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Abstract
Planning support for industrial production systems aims at reducing production-related costs and environmental impacts
while creating required products with a desired quality. However, the increasing complexity of modern products and
production technology makes planning and the provision of appropriate methods and tools a challenging task. Isolated
measures for improving quality, cost or eco-efficiency, often result in problem shifting causing negative effects regarding
other goal criteria. For this reason, suitable methods and tools are required for the planning and evaluation of specific
improvement measures and for obtaining an interdisciplinary system understanding. This paper presents an approach,
which is capable of analyzing production systems considering multiple scales based on coupled simulation models. The
approach enables the evaluation of interactions between product units, processes, machines, technical building services, and
the building structure. The approach contains a generic framework for the simulation structure, detailed model concepts
for relevant production system elements, and a definition of interfaces between models for co-simulation. A case study
demonstrates an exemplary application of the simulation approach for the production of battery cells. The study shows how
the simulation enables evaluating the influences of different process configurations on intermediate product characteristics
as well as of different factory scenarios and seasonal effects on the energy demands. More specifically, on product and
process scale, the study revealed how different process routes and process parameters in electrode production affect the
characteristics of battery slurries and coated electrode foils along with production lead-times. On process chain and factory
scale, the study illustrates how the energy demands of machines and building services are influenced by machine operation
and outside weather conditions. Thus, the study provides insight into the capabilities of a multiscale simulation and how such
simulation may be applied to evaluate different producton system configurations, operation strategies, or facility locations.
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1 Introduction

Production is the major mechanism not only driving wealth
in many countries [1] but also enabling the availability
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of key technologies for transforming the energy and
mobility sector by providing products such as wind turbines,
photovoltaic modules, and batteries for electric vehicles.

On the one hand, production leads to the creation of
goods with demanded and innovative properties by using
resources such as machines, energy, and materials. On
the other hand, production causes various emissions to
the environment such as carbon dioxide, noise, waste,
or pollutants. Consequently, it is of interest to reduce
production-related costs and to minimize environmental
impacts while creating required products with a desired
quality.

However, the improvement of production systems and
products is a challenging task since manifold cause effect
relationships can lead to problem shifting between different
goal criteria within a production system or an entire value
chain [2, 3]. This is in particular the case for the production
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of complex products—such as large-scale batteries—which
consist of many different components and require various
processes, diverse production equipment, or specialized
factories. Well-intended improvement measures—such as
adjusted process parameters, use of new materials, or new
machines and tools—may result in local improvements but
could also cause undesired effects on other production
sectors, processes, product characteristics, or equipment
(e.g., technical building services (TBS)), leading to reduced
product quality, higher costs, or higher environmental
impacts overall.

In order to improve production systems without causing
problem shifting, production engineers and product design-
ers must have an interdisciplinary system understanding.
This includes knowledge about the interrelations between
process parameters, used materials, product quality and
properties, building ambient conditions, yield, production
system utilization and bottlenecks, production strategies
(e.g., batch or single product unit flow), TBS operation,
and resulting material and energy flows. Such knowledge
enables deliberating and evaluating the impacts of isolated
improvement measures on an entire production system.

For attaining this knowledge and for analyzing the
effects of planning and design decisions on a production
system and the resulting products in an integrated manner,
engineers and designers from different disciplines require
methods and tools. Such methods and tools must support in
gaining insight into the static and dynamic characteristics
of production system elements as well as their interactions
including the effects on resulting product properties.
In this regard, one powerful and promising method is
computer simulation. It is an established method in industry
and research, which allows examining the behavior of
complex dynamic systems. Many simulation concepts and
applications can be found for different planning tasks
and planning horizons as well as for selected individual
structural levels of a production system such as an
entire system, a production cell, machines and equipment,
processes, or factory buildings (e.g., [4, 5]). However,
simulation approaches allowing investigating the entire
production systems including all relevant system elements
and their interactions in detail are rare [6]. Moreover,
the required know-how and high effort related to the
development, employment, and maintenance of simulation
models is a barrier to the broad application of production
simulation in industrial planning practice [7]. Consequently,
there is the need for a simulation approach, which
allows imitating complete production systems holistically,
considering different scales [8] while been manageable and
applicable within industrial planning processes.

This paper presents a multiscale simulation concept,
which includes the relevant characteristics and elements of
production systems required for an integrated evaluation of

improvement measures regarding economic, environmental,
and technological goals. The main principle of a multiscale
simulation is the modeling of system elements on different
temporal and spatial scales and the exchange of the
generated results between scales during simulation runs.
An example: a production machine or process can be
modeled in detail considering the behavior of individual
components precisely for time periods of seconds, minutes,
or hours. The operation and utilization of the machine
is determined on a larger scale on process chain level
depending on the production program defined for days,
weeks, or months. The influence of heat emissions from
machines and outside weather conditions on the energy
demand of factory building heating or cooling can be
evaluated for larger time periods such as months or years.
Such multiscale simulations can provide insight into the
system dynamics of a production system and support the
holistic evaluation of improvement measures.

The remainder of this paper provides theoretical back-
ground about multiscale modeling and simulation as well as
the relevant state of research, describes the developed sim-
ulation concept, presents an implemented simulation core
model as the basis for specific simulation applications, and
demonstrates the application and advantages of the con-
cept within a case study exemplary for the production of
lithium-ion battery cells.

2 Background

2.1 Simulation for production

Simulation is the imitation of an existing or planned real-
world system over time based on a model. There are
different simulation model types (deterministic/stochastic,
discrete/continuous, static/dynamic), approaches (discrete
event (DE), dynamic systems (DS), agent-based (AB),
system dynamics (SD)), and software tools which have to
be selected or combined with a specific simulation goal in
mind [9, 10].

