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Abstract
With the development of error compensation technology, reliability and stability of error identification deserve much attention.
And rotary axis errors of five-axis machine tool are the main error sources which result in machining inaccuracy. Hence, a new
method for position-dependent geometric error (PDGE) identification of a rotary table using double ball bar was proposed in this
paper. Especially, only the targeted rotary table was driven during the ball bar test, which can reduce the impact of interference
error sources. During the measurement, the ball on the spindle holds still, and the ball on the rotary table rotates around the
rotation axis. There are three mounting positions of magnetic socket on the rotary table. Total six measurement procedures of
cone test are executed to obtain enough measuring results by setting different positions of magnetic socket ball. These measuring
results are used to construct the identification model based on homogeneous transformation matrix (HTM). The impact of
installation errors of the double ball bar on identified results was analyzed. The uncertainty of identified errors could be reduced
with the single-axis driven and the installation parameter optimization. At last, testing experiments on a five-axis machine tool
were conducted to verify the proposed method. The results confirm that the method is an effective way to identify PDGEs of a
rotary axis, and the accuracy of identified results is improved.
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1 Introduction

Five-axismachine tool is one of the most important equipment
to manufacture complex sculptured surfaces and challenging
features, which required higher efficiency and accuracy in
modern manufacturing [1]. Rotary axis is equipped on the
five-axis machine tools and is an essential component to in-
crease orientation degrees of freedom between the workpiece
and the tool. Its accuracy is of great importance for
manufacturing high-quality part. The geometric errors of ro-
tary axis are repeatable, measurable, and are the major error
sources of machining inaccuracy of five-axis machine tools
[2]. Geometric error compensation of rotary axis is an effec-
tive method to guarantee high accuracy with low cost. And

beautiful methodology for measuring the geometric errors of
rotary axis is the foundation to achieve high-performance er-
ror compensation. Therefore, it is necessary to research the
efficient, accurate, and low-cost method for measuring the
geometric errors of rotary axis.

Some instruments, such as laser tracker [3, 4], touch trigger
probe [5–9], laser interferometer [10], R-test [11, 12], 6-DOF
laser system [13], double ball bar [14, 15], and corresponding
strategies have been studied to measure and identify the geo-
metric errors of rotary axis. Thesemethodswere verified useful
for geometric error tracing of rotational axis. However, many
researches are limited by the test condition. The laser tracker is
expensive that fewer researchers or machine tool users can get.
R-test and 6-DOF laser system need special time-consuming
design and manufacture. Also, the touch-trigger probe is
depended on the machine tool vendors, equipped or not. And
the measurement effect of laser interferometer is observably
influenced by the skillful operator and the environment, where-
as the double ball bar has the advantages of easy installation,
stable measurement, and low cost. Hence, the user free and
inexpensive commercial double ball bar is widely studied in
the geometric error measurement of rotary axis.
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The double ball bar was usually used for circular test to
evaluate the volumetric performance of machine tools
[16–18], including geometric errors, dynamic errors, servo
mismatch, and backlash. Recently, the ball bar is developed
as an especial displacement sensor to measure the distance
change between the two precision balls. The length deviations
of the double ball bar are collected to identify the geometric
error sources based on the error model. In the early days,
simultaneous control of multiple axes was adopted to measure
the geometric error of rotary axis conveniently [19]. Zhu et al.
[20] proposed a method to identify six geometric errors of a
rotary axis with the rotation tool center point (RTCP) function;
the three linear axes were driven along with the rotary axis
simultaneously. Chen et al. [21, 22] proposed a method to
measure and identify the position-independent and position-
dependent geometric errors of rotary axis. The deviations of
the ball installed on the rotation axis were measured in the
three coordinate directions with serial of two linear axes con-
trolled circular paths. Those methods can effectively measure
and identify the geometric errors of rotary axis. However, the
errors of non-targeted motion axes are often ignored or are
supposed to have little impact on the measuring results, which
will decrease the measuring accuracy. In addition, multi-axis
motion will increase the complexity of movement path and
will lower the test efficiency.

