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Abstract
Cloud manufacturing (CMfg), as a new service-oriented technology, is aiming towards delivering on-demand
manufacturing services over the internet by facilitating collaboration among different producers with distributed
manufacturing resources and capabilities. To this end, addressing service composition and optimal selection
(SCOS) problem has been the pivotal challenge. This NP-hard combinatorial problem deals with selecting and
combining the available resources into a composite service to meet the user’s requirements while keeping up the
optimal quality of service. This study proposes a new hybrid approach based on the recently developed grey wolf
optimizer (GWO) algorithm and evolutionary operators of the genetic algorithm. The embedded crossover and
mutation operators carry out a twofold functionality: (1) they make it possible to adapt the continuous structure
of GWO to a combinatorial problem such as SCOS, and (2) they help to avoid the local optimal stagnation at the
hunting process by providing more exploration strength. A series of experiments were designed and conducted to
prove the effectiveness of the proposed algorithm, and the experimental results demonstrated that the proposed
algorithm delivers superior performance compared with that of both existing discrete variations of GWO and genetic
algorithm, especially in large-scale SCOS problems.
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1 Introduction

The ever-changing business environment and customer ex-
pectations, such as high demand for personalized products,
increased emphasis on immediate, responsive, and consistent
service and a craving for keeping up with disruptive innova-
tions, is among the present challenges the industry is
confronted with. In order to address these challenges, pro-
ducers need to be empowered to collaborate more effectively
both inside their facilities and across different facilities [1].
These producers will then become partners working together
through sharing their physical resources and technical capa-
bilities to mutually increase their design, manufacturing, and

marketing capacities and eventually achieve high customer
satisfaction. Cloud manufacturing (CMfg) is such a paradigm
through which dynamically scalable and virtualized
manufacturing resources and capabilities are organized and
controlled intelligently by cloud platform according to users’
demands and offered to them on-demand as services over the
Internet.

Achieving the ultimate goal of CMfg, i.e., construct-
ing a fully integrated and collaborative environment for
distributed manufacturing and eventually offering indus-
trial resources and capabilities as services over internet
(similar to what is now available in cloud computing for
storage, processing power, or pay-as-you-go software) is
not feasible without addressing the barriers associated
with resource classification [2] and virtualization [3],
task description [4, 5], associated enabling technologies
[6–9], service discovery [10] and service matching [11],
business models [12], trust evaluation [13], developing
new architectures [14, 15], and service optimal selection
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and composition, among which the last one (service
optimal selection and composition) seems to be most
challenging. As briefly mentioned above, in a CMfg
system, distributed manufacturing resources and capabil-
ities are virtualized and encapsulated as services into
manufacturing cloud services and then published in the
resources pool through the Internet. Completion of a
complex task submi t t ed by a user needs the
abovementioned collaboration among partners by
selecting the optimal resource for each subtask out of
the existing candidates at the resources pool and com-
posing them to achieve the highest quality of service
(QoS). Service composition and optimal selection
(SCOS) deals with this particular problem in the context
of cloud manufacturing.

Generally, manufacturing cloud services are unique
service resources on the Internet. So, to evaluate such
services on the Internet, the QoS criterion is typically
used. The QoS represents a set of non-functional attri-
butes of the service such as time, availability, through-
put, cost, etc. QoS-aware SCOS deals with selecting the
best service for each subtask from the corresponding
candidate set in a way that results in the highest QoS
value for the composed service in order to optimally
deliver the complex task submitted by the customer.
The QoS of composite service determines the efficiency
of the collaboration among distributed partners as the
number of these partners and their offered services
grows, combining them into a composite service to meet
the user’s requirements while keeping up the optimal
quality of service (QoS), becomes more crucial and ex-
haustive at the same time. Since the selected services in
a composite manufacturing service have a mutual effect
on the aggregated QoS value and this effect is nonlinear
for some of the attributes (like availability and reliabil-
ity), various metaheuristics have gained an increasing
popularity for solving such large-scale NP-hard SCOS
problems in the context of cloud manufacturing.