In production context, different types of simulation
models and approaches are used depending on the scope
and task of a simulation [5, 9, 11]. For example, detailed
machine and process models use DS simulation, which
are based on mathematical models to describe continuous
state variables of a system. Material flows in discrete
process chains are usually represented by DE models, which
change the state of a system only at events and discrete
points in time. Production planning tasks (e.g., resource
allocation or assembly line balancing) are often supported
by AB simulations which describe the interactions of
decentralized individual units (agents) such as products or
resources. Supply chain management often utilizes AB or
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SD simulation to analyze dynamics of supply, demand and
inventories with a higher level of abstraction. Furthermore,
simulation approaches can also be combined in order to
consider different system behaviors within one model or
to assemble models for multiple systems. For example, the
combination of a DE process chain model with DS process
models enables assessing the production performance and
resulting product characteristics in more detail (e.g., [12]).
In process industries (e.g., chemical or pharmaceutical
industries), DS simulation (flowsheet simulation) is widely
used to simulate separation and transformation processes
with continuous material and energy flows [13, 14].
However, since modern technologies, such as batteries,
require discrete and continuous production processes, the
border between process and discrete production industries
becomes blurry.

The combination of models for all elements of a
production system including product units within one
simulation would enable analyzing dependencies between
the involved system elements and the effects of local
improvement measures on the overall system. Moreover,
a real-time simulation of the entire factories could run
simultaneously to the real production operation and
immediately provide results for short-term decision-making
[15]. However, most simulation applications aim at isolated
production system elements (e.g., processes, machines and
equipment, process chains). In order to simulate an entire
production system and to realize an integrated evaluation of
improvement measures, innovative simulation approaches
must pursue a multiscale perspective considering all
structures and processes.

2.2 Multiscale production simulation

Multiscale modeling and simulation is an established
method in many disciplines such as material science (e.g.,
[16, 17]), computer science (e.g., [18]), and biology (e.g.,
[19]). Its basic idea is replicating the behavior of a system by
separately modeling different scales, each by using the most
suitable methods and tools. In the same way as for materials
and other physical or chemical systems, production systems
can be observed at different spatial and temporal scales.
Spatial scales range from unit processes over process
chains and TBS up to the building (e.g., [20–23]), all of
which can be analyzed for periods (temporal scales) such
as seconds, minutes, and hours or up to several years
(e.g., [8]). Figure 1 sets scales for a production system in
perspective relative to commonly used scales for multiscale
analysis.

The elements of a production system and their behavior
can be simulated in different ways. Figure 2 presents
a structure of simulation classes for different production
system elements with respect to the degree of abstraction

Fig. 1 Common scales for multiscale material analysis extended by
manufacturing system; according to [6], inspired by [17, 24, 25]

and level of detail, simulation approaches, and model
characteristics.

Various simulation approaches exist combining different
scales of a production system. The concept Integrated
Computational Materials Engineering (ICME) refers to
modeling and simulation approaches which focus on the
behavior and structure of materials as well as the effects
of their processing (e.g., [26–28]). In the research field
of Process Machine Interaction (PMI), simulation is used
for analyzing interactions between processes and related
machine tools such as impacts of vibrations or temperature
on process stability and product quality [29, 30]. Related
approaches consider machine structures along with process
physics and the interaction with a product unit. Other
approaches address the evaluation of energy demands of
machine tools by combining simulation models for machine
components and processes [31, 32]. On a larger scale,
there are approaches, which combine multiple detailed
models for machines or processes in order to determine
the energy demand [33, 34] or the effects of process on
product properties [12, 35] within the entire process chains.
Combined models for process chains are also utilized for
resource allocation and job scheduling with respect to
economic criteria such as resource utilization or lead and
delivery times (e.g., [36]). Similarly, combined models
describing machines and processes including specific
material flows are created to generate data for life cycle
assessment studies in order to evaluate the environmental
impacts of production [37, 38]. Detailed process chain
simulations have also been further extended towards larger

Fig. 2 Structure of simulation models for different manufacturing
system elements; figure adapted from [6] and inspired by [10] and [4]
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scales considering TBS and peripheral auxiliary equipment.
This allows to determine indirect energy demands based on
production operation as well as to derive energy efficient
production schedules and hot spots for improvement within
a production system (e.g., [39–41]) or product designs [42].
On an even larger scale, building simulation models are
used in combination with machine and TBS models to study
the effects of machine operation such as heat emissions
and weather conditions of different factory locations on
the energy efficiency of manufacturing systems (project
ENOPA [43], project INFO (e.g., [44–48]), project THERM
[49, 50]). Simulation for buildings has their origin in the
context of building engineering, where various multiscale
simulation approaches have been developed addressing the
interactions between the building structures, HVAC systems
and the operations (e.g., heat emissions of equipment or
humans) within building zones (e.g., [51, 52]). A detailed
discussion of the state of research in multiscale production
simulation is presented in [6] and [39].

The actual combination of simulation models for
production system elements can be realized by using
different model integration or coupling strategies. Often,
models can be integrated within other models or are
implemented in the same software tool in order to
avoid or reduce the effort of model connection. Models
can also be implemented within different software and
directly connected to share results after model execution or
during simulation runs. Additionally, especially if different
software tools are used for multiple models, coordinating
middleware software can be used to synchronize the
execution and data exchange between models within a co-
simulation. However, despite allowing the use of the most
suitable software tool for each model, co-simulation is
seldom used and mostly utilized in simulations addressing
small or large scales of production systems (process and
machine interaction or building energy simulation).