Therefore, to reduce the influence of non-targeted motion
axes (especially the three linear axes) on the measuring results,
different strategies and motion trajectories with only targeted
rotation axis rotating have been studied using the double ball
bar. Obviously, the ultimate goal of the ball bar test on rotary
axis is to identify geometric errors accurately as many as pos-
sible with less synchronous control axes and less installation
times. For position-independent geometric errors of rotary ax-
is, Jiang et al. [23] proposed a method to detect position-
independent geometric errors of rotary axis with single-axis
driven based on circular cone trajectory. Lee et al. [24, 25]
utilized two parallel circular measurement paths to identify the
two offset and two squareness errors of a rotary axis involving
single-axis control during the measurement. For PDGE of
rotary axis, Xiang et al. designed five testing patterns to mea-
sure five PDGEs of a rotary axis with three installations of the
magnetic socket [26]. Optimization of installation parameters
and the analysis of installation errors of ball bar were lacked in
the existing method.

This paper proposed a new method to measure and identify
PDGEs of a rotary table with six cone tests. Three installation
locations of magnetic socket and two kinds of rod length were
designed to collect deviation data. During the measurement,
only the targeted rotary table rotates, which reduces the un-
necessary interference of other error sources. Sensitivity anal-
ysis of the installation error was presented to guide the mea-
surement process. The installation parameters were optimized
in the reasonable range according to the analysis results.

Finally, experiments were carried out on a five-axis machine
tool to detect and to verify the proposed method.

2 Ball bar test patterns with single-axis driven

The double ball bar is a precision instrument to measure the
relative displacement between the two balls. As shown in
Fig. 1, there are two magnetic sockets in the ball bar measure-
ment system. One is set on the rotary table, named “ball 1” and
another is clamped by the tool holder on the spindle, named
“ball 2”. The two balls of the double ball bar are installed on
the ball bowls of the magnetic sockets. During the measure-
ment, only the targeted rotation axis C rotates, and the length
change of the double ball bar is recorded to identify five
PDGEs.

Seen in Fig. 1, the initial fixed coordinate system (IFCS) of
the rotary table is defined on the upper surface of the rotary
table. The origin of the coordinate system is located at the
intersection point oC of C-axis and the table surface. H0 rep-
resents the height from the rotary table to the center of “ball
1.” H1 and H2 respectively denote the distance between the
centers of the two balls in the z-axis direction with different
rod length. R denotes the installation radius of “ball 1” from
the ideal rotation axis line.

The distance change between “ball 1” and “ball 2” can be
modeled as the function of the PDGE based on HTM. Each
combined position of “ball 1” and “ball 2” can establish an
equation. To identify the five PDGEs, five equations are need-
ed at least. Three installation locations of “ball 1” and two
corresponding positions of “ball 2” are set with the extension
bar, thereby six equations can be founded. The identification
model, measuring procedure, and the experiments will be de-
scribed in detail in the following sections.
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Fig. 1 Cone test of double ball bar measurement
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3 Geometric error identification model
of the rotary table

The PDGEs [δx(C), δy(C), δz(C), εx(C), εy(C), εz(C)]
T (see in

Fig. 2) after rotating an angle C can be defined as three trans-
lation errors and three angular errors. They are the functions of
the rotation position C. To simplify the expressions, let [δx, δy,
δz, εx, εy, εz]

T denote [δx(C), δy(C), δz(C), εx(C), εy(C), εz(C)]
T

in the following sections of this paper.
The coordinate system oC(0)−xC0yC0zC0 is the IFCS of the

rotary axis; its coordinate direction is in accordance with the
machine coordinate system oR-xRyRzR. oC(C)−xCyCzC repre-
sents the ideal rotation coordinate system and oC′(C)-xC′yC′zC
′ denotes the actual rotation coordinate system considering
PDGEs.