So far, a variety of metaheuristics from all three main
classes (evolutionary, physics-based, and Swarm
Intelligence) have been implemented to solve the
SCOS problem. For instance, some variations of artifi-
cial bee colony (ABC) [16], genetic algorithm (GA)
[17], particle swarm optimization (PSO) [18] and ant
colony optimization (ACO) [19] are all leveraged for
the problem resolution. Also, some hybridized algo-
rithms have been successfully implemented and pro-
duced satisfactory results [20, 21]. However, according
to the No Free Lunch theorem, it is logically implied
that there is no particular algorithm that can obtain bet-
ter results in all optimization problems. In other words,
the performance of a particular metaheuristic is strongly
dependent on the problem and nature of its search

space. This justifies the never-ending enthusiasm of re-
searchers regarding developing new metaheuristics and
implementing them in real-world optimization problems.

Grey wolf optimizer (GWO) is a recently proposed
swarm intelligence algorithm inspired by the social hi-
erarchy found in the wolf packs and their haunting be-
havior [22] . Some of the recently reported applications
include two-stage flow shop scheduling [23], optimal
control of thermal systems [24], economic load dispatch
problem of electric power systems [25], feature selection
[26], and parameter selection in surface waves [27].
Generally, this algorithm has proved to produce compet-
itive or superior results compared to other well-
established algorithms such as PSO and DE (differential
evolution), especially in terms of exploitation. This ex-
ploitative performance can be tracked down to its
searching mechanism (called as “hunting”) in which all
wolves (solutions) update their positions according to
the position of the best three wolves, thereby converg-
ing faster towards these good solutions. However, this
exploitative mechanism makes the GWO algorithm
prone to stagnation in local solutions. To overcome this
premature convergence and achieve a better balance be-
tween exploration and exploitation, we propose incorpo-
rating mutation and crossover operators into the GWO,
which eventually combines the merits of GWA and GA
both. To the best of the authors’ knowledge, this is the
first implementation of GWO-based algorithms of any
kind to solve the SCOS problem in cloud manufacturing
systems.

The reminder of this paper is organized as follows.
In Section 2, we review the most significant research
works regarding service composition and optimal selec-
tion in cloud manufacturing context. In Section 3, the
SCOS problem is described in a more detailed manner
and then mathematically formulated in Section 4.
Section 5 first briefly presents the standard grey wolf
optimizer algorithm and then the proposed hybrid grey
wolf optimizer algorithm with evolutionary operators is
followed in a detailed manner. Section 5 verifies the
effectiveness of our algorithm by addressing the de-
signed experiments. Finally, Section 6 concludes the pa-
per and proposes recommended future work.

2 Related work

As the demand for customization and personalized de-
sign grows, offering complex services at coarser granu-
larities makes no sense anymore due to associated rigid-
ity and lack of flexibility. Instead, focusing on providing
finer single-functional services along with more robust
composition mechanisms can bring more scalability and
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elasticity through collaboration across various service
providers. To assess and control the efficiency of this
collaboration, QoS criteria is typically used and conse-
quently, QoS-aware SCOS deals with selecting the best
service for each subtask from the corresponding candi-
date set in a way that ensures obtaining highest overall
QoS value for the composed service and subsequently,
optimally delivering the complex task submitted by the
customer. To this end, there is an ongoing stream of
research work aiming for developing more efficient, ro-
bust and comprehensive mechanisms and algorithms to
deal with the QoS-aware SCOS problem in cloud
manufacturing systems. For the first time, Tao et al.
[28] formulated this problem in the context of CMfg
and then solved using an adaptive chaotic optimizer.
With the advantages of making no or few assumptions
about the solving problem, handling complex solution
spaces, and obtaining near-optimal solutions within a
reasonable time, various metaheuristics have attracted
an increasing attention for solving the SCOS problem.
In this regard, researchers have rarely utilized the basic
form of these algorithms and have either innovatively
modified their various phases or hybridized different
algorithms to combine the merits of them. For instance,
falling into the first category, Xiang et al. [29] integrat-
ed a new initialization mechanism based on case-library
method into the GLA algorithm. Through case similarity
compared with the user request, this initialization mech-
anism improved the accuracy and efficiency of the al-
gorithm. As another example, Zhang et al. [30] reduced
the search space through the concept of skyline service
before using the core flower pollination algorithm,
which successfully enhanced the quality of final solu-
tion and decreased the computational time. For the case
of hybrid algorithms, Seghir and Khabala [21] proposed
incorporating genetic operators into the fruit fly optimi-
zation algorithm to better the exploration ability. Zhou
and Yao [20, 31] proposed a hybrid artificial bee colony
algorithm with an improved perturbation mechanism in
the employed bee phase and a Levy flight mechanism in
the onlooker bee phase to solve the SCOS problem in
cloud manufacturing systems and successfully reported
an enhanced exploitation and convergence rate.