2.3 Summary and research demand

The review of existing simulation approaches and publi-
cations revealed that there is a broad spectrum of simu-
lation concepts and applications addressing different plan-
ning tasks and production scales. The idea of multiscale
production simulation provides various advantages for the
planning and improvement of production systems. How-
ever, no identified simulation approach considers all scales
of a production system. Existing simulation models com-
bining models for TBS and building structures with mod-
els for production operations mostly simplify the product,
process, and machine scales. Also, simulations addressing
process physics and product characteristics as well as tradi-
tional production objectives within a process chain usually
do not include interactions with the building environment

or TBS. Moreover, no found approach supports multiple
planning perspectives and the evaluation of technological,
economic, and environmental objectives in an integrated
manner.

Table 1 summarizes the comparison of research con-
tributions regarding the addressed scales, the use of co-
simulation, and the contribution to the methodology of
multiscale simulation. The table shows that no presented
simulation approach is capable to represent all scales
of a production system which would be required to
achieve a holistic evaluation of multiple planning perspec-
tives. Furthermore, only a few contributions utilize co-
simulation or model coupling to connect models for differ-
ent scale. And only very few contributions provide method-
ological guidance towards the development of multiscale
simulations.

Consequently, there is the need for a new simulation
approach which enables the development of holistic
multiscale production system simulations which support
multiple planning perspectives while considering all scales
of a production system. The new concept must address the
following main research demands:

– A process chain model must be developed as the core
of a multiscale production simulation to define specific
operational schedules as a basis for the determination of
utilization, energy and media demands, TBS operation,
and effects on building ambient condition. The model
must allow to derive throughput times and yield of
jobs or individual product units, aggregated energy
demands, as well as costs for machining and used
materials. This is needed for the evaluation of economic
objectives.

– The process chain model must allow to include specific
detailed machine models to enable the evaluation of
influences of machine parameters or configurations on
performance indicators on system level.

– Product quality and characteristics must be considered
in order to evaluate technological objectives. Process
models need to describe the impacts of processes on
characteristics of individual product units considering
relevant influences such as disturbances from machines,
product type-specific process parameters, and ambient
conditions.

– A new framework must define a modular multi-
scale production model structure with clear interfaces
between sub-models which allows to add or exchange
sub-models in order to achieve simulation results
for operational, tactical, or strategic planning tasks.
Whereas at an early planning stage, models and simu-
lation results can be of less detailed character, specific
operational decisions may require more accurate results
in high resolution.
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Table 1 Summary of research contributions (Harvey Balls indicate the degree of the consideration of production system scales and the use of
co-simulation and of a methodological contribution)

Contribution Scales Co-simulation Methodology

Product Process Machine Process chain TBS Building Model coupling

Brecher et al. [29, 30]

Abele et al. [31]

Eisele [32]

Schrems [33]

Weinert [34]

Liang [12]

Colledani [35]

Cho [36]

Heilala et al. [37]

Sproedt [38]

Seow and Rahimifard [42]

Thiede et al. [39, 40]

ENOPA (e.g., [43])

INFO (e.g., [44, 45])

Bleicher et al. [48]

THERM (e.g., [49])

Wetter (e.g.,[52])

3 Concept

The purpose of a multiscale simulation for production sys-
tems is supporting an integrated planning and evaluation of
improvement measures regarding product quality, produc-
tion costs, and environmental impacts, as well as supporting
the generation of an interdisciplinary system understand-
ing. It shall foster the cooperation of experts from differ-
ent planning disciplines by combining their expertise and
knowledge into one holistic approach.

Figure 3 shows how the disciplines involved in the
development and improvement of a production system can
utilize a multiscale simulation in order to evaluate specific
improvement measures virtually and to generate results
indicating the potential impacts on production system level.

The integration of specialized simulation models into
a multiscale simulation requires the definition of specific
inputs and outputs considering each scale. For this purpose,
the concept provides a fundamental structure, which is flex-
ibly adaptable to different production system configurations
and product types. This includes the description of system
boundaries, a framework for relevant system elements, and
specific model concepts for their behavior and interactions.

3.1 Framework

The generic framework, shown in Fig. 4, structures
production system elements into simulation sub-models and
proposes interfaces between these sub-models to ensure

Fig. 3 Scheme of a multiscale
simulation of battery production
systems; based on [6]
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Fig. 4 Framework for multiscale
simulation of manufacturing
systems; based on [6]

a lean information flow. It is based on the hierarchical
structure of production systems considering spatial and
temporal scales. The framework is assembled from layered
simulation model categories, exemplary model instances,
and generic potential flows of information.

The first upper layer contains models for individual
machines, related processes, and products of different
product types as well as individual workers. The elements
of the first layer are part of a process chain (2nd
layer) of which the operation defines the activity of each
individual element. These elements of a process chain
enable describing dynamic aspects such as the material
flow of product units between processes, the modification
of product characteristics within processes, and production
resource utilization. Since a process chain model has to
have interfaces to most other models, it can act as a
core model which aggregates information and coordinates
the information flows between models on different scales.
The operation of process chains and factories requires
different TBS. These TBS can be differentiated between
machine-related services (TBSM , e.g., compressed air
supply) and building-related services (TBSB , e.g., air
conditioning, lighting). Thus, TBS are on a larger scale
compared to machines but on a smaller scale compared
to the building. For simplification, machine-specific TBS
(e.g., air suction) are part of related machine models. A
process chains with its elements and TBS are located
within a factory building, which forms the lowest model

layer of the framework. All sub-models are embedded
within a simulation infrastructure which serves for model
coupling and provides mechanisms for data exchange
and synchronization of sub-models. This also includes
interfaces to required data sources (e.g., energy demand data
of machines or building construction data) and for the export
of simulation results. A the derivation of the framework
regarding the definition of system boundaries, hierarchy,
and scales as well as of the sub-model concepts is described
in [6].