The mounting positions of the center of “ball 1” and “ball
2” are Pc and Ps, respectively. Because of the PDGEs, Pc will
deviate from its ideal position after rotating an angle C. The
ideal position of Pc after rotating an angle C in IFCS can be
calculated as:

Pc Cð Þ ¼ MC xc0; yc0; zc0; 1½ �T ð1Þ

MCis the ideal HTM of C-axis motion. (xc0, yc0, zc0) de-
notes the coordinate of “ball 1” in the IFCS. Let cC = cos(C),
sC = sin(C), MCcan be expressed as

MC ¼
cC −sC 0 0
sC cC 0 0
0 0 1 0
0 0 0 1

2
664

3
775

The actual position of Pc after rotating an angle C in IFCS
considering PDGEs can be given as:

P
0
c Cð Þ ¼ M

0
C xc0; yc0; zc0; 1½ �T ð2Þ

M
0
C is the real HTM considering geometric errors ofC-axis

motion. And M
0
C can be calculated as [27].

M
0
C ¼

cC−εzsC −sC−εzcC εycC þ εxsC δxcC−δysC
sC þ εzcC cC−εzsC εysC−εxcC δycC þ δxsC

−εy εx 1 δz
0 0 0 1

2
664

3
775

And then the three positional errors of “ball 1” can be
calculated by

Δxc;Δyc;Δzc; 0½ �T ¼ P
0
c Cð Þ−Pc Cð Þ ð3Þ

Expanding Eq. (3), the positional errors of “ball 1” can be
represented by the linear combination of the geometric errors
of the rotary table.

Δxc ¼ cCδx−sCδy þ zc0sCεx þ zc0cCεy− xc0sC þ yc0cCð Þεz
Δyc ¼ sCδx þ cCδy−zc0cCεx þ zc0sCεy þ xc0cC−yc0sCð Þεz
Δzc ¼ δz þ yc0εx−xc0εy

8<
:

ð4Þ

Transform Eq. (4) into matrix form.

Δxc
Δyc
Δzc

2
4

3
5 ¼

cC −sC 0 zc0sC zc0cC −xc0sC−yc0cC
sC cC 0 −zc0cC zc0sC xc0cC−yc0sC
0 0 1 yc0 −xc0 0

2
4

3
5

δx
δy
δz
εx
εy
εz

2
6666664

3
7777775

ð5Þ

During the test, only the positional errors of “ball 1” along
the ball bar axis can cause the length change. Hence, at a
specific measurement angle C, the following equations can
be obtained:

n Cð Þ ¼ Pc Cð Þ−Ps

‖Pc Cð Þ−Ps‖
ΔL Cð Þ ¼ Δxc;Δyc;Δzcð Þ⋅n Cð Þ

8<
: ð6Þ

where, n(C) represents the unit vector connecting Ps (xs, ys, zs)
to Pc(C) (xc(C), yc(C), zc(C)) at the measurement angle C.
ΔL(C) is the length change obtained from the double ball bar.

Substituting Eq. (5) into Eq. (6), then

−xscC−yssC þ xc0;
−yscC þ xssC þ yc0;
zc0−zs;
yscC−xssCð Þzc0−zsyc0;
zsxc0− yssC þ xscCð Þzc0;
xc0sC þ yc0cCð Þxs
− xc0cC−yc0sCð Þys

2
666666664

3
777777775

T

δx
δy
δz
εx
εy
εz

2
6666664

3
7777775

¼ ΔL Cð Þ‖Pc Cð Þ−Ps‖ ð7Þ

From Eq. (7), we can find that if there is no eccentricity of
“ball 2” (xs = 0, ys = 0), the angle-positioning error εzwill have

xC0

yC0

zC0

oC(0)(oC(C))

xC

yC

(zC)

C
( )x C

( )y C

( )y C ( )x C

( )z C

xC'

yC'

zC'

oR
xRyR

zR

oC'(C)

( )z C

Fig. 2 PDGEs of rotary axis C
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no influence on the length change of the ball bar. Hence, εz
cannot be identified without the eccentricity of “ball 2.”