Aside from the solving algorithm, there is also an
ongoing attempt to narrow down the gap between actual
conditions associated with resource selection in CMfg
platform and the modeling of the SCOS problem. For
instance, Jin et al. [32] took into account the correlation
among services through presenting a quality correlation-
aware service description model for manufacturing cloud
services and then proposed a service correlation map-
ping model to automatically obtain the associated QoS
values. Li et al. [17] considered the correlations at the

matching stage in order to prevent services with corre-
lations from being left out during the matching process.
Another stream of research is concerned with addressing
dynamic service composition in CMfg in which change
of service states imposed by the highly dynamic busi-
ness environment is also taken into account. For in-
stance, Liu et al. [33] approached this issue by dealing
with the service composition and service scheduling as
a unified problem. Yet another stream of work in this
field is focused on releasing the assumption of a one-to-
one mapping between services and resources, which will
make it possible to perform each subtask collectively,
thereby increasing the overall QoS and achieving more
acceptable success rate. For instance, Liu et al. [34]
proposed “Multi-Composition for Each Task” approach
which successfully outperforms the existing one-to-one
mapping composition approach. Yet another study by
Liu and Zhang [35], based on the idea of combining
multiple functionally equivalent elementary services into
a synergic elementary service group, further improves
the previous studies by achieving a higher fitness com-
pared to Multi-Composition for Each Task and one-to-
one mapping-based service composition methods. A de-
tailed survey on service composition and optimal selec-
tion in cloud manufacturing systems by the authors of
this paper can be found at Bouzary and Chen [36, 37].

3 Problem description

In every cloud manufacturing system, three main parties
are involved in the completion of a manufacturing task,
namely, service customer, service provider, and cloud
platform. As customers request their services, providers
publish and update their resources, including both phys-
ical manufacturing resources and capabilities, which
have to be managed by the cloud platform. In other
words, the service selection process happens through
the cloud platform, which receives the requirements
from cloud requesters and finds the most appropriate
resources out of a pool of resources. Generally, the
whole process of matching requests and resources can
be categorized in three following steps, which are also
shown in Fig. 1.

1. Task decomposition: First of all, the complex
manufacturing task submitted by the customer has
to be decomposed into several subtasks doable on
a single-functional machine, equivalent to T = {ST1,
ST2, ..., STi, ..., STI}, in which I is the total number
of subtasks incorporating the task T and STi is the
ith subtask of T. The QoS requirement of STi, which
has to be determined by the service requester, is
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denoted by F(STi) while F(STi) = {f1i, f2i, ..., fri, ...,
fRi} in which qri is the rth requirement of STi and
R is the number of considered QoS indexes [38].

2. Service discovery and matching: After decomposi-
tion, and based on functional requirements, a num-
ber of services will be retrieved for each subtask
through putting into effect matching algorithms.
These algorithms are mostly designed based on an
evaluation of semantics similarity between the de-
scription of subtasks and resources on the cloud
platform. In this way, each subtask can be associat-
ed with a set of candidate manufacturing cloud ser-
v ices (CMCSS) . Tha t i s to say, CMCSSi ¼
MCSi;1;MCSi;2; :::;MCSi; j;MCSi;Li

� �
deno t e s t h e

candidate set for STi where MCSi, j denotes the jth
manufacturing cloud service in the set, and Liis the
total number of services in the ith candidate set
(CMCSSi) [38].