3.2 Sub-models

The sub-models representing individual production system
elements must provide specific functionality, results, as
well as defined inputs and outputs in order to enhance
and to interact within a multiscale production simulation.
The inherent logic of each sub-model must be developed
for each particular system element but there are generic
considerations as guidance for their development. The
following paragraphs summarize the proposed formal
descriptions of sub-models for process chains, machines,
processes, and products, as well as TBS and buildings.

3.2.1 Process chain

The purpose of a process chain model is the representation
of material flows and the related timing of machine
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operations in order to derive performance indicators such as
utilization or lead times and to gain insight into bottlenecks
or non-productive timeshares.

Process chain elements and material flow The model must
allow the specification of a process chain, which consists
of a number (MN) of machines or workstations, each
with a buffer (B). A process chain can produce a number
(PTN) of different product types (PT), each of which needs
a finite sequence of production steps (PS). These steps
indicate the order of required processes for each product
type and each step must be assigned to (at least) one
machine. This allocation and the order of production steps
determine the possible routing of product units. However,
the material flow (MF) of product units differs for single
unit or batch production strategies. Single unit flow means
that a single product unit of an associated job (J) moves
to the next suitable machine as soon as it is finished with
processing. Batch production means that all product units
of a job are processed simultaneously on a machine or
are buffered before moving to the next machine until all
units are finished with processing. In this second case, all
or many product units of a job move between machines
at once. Since the accurate modeling of single unit or
batch processing is important to determine the utilization of
machines and the material flows, the process chain model
must allow simulating both types of processing. For this
purpose, the concept of processing units (PU) is introduced.
A processing unit may represent a single product unit
or a batch and they are the entities in the model which
are processed within a machine and which move between
machines during simulation. Consequently, a job can consist
of one processing unit (one batch or single product unit)
or multiple processing units (multiple product units). This
model feature enables a flexible configuration of different
process chains and job types as well as to define converging
and diverging material flows. Figure 5 shows a schematic of
the process chain elements within a shop floor coordinate
system. The same logic is also usable for the representation
of continuous processes. In such case, multiple machines
can be directly linked, representing different stages of a
continuous production facility, and product units represent
fractions of a continuous product stream.

Fig. 5 Process chain structure with machines (M), buffers (B),
material flows (MF), and processing units (PU), according to [6]

In addition, human workers can be included within a
process chain as agents with individual skills, machine
allocation, movement paths, and work intensity levels.

Configuration and control strategies A flexible model
structure should allow to model different process chain
configurations such as sequential production lines for
similar products or layouts for flexible and agile production
for a multiple product types. An example of a configuration
for agile production is the so-called matrix-production, in
which machines offer multiple and different production
capabilities and the allocation of product units to machines
is not predetermined. This avoids a fixed tact time and
aims at increasing the utilization of a process chain while
facing high product variety and uncertain demands [53,
54]. Such configuration highlights the importance of a
flexible model structure, which can be based on individual
machine and product agents. Machine agents provide the
processing capabilities, which can be requested by product
agents, which select the most suitable machines [53, 55].
The selection of machines for processing units can be either
centralized with a global production control strategy (e.g.,
aiming at high utilization) or decentralized with specific
decision rules and criteria for each individual processing
unit agent (e.g., shortest lead time). The control algorithms
within the process chain model require input information
from machine agents to consider operational states and the
availability of machines. The agent-based approach enables
to replicate existing process chains as realistic as possible
and also to model innovative process chain configurations.

Energy flows The determination of energy demands is nec-
essary for the evaluation of energy costs and environmental
impacts. The central character of the process chain models
within the multiscale simulation facilitates the represen-
tation and aggregation of energy demands and flows of
and between various production system elements. Figure 6
shows exemplary energy flows within a production system.

The process chain model can determine the overall
energy demand by considering the power demands of
machines and TBS over time, which directly depend on the

Fig. 6 Exemplary energy flows during production operation (PD:
electrical power demand, CAD: compressed air demand, CAG:
compressed air generation, Qp: heat flow)
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production operation. Examples of relevant TBS systems
are compressed air generation, lighting, and HVAC. The
power demands of compressed air generation and HVAC
depend on operational factors such as the aggregated
compressed air demand of all machines or the heat
emissions (of machines, lights, or humans) to the building
environment. The specific power demands of machines
and TBS systems must be determined in specific detailed
models and communicated to the process chain model for
the overall evaluation. Within the process chain model,
is also possible to identify non-productive timeshares and
energy demands as well as to allocate the direct and indirect
energy demands to individual product units (embodied
energy).

Production costs Besides the energy demand, relevant
factors for the calculation of production costs are the
utilization of the process chain as well as costs for
machining, inventory, labor, and used materials. The
process chain model can determine the utilization and
inventory levels based on operational states of machines
and the defined processing times for each product type
and production step. The agent-based approach allows
assigning material demands to processing units in order to
perform a dynamic material flow cost accounting. Likewise,
machining costs (based on a machine hour rate) can be
assigned to a product unit depending on the time spent on
a machine. Moreover, if workers are considered within the
process chain model, it is possible to determine how many
workers are required to operate the given set of machines
and equipment. In addition, the model allows determining
the achievable output of product units per time-period in
order to allocate indirect costs (e.g., overall cost of TBS) to
all finished product units.