Equation (7) is used to map the relationship between the
measured length change of the ball bar and the geometric
errors of the rotary table. To identify the five position-
dependent geometric errors, different installation parameters
are selected to construct enough equations.

As shown in Fig. 1, three installation positions Pc1, Pc2, and
Pc3 are selected for tests. They are distributed on the circum-
ference with radius of R, and the distance between the center

of “ball 1” and the table surface is H0. The initial position of
“ball 1,” Pc1, Pc2, and Pc3, are set at [R, 0, H0], [0, R, H0], and
[0, −R, H0] to simplify the installation procedure.

Two heights of “ball 2” from the table are utilized at each
installation position Pc by the extension bar. The normal ball
bar lengths are L1 and L2, respectively. The fixed positions of
“ball 2” are [0, 0, H0 +H1] and [0, 0, H0 +H2], respectively.

Then, the identification model can be built through the five
measurement results [ΔL1(C),ΔL2(C),ΔL3(C),ΔL4(C), and
ΔL5(C)] and the geometric errors according to Eq. (7).

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1

2 þ R2
p 0

−H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1

2 þ R2
p 0

H0 þ H1ð ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1

2 þ R2
p

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2 þ R2
p 0

−H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2 þ R2
p 0

H0 þ H2ð ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2 þ R2
p

0
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1
2 þ R2

p −H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1

2 þ R2
p − H0 þ H1ð ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1
2 þ R2

p 0

0
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
2 þ R2

p −H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2 þ R2
p − H0 þ H2ð ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
2 þ R2

p 0

0
−Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1
2 þ R2

p −H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1

2 þ R2
p H0 þ H1ð ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1
2 þ R2

p 0

2
66666666666666664

3
77777777777777775

δx
δy
δz
εx
εy

2
66664

3
77775 ¼

ΔL1 Cð Þ
ΔL2 Cð Þ
ΔL3 Cð Þ
ΔL4 Cð Þ
ΔL5 Cð Þ

2
66664

3
77775 ð8Þ

Equation (8) can be simplified into the following form:

MCEC ¼ ML ð9Þ

MC is the coefficient matrix, EC defines the error vector,
and ML represents the measurement results.

The installation radius R of “ball 1” is optimized based on
the sensitivity analysis of the coefficient matrix MC. The de-
tails are demonstrated in Section 4.1.

4 Analysis of testing scheme

4.1 Installation parameter optimization

The varieties of installation parameters R, H1, H2, and H0 will
disturb the coefficient matrix MC. This disturbance can be
expressed as δMC and then impact the identification results.
Also, system errors in the double ball bar measurement system
can cause the perturbation in vectorML. This perturbation can
be represented as δML. δMC and δML will result in the change
δEC of the solution.

MC þ δMCð Þ EC þ δECð Þ ¼ ML þ δML ð10Þ

According to literature [28], the change rate of the solution
can be expressed by the inequality in norm form.

‖δEC‖

‖EC‖
≤

‖M−1
C ‖‖MC‖

1−‖M−1
C ‖‖MC‖

‖δMC‖

‖MC‖

‖δML‖

‖ML‖
þ ‖δMC‖

‖MC‖

 !
ð11Þ

The coefficient matrix ‖M−1
C ‖‖MC‖ reflects the sensitivity

of the solution with respect to the original data errors. It is also
called the condition number. To simplify the calculation, the∞
norm is selected to represent the condition number of the
coefficient matrix MC.

cond MCð Þ ¼ M−1
C

�� ��
∞ MCk k∞ ð12Þ

The coefficient matrixMC is determined by the installation
parametersR,H0,H1, andH2. TheH0 depends on the height of
the socket, and it can only be adjusted within a small scale.
Thus, H0 is treated as a constant parameter in this paper. H1

and H2 are the vertical distance between “ball 1” and “ball 2”
with two different rod lengths L1 and L2. H1 and H2 can be
calculated as follows.