3. Service selection and composition: Finally, it is
the time for identifying a service composition
which can be defined as selecting one candidate
service from each corresponding candidate set to
compose the service while ensuring the overall
QoS is optimal [9].

A more detailed explanation of the QoS service composi-
tion problem and its associated mathematical model will fol-
low immediately.

4 Mathematical modeling

After the submission of task T to the cloud platform,
and based on step 2, a number of MCSs are retrieved

for each subtask ST and returned as a CMCSS. Now,
we need to select one candidate MCS from each
CMCSS to form a composite cloud manufacturing ser-
vice (CCMS). A CCMS is mapped as one path. In fact,
each complex task T can be mapped into different paths,
which can be shown by P ¼ P1;P2; :::;Pm; :::;PLpath

� �
where Lpath is the number of possible paths, and
Pm represents the m t h pa th of P. In th is way,
Pm = {MCS1,m1,MCS2,m2, ...,MCSi,mi, ...,MCSn,mn} where
each element denotes a possible composed solution for
each of n decomposed subtasks of task T. QoS-aware
service composition problem is defined as selecting the
optimal composition path to execute task T while max-
imum QoS (built upon attributes like time, cost, reliabil-
ity, availability, etc.) is achieved under customer’s re-
quirements which act as the constraints of this optimi-
zation problem.

Each candidate manufacturing cloud services set
(CMCSSi), contains mi manufacturing candidate service
(MCS). If N QoS indices are used to assess the candi-
dates, then QoS of CMCSSi can be expressed as fol-
lows [38]:

F CMCSSið Þ ¼

F MCSi1ð Þ
F MCSi2ð Þ

:
:
:

F MCSimið Þ

0
BBBBBB@

1
CCCCCCA

¼

f 1 MCSi1ð Þ
f 1 MCSi2ð Þ

:
:
:

f 1 MCSimið Þ

f 2 MCSi1ð Þ
f 2 MCSi2ð Þ

:
:
:

f 2 MCSimið Þ

:::
:::
:
:
:
:::

f N MCSi1ð Þ
f N MCSi2ð Þ

:
:
:

f N MCSimið Þ

0
BBBBBB@

1
CCCCCCA

ð1Þ

Fig. 1 Matching demands and
resources in CMfg
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where mi is the number of candidate MCSs in CMCSS
and N is the number of QoS indices.

The QoS value of any composite CMfg service can
be obtained through the aggregation of basic composi-
tion structures according to its execution path. The se-
quential, parallel, selective, and circular aggregation
functions for four most used attributes are presented in
Table 1.

The aggregated QoS values for each attribute should
be normalized before calculating the global QoS of
cloud manufacturing service, since each of these attri-
butes has different measurement methods and dissimi-
lar units and is either a positive or negative factor (for
a positive factor, the bigger the value of the index, the
better from the point of view of service requester and
vice versa). This can be achieved using the Eqs. (2)
and (3):

Fn ¼
f n−min f n

max f n−min f n
if min f n≠max f n

1 if min f n ¼ max f

8<
: ð2Þ

Fn ¼
max f n− f n

max f n−min f n
if min f n≠max f n

1 if min f n ¼ max f

8<
: ð3Þ

Equations (2) and (3) are associated with the normalization
of positive QoS attributes (including availability and reliabil-
ity), and negative QoS attributes (including time and cost),
respectively.

Simple additive weighting (SAW) method is used to cover
the four attributes simultaneously. Corresponding weights are
multiplied by the attributes to obtain the QoS, as the final
objective function. The optimal solution can be found by solv-
ing the following model:

Max CF Pmð Þ ¼ Max∑
N

1
wk � Fk Pmð Þ ð4Þ

s.t.

f k MCSi;mi
� �

≥ f k;i if f k is positive attribute ð5Þ
f k MCSi;mi
� �

≤ f k;i if f k is negative attribute ð6Þ

∑
N

k¼1
wk ¼ 1 ð7Þ

where wk is the weight of the kth index, N is the number of
attributes, fk, i is customer’s lowest required value of QoS for
the kth index and wk ∈ [0, 1] [39]. Additionally, fk(MCSi, mi) is
the QoS value of the mith MCS selected in the path Pm of the
kth index. Moreover, Fk(Pm) is the aggregated QoS values of
MCSs associated with the kth index, which has been normal-
ized according to Eqs. (2) and (3) and considering the struc-
ture of the path.