3.2.2 Machines

Machine models describe the behavior of machines within
a process chain along with the related energy and media
demand profiles and heat emissions. Machine models can
be realized with different levels of detail. For the use in the
multiscale simulation, machine models must at least be able
to represent generic operational states of a machine (e.g., on,
idle, processing), relevant parameters, and characteristics
associated with these states (power and compressed air
demand, heat emissions), as well as the transition conditions
between these states (e.g., ramped-up, processing finished)
and overall failure behavior (e.g., probability distributions
for mean time to failure (MTTF) and repair (MTTR));
similar for example to [34, 40]. Whereas the determination
of electrical power demand and compressed air demand
is mostly accurate enough as a discrete average value for
each operational state resulting in a demand profile, heat

emissions must be calculated continuously since a warm
machine emits heat also when it is already turned off or to
idle state [43].

3.2.3 Products and processes

Each processing unit (product agent) contains a sub-
model, which stores and provides information about the
product type-specific required production steps, processes,
and related product specifications. Moreover, the agent
describes the evolution of product characteristics and
tracks the progress of production along a process chain.
Each product type is characterized by a specific set of
product characteristics C (C = 1, . . . , CNPC) which are
transformed along the production steps. During production,
each processing unit can be in different states of which
state 0 describes the state prior to production and the
last state NPS refers to the finished product. Figure 7
illustrates a product agent with generic product states and
how characteristics can be transformed or created.

If multiple processing units have been assembled into
the product characteristics have to be transferred and
combined within the absorbing processing unit. Similarly,
if a processing unit is divided into multiple units, the
characteristics have to be assigned to all units accordingly.

The specific creation pr transformation of product char-
acteristics is defined within separate sub-models. For each
process, process models describe the resulting characteris-
tics based on various influencing factors such as process
parameters, already existing product characteristics, envi-
ronmental conditions, machine tolerances and disturbances,
or material properties. A process model must be connected
to a related machine model to provide required machining
parameters and to get inputs about disturbances and other
influences on the processing results. Moreover, a process
model must connect to product agents to receive existing
product characteristics as an input and to provide the result-
ing product characteristics to the next product state. Figure 8
shows the integration and interaction of product agents and
process models.

Fig. 7 Product agent with discrete product states and product
characteristics (*: created; ’: modified)
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Fig. 8 Interaction of process and product models within process chain
structure

Process models can represent processing tolerances and
deviations of the processing results for each productions
step. This enables observing the impacts of adjusted process
parameters or modified machine tolerances on product
quality and related economic aspects (e.g., higher/lower
yield). In addition, the agent-based structure allows the
tracking of product characteristics and thus analyzing
amplifying or damping effects of process tolerances on
specific product characteristics along entire process chains.
In this regard, three different types of variation of product
characteristics play an important role. First, processing
results for product characteristics can vary for different
processing units (e.g., processing unit PU1 has a different
value for product characteristic C4 (e.g., weight) than PU2,
although both are of the same product type). Second, a
product characteristic can vary within one processing unit
(e.g., the coating thickness of a surface is not constant
for one processing unit) but this variation is similar to all
processing units of the same type. Third, variations of a
product characteristic occur within a processing unit and
between processing units. Figure 9 illustrates the types of
variation.

Variations of resulting product characteristics within a
process can be modeled by using probability functions,
which have to be determined by theoretical considerations
or empirical data. Distributions are characterized by the
location of an expected value along with the a spread and
shape of the probability function. Since product agents
provide information about existing product characteristics,
the simulation is able to evaluate the effects of these existing
characteristics on the variations. Three different scenarios

Fig. 9 Types of variation for a product characteristic: between
different processing units (left), within processing units (middle),
within and between processing units (right)

should be considered in the modeling of variations:
First, the variation of one characteristic within a process
is described by a defined probability function. Second,
the spread and shape of the distribution depends on
already existing product characteristics. Third, existing
characteristics influence the expected value as well as the
spread and shape of the probability function for a resulting
characteristic. These three types of effects are illustrated in
Fig. 10.

Different types of process models can be used depending
on the available process knowledge. Examples of model
types are deterministic or empirical parameter models,
empirical stochastic mathematical models, and numerical
models based on process physics. In addition, physical and
empirical models can also be combined, as for example
shown for the modeling of grinding processes [56].

3.2.4 Technical building services

Relevant TBS systems, which should be included within
a multiscale simulation, are compressed air generation
(CAG), HVAC, and lighting.

Compressed air generation Compressed air is generated in
compressors, stored within a tank, and provided to machines
or equipment via a system of pipes and valves. In addition,
CAG systems may utilize filters or other air treatment
devices. The pressure within the CAG system has to be
kept stable within a defined range. This is realized with
specific configurations of compressors according to control
strategies. A model (typically a numerical DS simulation)
can determine the system pressure and the energy demands
for CAG depending on the total compressed air demand
provided by the process chain model (similar to [40, 57]).

HVAC Depending on specific requirements for inside
ambient conditions, building zones must be ventilated and
the air may have to be cooled, heated, or dehumidified (air
conditioning). For these purposes, the so-called air handling
units (AHU) are installed. Specific AHU may be required
for dry or clean room conditions. Simulation models of

Fig. 10 Effects of existing product characteristics on process results:
Product characteristic depends only on probability (left), existing
characteristics influence distribution (middle), existing characteristics
influence expected value and distribution (right)
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HVAC equipment or AHU should determine the required
operation and related energy demands depending on desired
ambient conditions.