H1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12−R2

p
H2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L22−R2

p
(

ð13Þ

In which L1 and L2 are the nominal lengths of the ball
bar. Therefore, only parameter R can be easily changed
during the measurement. Selecting a proper value for
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parameter R to minimize the condition number of the ma-
trix MC can reduce the error influence resulted from the
inaccuracy of the measured results and the installation
location.

The condition number was evaluated with the change of R
(theH0 was set as 60mm; the nominal length of the ball bar L1
and L2 was set as 150 mm and 300 mm, respectively).

As shown in Fig. 3, the condition number increases dra-
matically when the value of R closes to 0 mm or 150 mm.
This is because when R = 0 mm or 150 mm, the cone test
will be converted into the circular test, and the sensitivity
of geometric error to the measurement results is changed
hugely. Hence, greater fluctuations of the solution were
produced. As the radius R added, the condition number
decreases smoothly until R = 136.5. After that, it rises up
again. Thus, there is an optimum value of R to achieve the
minimum condition number.

4.2 Influence of the installation error of “ball 1”

Supposed that the installation error of “ball 1” is denoted as
δe1 = (δex1, δey1, δez1). Then, the actual initial position of “ball
1” is (xc0 + δex1, yc0 + δey1, zc0 + δez1).

Substituting the actual initial position coordinate into Eq.
(7), take xs = 0, ys = 0, and zs =H0 +H1(or2), then the following
equation can be obtained:

xc0 þ δex1
yc0 þ δey1
zc0 þ δez1− H0 þ H1 or 2ð Þ

� �
− H0 þ H1 or 2ð Þ
� �

yc0 þ δey1
� �

H0 þ H1 or 2ð Þ
� �

xc0 þ δex1ð Þ

2
66664

3
77775

T δx
δy
δz
εx
εy

2
66664

3
77775

¼ ΔL Cð Þ*‖Pc Cð Þ−Ps‖ ð14Þ

Additional sick length changes caused by installation errors
of “ball 1” can be calculated as:

δex1
δey1
δez1
− H0 þ H1 or 2ð Þ
� �

δey1
H0 þ H1 or 2ð Þ
� �

δez1

2
66664

3
77775

T δx
δy
δz
εx
εy

2
66664

3
77775=‖Pc Cð Þ−Ps‖ ð15Þ

The molecule in the formula is all second-order terms of
small errors. Theoretically speaking, the molecule can be
abandoned. In another word, the ball bar length variation is
not sensitive to the installation errors of “ball 1.”

To demonstrate the influence on ball bar length change
caused by the installation errors of “ball 1,” the PDGEs of
the rotary axis are set as 0.05 mm/deg., H0 is set as 60 mm,
R is set as 135 mm, H1 = 65.384 mm, and H2 =
267.909 mm. The installation position of “ball 1” is (R,
0, H0).

As shown in Fig. 4, after setting the PDGE as a fixed
value, the additional ball bar length change is linearly pro-
portional to the installation errors of “ball 1.” The addition-
al ball bar length change is less than 0.05 μm when the
absolute value of installation error is less than 0.045 mm.
Therefore, when the installation error of “ball 1” is con-
trolled within a certain range, its influence on the identified
results can be ignored. The installation errors of “ball 1”
can only affect the original length of the ball bar with our
method. The same conclusion can be summarized with
setting the installation position of “ball 1” as (0, R, H0)
and (0, −R, H0).

4.3 Influence of the positioning error of “ball 2”

The positioning error of “ball 2” is expressed as
δe2 = (δex2, δey2, δez2). Then, the actual position of “ball 2” is
xs = δex2, ys = δey2, zs =H0 +H1(or2) + δez1.