5 Algorithm design

As mentioned above, SCOS is an NP-hard and nonlin-
ear problem and as a result, various metaheuristics have
attracted the most attention. However, for three main
reasons, the standard variations of these algorithms do
not produce satisfactory results. First of all, the solution
space of SCOS problem in the domain of cloud
manufacturing is large and the QoS attributes affect
the final composition interactively according to the com-
plex task’s execution path. Second, most of both well-
established and recently developed algorithms are only
suitable for continuous optimization problems, and
hence they need to be modified before an adaption is
made for a combinatorial problem such as SCOS. Last,
but not least, some of the evolutionary and swarm-based
algorithms such as GA and PSO suffer from easily trap-
ping into a local mode which is mainly due to their
ineffective evolutionary or learning mechanisms. With
all these in mind, we design a new hybrid algorithm
based on the recently developed “grey wolf optimizer”
algorithm and by embedding evolutionary operators of
crossover and mutation into its structure. In this way,

Table 1 QoS aggregation models

Structure Cost Time Reliability Availability

Sequence f 1 ¼ ∑
n

i¼1
f 1 MCSið Þ f 2 ¼ ∑

n

i¼1
f 2 MCSið Þ f 3 ¼ ∏

n

i¼1
f 3 MCSið Þ f 4 ¼ ∏

n

i¼1
f 4 MCSið Þ

Parallel f 1 ¼ ∑
n

i¼1
f 1 MCSið Þ f2 = Max (f2(MCSi)) f 3 ¼ ∏

n

i¼1
f 3 MCSið Þ f 4 ¼ ∏

n

i¼1
f 4 MCSið Þ

Selective f 1 ¼ ∑
n

i¼1
f 1 MCSið Þ*λið Þ f 2 ¼ ∑

n

i¼1
f 2 MCSið Þ*λið Þ f 3 ¼ ∑

n

i¼1
f 3 MCSið Þ*λið Þ f 4 ¼ ∑

n

i¼1
f 4 MCSið Þ*λið Þ

Circular θ* ∑
n

i¼1
f 1 MCSið Þ*λið Þ θ* ∑

n

i¼1
f 2 MCSið Þ*λið Þ f 3 ¼ ∏

n

i¼1
f 3 MCSið Þ f 4 ¼ ∏

n

i¼1
f 4 MCSið Þ
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the algorithm would be fully adaptable for not only
SCOS problem but also any other optimization problem
with a discrete solution space. Moreover, our proposed
algorithm not only makes it possible to implement
GWO on combinatorial problems but also can provide
a substitute for more simplified attempts regarding
discretization of this algorithm [40].

5.1 Standard grey wolf optimizer

Grey wolf optimizer (GWO) is a recently-introduced
swarm intelligence algorithm which was introduced by
Mirjalai, et al. in 2014 [22]. Since then, it has gained a
great level of attention and success and has been repeat-
edly implemented to solve various optimization prob-
lems. It mimics the leadership hierarchy and hunting
mechanism of grey wolf packs in nature. Similar to
other swarm-based metaheuristics, wolves navigate
using the collective and social intelligence of the pack.
The behavior of wolves is simulated through three main
steps including hunting (searching for prey), encircling
prey, and attacking prey. The pack is divided into four
categories. The fittest solution is considered as the alpha
(α). Second best and third best solutions are categorized
as beta (β) and delta wolves (δ), respectively. The rest
of the population is assumed to be omega (ω). Search
for prey is led only by α, β, and δ wolves and ω
wolves have to follow these three [22]. The mathemat-
ical interpretation of encircling prey, hunting, and
attacking prey as the three pillars of GWO algorithm
follows immediately.

5.1.1 Encircling prey

Grey wolves tend to encircle prey before the hunt. This be-
havior can be mathematically simulated through Eqs. (8–11).