Lighting Building zones must be enlightened during
production operation and different areas may have specific
requirements regarding lighting intensity. In addition, light
sources can be of different type, efficiency, and lifetime.
These factors influence the overall cost and energy demands
of lighting. It is of interest to determine the duration of usage
per building zone as well as the energy demands.

3.2.5 Building

A factory building is usually divided into several building
zones which are characterized by different thermal behav-
ior and ambient condition requirements (e.g., regarding
temperature, cleanness, humidity). A building simulation
(typically based on physical numerical models) enables
determining the indoor ambient conditions considering the

building construction (e.g., ground plan, number of floors
or windows, used materials) as well as internal (e.g., heat
emissions depending on production operation) and external
(e.g., weather conditions based on location) influences. In
contrast to static calculations of extreme thermal conditions
within building zones, which are suitable for the design of
HVAC systems, simulations must continuously determine
the ambient conditions to derive the specific operations
of HVAC systems over time. Different existing building
simulation tools can be used for this purpose [58].

3.3 Model connection and coupling

The various models must be connected to exchange infor-
mation during run-time of the multiscale simulation. This
requires a definition of interfaces between models and the
selection of strategies for synchronization and informa-
tion exchange. A standardized set of interfaces between
model classes allows the practical re-use of existing mod-
els in the larger context of a multiscale simulation, which
results in a reduced effort for model development. This

Fig. 11 Structure and exchanged variables of total multiscale model [6]
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is in particular relevant for the collaboration of differ-
ent planning disciplines, which use specialized simulation
models.

Figure 11 illustrates generic interfaces between the
exemplary model instances according to the previously
defined framework.

The information flows between the models are indicated
as output and input variables (output � → � input).
A product agent provides specifications and existing
product characteristics to process models. Process models
provide required machine parameters to machine models
and receive information about machine disturbances. They
also describe the modification of product characteristics,
which are stored in the respective product agent. Machine
models communicate their operational states, power, and
compressed air demands, as well as heat emissions to the
process chain model. The process chain level coordinates
the activity of workers, forwards the total compressed air
demand to the CAG model and the total heat emissions
to the building model, sets signals for the lighting
operation, and aggregates all energy and material demands
for later result evaluation. The building model provides
information about the ambient conditions for each zone to
the HVAC model as well as to process models—through
the process chain model—which consider environmental
conditions within the determination of resulting product
characteristics. The HVAC model returns information about
the HVAC operation to the building model and provides the
power demand to the process chain model. The connection
of models within a multiscale simulation environment can
be realized by different coupling concepts such as offline or
direct coupling, model integration or co-simulation, which
are shown in Fig. 12.

Offline coupling is only usable if there are two or
few models and no parallel effects have to be considered,
since simulation results of one model are only available
after model execution. Model integration is suitable if
models can be implemented within the same software. As
an example, models of machines and TBS systems are
integrated within a process chain model (e.g., [40, 42]). This
avoids issues resulting from model synchronization since
the same simulation time is used. Direct coupling of models

Fig. 12 Concepts for the connection of models [6, 39]

during runtime may be feasible if only few software tools
have to be connected and one model can act as a coordinator.
An example is the connection of a numeric process model
to a machine model. The machine model can call the
process model, pause, and resume after the process model
has determined the resulting product characteristics of the
processed product unit. Co-simulation using a coordinating
middleware software is reasonable if multiple software tools
have to be connected (e.g., a DE simulation tool for a
process chain model and a DS simulation tool for a process
or building simulation) [6].

3.4 Result evaluation

The generated simulation results enable gaining insight into
cause-effect relationships between the modeled elements of
a production system on different scales. For that purpose,
the large amount of data resulting from the connected
simulation models has to be processed to specific key
performance indicators. These indicators should describe
the overall performance of a production system as well as
the performance and behavior of system elements. Since
individual system elements may have very different relevant
criteria and requirements regarding result resolution, an
overall evaluation also requires aggregated indicators
on larger scales. As an example, the overall energy
demand of a production system must be determined by
summing up the energy demands of all machines and
TBS systems. Moreover, on system level, the total material
consumption—divided into raw and auxiliary materials—
can be determined by the material demands of each
process. Considering different energy carriers and material
types allows calculating the environmental impacts from
energy usage (e.g., regarding global warming potential in
equivalent CO2 emissions). The total energy and material
demand can be allocated to the number of finished product
units in order to determine the specific demands. Each job
and product unit can be characterized by a lead-time as
well as value adding and non-value adding timeshares and
specific energy demands. Moreover, the simulation enables
to generate dynamic value stream representations for each
product unit, job, or product type, which allow evaluating
bottlenecks and hot spots. Such representation is just an
example of how simulation results can be visualized for
decision makers from different planning disciplines.

3.5 Model validation

The validation of simulation models is an important step
within model development. An estabished method for the
validation of simulation results is the comparison with
historical data. However, for multiscale simulations of the
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entire production systems, the amount of historical data
required for a sufficient validation of the entire model
would be very large and hard to acquire. Moreover, the
validation can be challenging due to the large number of
interactions and interdependencies between the simulated
variables. For these reasons, it is necessary to perform a
solid validation for individual sub models and each interface
between models. A helpful technique in this context is a
sensitivity analysis combined with extreme value tests. This
clarifies how results of sub-models change based on the
range of possible input values generated from other models.

