end point
deviates from the seam by − 1.5 mm. When the welding
process starts, the HDR camera is used to shoot the
welding area and collect images. One single image is
extracted from every three frames in the collected video
stream, and δ is obtained by the algorithm proposed in
this paper. δ is the deviation between the arc centerline
and the seam. There are three typical situations during
the welding process: torch on the left side of the seam,
torch coinciding with the seam, and torch on the right
side of the seam. Three welding images are selected that
correspond to these situations, and each δ is extracted
(as shown in Fig. 18).

During the K-TIG deep-penetration welding process, the
relative position between the torch, the camera, and the plane
where the workpiece is located does not change. Therefore,
the scene observed by the camera is almost unchanged. In
addition, the camera’s field of view is very narrow, so the lens
distortion has little effect on the image. Therefore, the conver-
sion relationship between image coordinates and actual coor-
dinates can be approximated. Through the experimental test,
the horizontal correspondence near the pool can be confirmed

Fig. 17 Sketch map of the torch
trajectory
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to be 0.023 mm/pixel, which can be used to convert the de-
tected deviation from the image coordinate system to the
world coordinate system. After the experiment, 250 different
δ values are detected, and a comparison chart of the detected
deviation (δ) and the actual deviation (δ0) is shown in Fig. 19.

Defining the measurement error as ε = δ0 − δ. It can be seen
from Fig. 20 that the total welding distance is 250 mm and in
the first 20 mm, and the deviation measurement value oscil-
lates around the actual value with a large variation range. At
some moments, the measurement error exceeds 0.1 mm. As
the welding continues, the variation range of the deviation
measurement value decreases and the error value is within
0.1 mm. The analysis shows that the high-frequency arcing
used in K-TIG welding affects the camera and distorts the
image at the moment of arcing. In addition, after arcing, the
arc and molten pool have not yet reached a stable state, so
there is a relatively large error in the measurement of the
deviation at the beginning of the welding. On the whole, the

average of ε is 0.0303 mm and the deviation detection process
is stable, so the proposed algorithm generally has a high de-
gree of accuracy in detecting the welding deviation during the
K-TIG deep penetration welding process.

7 Conclusion

During the K-TIG deep-penetrationwelding process, the arc is
intense and the seam is narrow. In this case, a welding-
deviation-detection method is proposed to realize seam track-
ing in K-TIG deep-penetration welding process. The main
conclusions are drawn as follows:

1. The noise in the original image is determined as Gaussian
noise via noise analysis, which is the basis for further
image denoising using bilateral filtering.

Fig. 18 Detection of δ in different situations: a–d the torch is on the left side of the seam; e–h the torch coincides with the seam; i–l the torch is on the
right side of the seam
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2. The extraction of the deviation between the arc centerline
and the weld seam depends on two novel image process-
ing algorithms, i.e., an improved Otsu algorithm which
achieves a better binarization effect to extract the arc cen-
terline and an adaptive area algorithm which extracts the
ROI and obtains the position of the weld seam.

3. The accuracy of the proposed method has been verified
through experimentation and the average accuracy of er-
ror detection is within ± 0.04 mm.

The proposed method provides a solution to the detection
of welding details under a strong arc light, as well as the

Fig. 19 Comparison between detected deviations and actual deviations

Fig. 20 Measurement error during the test

Int J Adv Manuf Technol (2019) 101:2051–2064 2063



detection of a narrow gap seam. It has an application value for
weld-seam tracking in high current welding and narrow-seam
welding.
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