D
!¼ jC!:X

!
p tð Þ−X! tð Þj ð8Þ

X
!

t þ 1ð Þ ¼ X
!

p tð Þ−A!:D
! ð9Þ

A
!¼ 2 a!: r!1− a! ð10Þ
C
!¼ 2: r!2 ð11Þ
where t represents the current iteration, X

!
p indicates the

position of the prey, and X
!

represents the position vec-
tor of a wolf. A

!
and C

!
are coefficient vectors which

make it possible for wolves to reach different locations
around the prey. Essentially, D equals the distance of
the wolf from the prey. Components of a! linearly de-
crease from 2 to 0 over the course of iterations and r1,
r2 are random vectors in [0,1] [22].

5.1.2 Hunting

Despite the fact that hunting is usually guided by the
alpha, beta, and delta, in an abstract search space, the
location of the optimum (prey) is unknown. In order to
mathematically simulate the hunting process, it is as-
sumed that α, β, and δ have better knowledge regard-
ing the possible location of prey. Therefore, the posi-
tion of three best individuals found so far is saved and
position of every other wolf will be updated according
to these three solutions. This can be achieved using
Eqs. 12–14.

D
!

α ¼ jC!1:X
!

α−X
!j; D!β ¼ jC!1:X

!
β−X

!j; D!δ ¼ jC!1:X
!

δ−X
!j ð12Þ

X
!

1 ¼ X
!

α−A
!

1:D
!

α; X
!

2 ¼ X
!

β−A
!

2:D
!

β; X
!

3 ¼ X
!

δ−A
!

3:D
!

δ ð13Þ

X
!

t þ 1ð Þ ¼ X
!

1 þ X
!

2 þ X
!

3

3
ð14Þ

Through Eqs. (12–14), alpha, beta, and delta estimate the
position of the prey and the other wolves update their posi-
tions randomly about the prey [22].

5.1.3 Attacking prey and searching for prey

The process of approaching the prey is mimicked
through decreasing value of a!. This also fluctuates the

A
!

in the range of [−2a, 2a] as a! decreases from 2 to 0
over the course of iterations. In this way, while random

values of A
!

change between − 1 and 1, the next posi-
tion of a wolf can be somewhere between its current
position and the position of the prey. On the other hand,

any random value of A
!

> 1 or A
!

< −1 leads to an
opposite behavior called “searching for prey” which
provides better global search and helps to avoid getting
stuck in locally optimal solutions.

Through the abovementioned operators, GWO
guides its search agents to gradually update their po-
sitions based on the position of the best three agents
and eventually obtain a near-optimal solution. A more
detailed explanation on this algorithm can be found in
[22].

5.2 Discrete hybrid grey wolf optimizer

5.2.1 Encoding and decoding

As mentioned before, the standard GWO is designed to solve
optimization problems with continuous solution space, since
the updated position of wolves could take any possible value
within the solution space. However, the SCOS problem is a
typical combinatorial problem. Therefore, a discrete hybrid
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variation of grey wolf optimizer equipped with evolutionary
operators has been developed to pave the way for making use
of this powerful algorithm in the context of SCOS problem,
and any other combinatorial problem in general. As our first
step, we have to develop an encoding scheme according to the
characteristics of the SCOS problem. To represent a solution,
we use a single string with the number of digits equal to a
number of subtasks. For instance, the representation in Fig. 2
encodes a composition in which the first subtask is assigned to
candidate 3, second subtask is assigned to candidate 1, third
subtask is assigned to candidate 7, fourth subtask is assigned
to candidate 4, and finally, the fifth subtask is assigned to
candidate 9. As one can see, each candidate has been chosen
from a different set of candidates associated with each
subtask.