4 Application for battery cell production

Battery cells are the core technology for future electric
vehicles. Moreover, the production costs of a battery system
can take up to 40% of the total production cost of a
vehicle [59], which makes batteries a significant cost
driver. And whereas about 75% of the battery cell costs
are determined by the utilized materials, about 25% of
the cost results from cell production [60]. Also, Yuan et
al. report that about 30 GJ of the energy demand for
the production of a battery cell (the so-called embodied
energy) result from raw material production whereas about
60 GJ are related to the actual cell production [14].
These numbers must be improved while increasing the
production capacity of battery cells fulfilling the growing
global demand. Väyrynen and Salminen have calculated
that an annual production capacity of 106 electric vehicles
would require 10 battery cell factories which a production
capacity of 3 GWh each [13]. Consequently, there will
be a growing global production capacity as well as strong
global competition within the battery cell market. Thus,
it is of great importance to increase the efficiency of
cell production facilities. This case study shows how a
multiscale simulation approach can be applied to such
production system.

4.1 Model environment

The exemplary simulation is centered on a process chain
core model, which represents the shop floor operation of the
observed lab-scale facility. It contains models for machines
and processes, products, workers, and lighting; it defines
the building zones according to a ground floor plan; and it
provides interfaces to a CAG model and a combined HVAC
and building model. A middleware software (TISC Suite)
is used to couple the models. Figure 13 shows the model
structure of the simulation environment.

The process chain model is developed within the soft-
ware AnyLogic, which is a multi-method simulation envi-
ronment. Inside the model, classes for machines, products,

Fig. 13 Model structure for exemplary simulation: A process chain
core model is connected with a compressed air generation system
model (CAG) and a building model by using a middleware software

and workers are implemented as populations of agents.
Machines are located in the shop floor layout and prod-
uct units and workers can freely move within the differ-
ent building zones. Each agent contains the relevant logic
and stores parameters and variables to represent individ-
ual characteristics. This enables to model specific machine
properties based on a generic schema and to integrate
process models into machine models. The CAG model
receives the total compressed air demand and determines
the compressor operation along with the resulting power
demand profile. The model provides the system pressure
and power demand. The model for the HVAC system and
the building is realized in the software Simulink based on
the International building physics toolbox (IBPT). Weather
information is prepared from TRY-files for Germany. For
validation purpose, some sub-models of this multiscale sim-
ulations, such as individual machine models, have been
validated based on available production data from the
observed lab facility. However, since not all model ele-
ments could be validated based on historical data due to
the lack of sufficient data sets, many sub-models have
been verified and validated via plausibility checks and sen-
sitivity analyses. For this reason, this study serves as a
demonstration of the principles of a multiscale simula-
tion rather than presenting specific numerical simulation
results.

For the purpose of illustration, Fig. 14 presents screen-
shots of the implemented and connected simulation models.
The simulation environment can be used to evaluate the
overall system behavior as well as the effects of specific
improvement measures on different scales.

4.2 Product and process scale

Product agents store information about product characteris-
tics determined by process models. This allows evaluating
the effects of processes on product characteristics as well as
the influences of existing product characteristics and process
tolerances on subsequent characteristics. An example from
the battery electrode production illustrates the capabilities
of the simulation approach on product and process scale:
Electrodes for battery cells are produced in batches along a
process chain consisting of several processes starting with
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Fig. 14 Screenshot of process chain model with model instances of machines, processing units, and workers. Building zones are defined based
on building ground plan and entities as well as heat emissions are assigned accordingly

dry and wet mixing of raw materials, coating of the resulting
slurry onto a current collector foil, and drying of the wet
electrode foil. All these processes influence the resulting
product characteristics depending on the specific process
configuration, formulations and parameters [61, 62]. For
example, the mixing processes determine the quality of the
produced slurry as well as important properties of this
intermediate product, such as the viscosity of the slurry
which subsequently effects the coating process and the
resulting coating layer of the electrode foil [63, 64]. Thus,
not only intermediate product properties are modified by
process variations, but also substantial product properties
such as density, porosity, and electrical resistance of the
electrodes after coating and drying. Figure 15 shows
the first processes of electrode production with relevant
characteristics of intermediate products.

This following presentation of the simulation functional-
ity observes only the modification of dry and wet mixing
(dispersing) processes. The goal is to explain how the simu-
lation can be used to evaluate the effects of different process
configurations on the viscosity of the created slurry as well
as on the characteristics of the produced electrode and the
production system performance. For this purpose, four dif-
ferent process configurations for the slurry production have
been considered, whereas the coating and drying processes
as well as their parameters remain constant.

In the first reference scenario (REF), active materials
(AM), binder (B), and carbon black (CB) are first combined
in a dry mixing process before NMP solvent is added in
a dispersing process. In the second scenario (KN), NMP
solvent is gradually added in multiple dispersing steps. In
the third scenario (BM), instead of metering B and NMP

Fig. 15 Processes of electrode
manufacturing and related
characteristics of materials and
intermediate products
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Fig. 16 Illustration of four scenarios for slurry production: reference,
knead (KN), BM, CB

separately, a binder matrix is added in the dispersing step.
In the last scenario (CB), forgoing the dry mixing step, CB
is dispersed in a binder matrix and AM is dispersed herein
subsequently. Figure 16 illustrates the process routes and
configuration for the four scenarios.

Each scenario results in different processing times for
the slurry production and power demand profiles of the
used planetary mixer (since the total energy input into the
slurry is kept constant in this example, only the power
demand profile but not the energy demand is changed).
The simulation allows evaluating these effects on resulting
product characteristics, lead times for electrode production
as well as the equipment utilization and power demand
profiles of the entire factory .

Table 2 presents exemplary obtainable results for the
defined scenarios.