The additional ball bar length change due to the positioning
error of “ball 2” can be obtained according to Eq. (7):
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Fig. 3 Simulation results for the
condition number influenced by
the parameter R
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−δex2cC−δey2sC;
δex2sC−δey2cC;
−δez2;
δey2zc0cC−δex2zc0sC−δez2yc0;
δez2xc0−δex2zc0cC−δey2zc0sC;
δex2yc0−δey2xc0
� �

cCþ
δex2xc0 þ δey2yc0
� �

sC

2
666666664

3
777777775

T

δx
δy
δz
εx
εy
εz

2
6666664

3
7777775
=‖Pc Cð Þ−Ps‖ ð16Þ

From Eq. (16), the rotation positioning error εz and the
rotation angle C can also affect the length change of ball bar.
Same as Section 4.2, the PDGEs of rotary axis are set as
0.05 mm/deg., H0 is set as 60 mm, R is set as 135 mm, and
H1 = 65.384 mm. And the influence on additional ball bar
length change due to positioning error of “ball 2” is displayed
in Fig. 5. The additional ball bar length change is impacted by
the positioning error of “ball 2,” rotation angle C, and the
installation location of “ball 1.” The additional ball bar length
change is sensitive to the positioning error in x and y direction
and is insensitive to the positioning error in z direction. Little
impact occurs when the direction of radial positioning error
is in accordance with the direction of the installation loca-
tion of “ball 1,” see in Fig. 5a, d. Contrarily, see in Fig. 5b,
c, when the direction of radial positioning error is vertical
to the direction of the installation location of “ball 1,” there
will have big impact on the measurement results. The same
conclusion of H2 = 267.909 mm can be summarized and
was not displayed here.

4.4 Uncertainty analysis

It is important to investigate the standard uncertainty of the
measured errors to ensure their confidence intervals. From
MCEC =ML, vector Ec can be derived as follows:

EC ¼ M−1
C ML ð17Þ

Expanding Eq. (17), the PDGEs can be derived as a rela-
tionship about ΔL, R, H0, H1, and H2. Hence, the indirect
combined standard uncertainties of the identified PDGEs
can be calculated according to the uncertainty transfer formu-
la. And the standard uncertainties of the double ball bar, the
installation and the positioning errors ΔR, ΔH0, ΔH1, and
ΔH2, affect the standard uncertainty of identified PDGEs.
The standard uncertainty ofΔL is determined by the accuracy
of double ball bar. And the standard uncertainties of R,H0,H1,
and H2 are determined by the positioning accuracy of transla-
tional axes and the dial indicator which is used to define the
position of the axis line of the rotary table. All contributors to
the measured PDGEs are ranged by measurement and experi-
ence, and the standard uncertainties of those contributors are
listed in Table 1 by assuming a rectangular distribution.

The geometric errors of the other axes do not affect the
standard uncertainty of the identified PDGEs because only
rotary axis C is driven during measurement. Then uncer-
tainties of the identified PDGEs are summarized in Table 2
according to the calculation method of combined uncertainty.
It can be found that the uncertainties of measured PDGEs are
really small by reducing the uncertainty contributor.

5 Measurement and verification experiment

Measurement and verification tests by the proposed method
were conducted on a five-axis machine tool. The machine tool
structure can be found in the published papers [29]. The test
instrument is QC10-H42116 obtained fromRenishawwith the
resolution of 0.1 μm and the accuracy of ± 1 μm (20 °C).

5.1 Measurement step

Firstly, the coordinate origin of IFCS was calibrated, and the
absolute coordinate system for measurement was set on the
center of the upper surface of the table. The rotation axis was
calibrated using the dial indicator.

Secondly, the magnetic socket was installed. The magnetic
socket was roughly adsorbed on the location of (X = R, Y = 0)
in the IFCS, and the fastening bolt on the magnetic socket was

Table 1 Standard uncertainty of the contributors

Contributor Range Standard uncertainty Unit

Accuracy of ball bar ± 1 0.577 μm

Accuracy of indicator ± 3 1.732 μm

Setup error ΔR ± 5 2.887 μm

Errors ΔH1, ΔH2, and ΔH0 ± 3 1.732 μm

Table 2 Uncertainties of
measured PDGEs PDGEs Standard uncertainty Coverage factor Measurement uncertainty Unit

δx 1.67 2 3.34 μm

δy 1.67 2 3.34 μm

δz 2.65 2 5.3 μm

εx 13.29 2 26.58 μrad

εy 13.29 2 26.58 μrad
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loosened for the activity within a certain range. Then the spin-
dle cup was positioned to the location (X = R, Y = 0) precisely.
After that, the Z-axis was driven to adsorb the “ball 1” slowly
in the magnetic socket on the rotary table. The Z coordinate at
this time was recorded as the height H0 of “ball 1”, and the
fastening bolts were locked. In this section, H0 = 60 mm.