5.2.2 Embedded evolutionary operators

Solving a combinatorial optimization problem is very differ-
ent from solving a problem with a continuous solution space.
In a continuous search space, the search agents of GWO are
able to update their position vectors according to the hunting
process mimicked by Eqs. (12–14). In a discrete space, how-
ever, the position of wolves cannot be updated likewise, since
the position vectors can only take on discrete values. The first
intuitive solution that comes tomind in these type of situations
is using the floor function which takes the value of a position
vector in each direction as an input and gives as output the
greatest integer less than or equal to that. However, this meth-
od diminishes the algorithm’s strength in both exploration and
exploitation phases, as a result of lost variability caused by the
abundance of repetitive individuals. Alternatively, and accord-
ing to Mirjalili and Lewis [41], another technique to convert a
continuous swarm-based algorithm to a binary algorithm
without modifying the structure is to employ a transfer func-
tion, which is also applicable for discrete solution spaces. For
instance, Emary et al. [26], took a similar approach to develop
a discrete GWO algorithm through employing a sigmoid func-
tion to solve the feature selection problem. However, we did
not find the proposed algorithm effective enough to solve the

SCOS problem, mostly due to the fact that it did not provide
enough explorative power for a large-scale problem like
SCOS, and as a result, mostly got stuck in local optimal loca-
tions. This urged us to develop a modified algorithm based on
the GWO by adding evolutionary operators into the structure
of the standard algorithm. This approach can, to a great extent,
improve the balance between exploration and exploitation, yet
preserving the advantages of both GWO and GA algorithms.
All the considered modifications intended to adapt GWO to
the SCOS problem, as well as the added crossover and muta-
tion operators are presented as follows.

Range checking Updating the position of wolves during the
hunting process using Eqs. (12–14) does not guarantee that
the value of every direction does not exceed the bounds of the
problem. As a result, after attaining the discrete values of each
direction through rounding towards zero, the updated values
of positions obtained from Eqs. (12–14), an additional step is
needed to be considered to return back the exceeding values
into the boundaries of the problem. In the case of SCOS prob-
lem, upper bound denoted by ub, equals to the number of
available candidates for each subtask, and lower bound, de-
noted by lb, is equal to 1. Equation (15) is applied to achieve
this goal.

X
!

i ¼ X
!

i

j k
: uþ l
� �

þ ub:uþ lb:l ð15Þ

where u ¼ X
!

i

j k
> ub and l ¼ X

!
i

j k
< lb.

Selection operator Roulette wheel selection is a widely
used selection operator applied in several proposed ge-
netic algorithms solving the service composition prob-
lem [42]. The basic idea behind this operator is the
fact that the better the fitness of an individual, the
larger the probability of its survival and mating. The
same selection operator is applied here to select the
parents that will go through the crossover and mutation
operators.

Fig. 2 An example of encoding
and decoding for SCOS problem
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To select an individual for crossover and mutation process-
es out of a population with size n (size of the wolf pack in our
case) we use the following steps:

Step 1. Generate a random real number (r) ∈ [0, 1].
Step 2. If r ≤ p1, select the first wolf in the population w1,

otherwise; select the ith wolf wi (i = 1,2,…, n) such
that pi − 1 < r ≤ pi, where pi is the cumulative proba-
bility for each wolf wi in the current population
(pack) which will be calculated according to Eq.
(16).

p1 ¼
f i

∑
n

j¼1
f j

pi ¼ pi−1 þ
f i

∑
n

j¼1
f j

if 2 ≤ i≤n

8>>>>>><
>>>>>>:

ð16Þ

where fi is the fitness of an individual i in the population [21].

Crossover operator Every selected pair of parents will go
through the crossover operator and a pair of new indi-
viduals (children) will be produced by combining their
genes. Here, we have employed a two-point crossover
operator similar to some other research works on service
composition [43]. During this operator, two crossover
points are randomly chosen in the two parents. Then,
the subsequent genes, between these two cutting points
of each parent are exchanged from a chromosome to
another one (see Fig. 3a).

Mutation operator Mutation operator is intended to provide
exploration and to avoid local optimum stagnation through
maintaining the diversity of population which will be
achieved by making a small and slow genetic frequency
change in the generated chromosomes. Swap mutation is used
here in which two genes in the chromosome of an individual
will be randomly selected and then their values will be
interchanged (see Fig. 3b).