The lead-time (LT) represents the overall time required
for the production of one electrode batch from the first
mixing step to the coated electrode foil. The time is only
effected by the different processing times of the dry and
wet mixing steps. The process time for coating and drying
as well as time shares for handling and setup are kept
constant. In general, the required process times influence
the utilization of the production system and determine
the possible quantity of electrode batches, which can be
produced during an observed time period (e.g., a shift or a
week). The resulting product characteristics are determined
based on empirical process models. Measurements from
experiments have been used to derive regression functions,
which provide resulting characteristics based on process
parameters. These models also contain information about
the process tolerances in terms of the related standard
deviation for the resulting characteristics. This allows
assigning values for product characteristics for each product
unit (batch) also based on probability functions during the
simulation. The values show, that the process configuration
from scenario KN results in a shorter lead-time, a lower
viscosity of the slurry, a higher density, and a low electrical
resistance of the electrode. And although these numerical
values are only valid for specific assumptions, they show
which types of simulation results can be acquired and how
they enable a combined evaluation of different process
configurations on product quality and production cost (e.g.,
as in [60]). The specific effects of process parameters on the
machines operation as well as on the resulting utilization
and power demand of the entire production system can be
analyzed on process chain and factory scale.

4.3 Process chain and factory scale

The simulation allows determining the overall performance
of the facility measured by different aggregated KPI.
The flow and processing of product units determines the
utilization and power demand profiles of the installed
equipment. This also enables detecting bottlenecks and lead
times of different jobs. Moreover, it is possible to observe
the effects of heat emissions from machines as well as of

Table 2 Results for scenarios (S) of electrode production: Lead time (LT) per batch, viscosity (visc.), density (dens.), el. resistance (resist.), each
with standard deviation (stdw)

S LT [min] visc.; stdw. [Pa*s] dens.; stdw. [g/cm3] resist.; stdw. [Ohm]

REF 274 2.86; 0.10 2.29; 0.069 2.38; 0.09

KN 250 1.28; 0.05 2.48; 0.074 1.71; 0.06

BM 275 2.95; 0.10 2.28; 0.069 2.40; 0.09

CB 284 5.37; 0.20 2.17; 0.065 2.79; 0.10
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Fig. 17 Exemplary plots of power demands of equipment for one
scenario during one month of production (including ramp-up and
ramp-down). From top to bottom: power demand (watts) of machines,

heating and cooling (cooling is shown as negative heating power
demand), dry room (ventilation, dehumidification)

weather conditions on the building ambient conditions and
required HVAC operation.

Different planning and evaluation tasks can be addressed
by specific simulation runs, in which the effects of
specific measures on the production system are determined.
Examples of evaluation tasks are as follows: evaluation
of different drying temperatures and drying times (to
improve the drying process), additional machines (to
address bottlenecks), different solvents within the slurry
(which do or do not require air treatment systems), or
different weather conditions.

As one exemplary result, the power demands for all
equipment classes can be aggregated to load profiles and
total energy demands. This enables identifying the most
relevant equipment regarding energy costs or utilization.
Figure 17 shows exemplary plots for the electrical power
demands of machines, the dry room ventilation, and inlet
air-cooling as well as the building heating and cooling for
the period of 1 month.

While the machine load profile shows a rather similar
pattern for each day, the heating and cooling demands
depend on the weather condition. A higher outside

temperature leads to an increase in energy demand for
building cooling (negative values indicate cooling demand).
The power demand of the dry room operation also shows a
slightly increasing power demand for periods with warmer
outside temperature.

The results further allow identifying the energy demands
of each used production equipment during the observed time
period and for the defined production scenario. Figure 18
shows the energy demands per system which reveals that—
for the given scenario—the most energy is required for
maintaining the building ambient conditions and for the
coating and drying processes.

4.4 Summary of simulation study

Overall, the exemplary study shows the principles of
multiscale simulation and obtainable results. And although
the actual numerical results must be interpreted in the
light of the made assumptions and the exemplary model
character, they demonstrate how a multiscale approach can
support planning and improvement of complex production
systems.

Fig. 18 Exemplary energy demand of equipment during 1 month of production for a specific planning scenario
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5 Conclusion and outlook

The proposed concept for multiscale simulations supports
the development of specific simulation applications for
entire production systems. Although the idea of holistic
production system simulations is not new, the concept is
unique due to the combined consideration of economic,
environmental, and technological aspects on multiple scales
from single product units to the surrounding building. An
important innovative feature is the agent-based process
chain model concept. It enables the detailed evaluation of
the relations between processes and product characteristics
along the process chain and the required operation of
machines as well as the aggregated energy and material
demands, the system utilization, time shares and heat
emissions. The coupling of specific detailed models for
processes, machines, technical building services and the
building structure enables a comprehensive analysis of the
production system behavior. Such modular simulation can
be used for different planning tasks and enable a close
collaboration of involved disciplines.

However, there are some challenges of large multiscale
simulations. The development of various models is time-
consuming and requires interdisciplinary expert knowledge.
Especially detailed numerical process models are very
difficult to achieve since often many experiments are needed
to derive knowledge about the process behavior. Thus,
it is important to elaborate application procedures and
organizational measures for the use of such simulations
in production organizations and the reuse of existing sub-
models. Furthermore, coupling of simulation models is
a challenging tasks, especially since many established
software tools do not provide the necessary interfaces for
information exchange and co-simulation. Consequently, it is
important to enhance established commercial software tools
to ensure a time efficient execution of co-simulations based
on models created in different software.

In the future, besides the evaluation of production
systems, holistic multiscale production simulation could
also be used for operational production planning and control
by providing simulation results in real time to predict
and control the production system operation. If required
computational resources and interfaces to control tools are
available, this is a promising approach since simulation
could incorporate the evaluation of different scenarios,
stochastic effects and algorithms for intelligent decision
making into production control.
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