Thirdly, spindle was moved to the coordinate (0, 0,
sqrt(L2−R2) +H0), and the two balls were adsorbed in the
magnetic cups linked by the ball bar, where L denotes the
nominal length of the ball bar and R denotes the installation
parameter of the magnetic socket on the table surface. In this
section, L = 150 and 300 mm, R = 135 mm.

Then, the test code was written and executed on the ma-
chine tool; only rotationC-axis was driven. The length change

of double ball bar was collected with ten tests. Finally, the
installation locations of the magnetic socket on the table sur-
face were adjusted to (0, R, H0) and (0, −R, H0). Similarly, the
tests were conducted with two different ball bar nominal
lengths, and measurement results of the ten tests were gath-
ered repeatedly. The six testing procedures are shown in
Fig. 6. The machine tool had been warmed up, and the entire
measuring process did not take long; hence, the effect of ther-
mal error was ignored.

5.2 Validation of error identification results

The identified PDGEs were displayed as shown in Fig. 7. It
can be seen that the angular errors εx and εy were relatively
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Fig. 6 The measurement
experiment
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small. The axial error δz is smaller than the radial errors δx
and δy.

According to Eq. (8), five groups of measurement results
can be used to identify the five PDGEs. The sixth measure-
ment results were used to verify the effectiveness of the pro-
posed method. As shown in Fig. 8, the measuring results were
almost consistent with the predictive values which were cal-
culated by the identified geometric errors and Eq. (8).

In order to further verify the advancement of this method,
error compensation tests using the third and fourth procedures
(see in Fig. 6c, d) were conducted. The identified five PDGEs
can be easily transferred to the positional errors in three coor-
dinate axes according to Eq. (4), i.e.,Δxc,Δyc, andΔzc. And
these three errors can be compensated by moving the three
translational axes during ball bar test. The ball bar length
change before and after compensation is depicted in Fig. 9.
The uncertainty was increased with the movements of trans-
lational axes, although the errors of translational axes were
compensated during the test. Moreover, the angular position-
ing error εz was not identified and compensated. Hence, the
compensation accuracy was impacted. However, the ball bar
length change was decreased significantly after compensation.

The comparison results in Fig. 8 and the compensation results
in Fig. 9 indicate that the proposed measurement method can
effectively identify the PDGEs of the rotary table.

6 Conclusions

A method to identify the PDGEs of rotary axis with only
single-axis driven was proposed. The cone test trajectory
using double ball bar was designed effectively to measure
and identify the PDGEs. Error identification model was built
according to the basic installation parameters and the mea-
sured length change of double ball bar. Besides, the installa-
tion parameter R was optimized by the condition number of
coefficient matrix to ensure the stability of identified results.
The uncertainty of the identified results was small through
single-axis driven. To further improve the accuracy and sta-
bility, error data behavior analysis and decomposition tracing
method based on big data-driven will be studied in the future.

Sensitivity of the installation errors was analyzed with our
proposed measurement method. It showed that the installation
errors of “ball 1” in the magnetic socket on rotary table had
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little impact on the identified results. On the contrary, the
identified results were greatly impacted by the installation
errors of “ball 2” on spindle, especially the radial positioning
error (x and y direction for rotary C-axis). Especially, biggest
influence of positioning error in x direction was found when
“ball 1” was installed in the coordinates (0, R, H0) and (0, −R,
H0), and at these tests, the positioning error in x direction
needs more attention than that in y direction. Similarly, biggest
influence of positioning error in y direction was found when
“ball 1” was installed in (R, 0, H0).
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