Now that crossover and mutation operators are ap-
plied, an overlapping population will emerge, where

parents and offspring are merged, and the best individ-
uals from this union will form the next population. In
fact, this merged population will be sorted in descend-
ing order and the first best n individuals (equal to the
size of the wolf pack) will be selected and replaced as
the initial population for the next iteration. The whole
process from the initialization up until this point will be
repeated until a stopping criteria is met. Exceeding a
specific CPU time, reaching a predefined number of
iterations, a certain number of iterations without any
improvement in the fitness of the fittest solution and
converging to a specific fitness value are among the
most popular termination criteria for metaheuristic algo-
rithms. In this study, we have used the maximum num-
ber of iterations as the stopping criterion for our pro-
posed algorithm. A summary of the embedded proce-
dures of the proposed hybrid GWO algorithm is orga-
nized step by step in Algorithm 1.

6 Experiments and results

In this section, we investigate the performance and ef-
ficiency of the proposed hybrid GWO algorithm for
SCOS problem and its potential for solving other com-
binatorial problems as well. To this end, this section
conducts performance comparison with different
metaheuristics under various testing scenarios as well
as different user QoS preferences and QoS value ranges.
In order to evaluate the performance of the algorithm
for different SCOS problem sizes, the comparisons are
conducted under two following scenarios:

(1) Scenario 1, in which the number of subtasks N remains
fixed as 10, while the number of available candidate
services M in each CMCSS various in the range of 50
to 500 with an increment of 50.

(2) Scenario 2, where the number of candidate services
M is fixed as 50 for all the cases, while the num-
ber of subtasks varies from 5 to 20 with an incre-
ment of 5.

Fig. 3 Evolutionary operators in
genetic phase. a Two-point
crossover. b Swap mutation
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Considering the fact that every composite MCS path, in-
cluding sequential, parallel, circular, and selective connec-
tions, can eventually boil down into a certain combination of
equational paths [44], only the sequential aggregation model
is considered here without loss of generality. On the other
hand, in order to prove the superior performance of the pro-
posed hybrid GWO algorithm, it is compared with an existing

discrete variation of GWO algorithm introduced by Emary
et al. [26], in which the algorithm is implemented to solve
the feature selection problem. In fact, Emary et al. developed
a binary variation of the GWO algorithm using a logistic
transfer function and here we have adapted the same idea to
achieve a discrete algorithm using the following function:

Update the associated direction of the individual according to Eq: 14ð Þ if sigmoid
X 1 þ X 2 þ X 3

3

� 	
≥rand

Do not change the value of associated direction otherwise

8<
: ð17Þ

Equation (17) is adapted from the Eq. (24) of [26] (other
steps of the algorithm are implemented exactly according to
algorithm 3 from page 374 of [26]). From now on, this algo-
rithm is going to be denoted as DGWO in this paper. In addi-
tion, GA, as a well-established and widely used intelligent
algorithm to solve the SCOS problem, is also implemented
and compared with the proposed approach. Without loss of
generality, all of the QoS values of available candidates are
randomly generated with a uniform distribution within the
range [0.7, 0.9]. Four QoS attributes of time, cost, reliability,
and availability are considered to build the objective function,

while their weights (w1, w2, w3, and w4, respectively) are all
set to 0.25. Having the stochastic nature of metaheuristic al-
gorithms in mind, each experiment has been run 10 times and
the average and standard deviation are reported to provide a
fair comparison. The proposed and compared algorithms are
coded in MATLAB R2013b on a computer with 2.3 GHz
processor and 8 GB of RAM and a 64-bit Windows 10 oper-
ating system. As one can see from Table 2, grey wolf optimiz-
er has the advantage of needing very few parameters to be
tuned. The special parameters of these three algorithms are
set as Table 2.

Algorithm 1: Hybrid GWO algorithm for SCOS problem

(1) Initialize (t = 0)

Step 1: Randomly generate an initial population Xi(i = 1, 2, ..., n), where n denotes the size of the
wolf pack

(2) Repeat (t = 1 to maxiter)

Step 2: Initialize vectors a→;A→;C→ according to Eqs. (10–11)

Step 3: Calculate the fitness values of each wolf

Step 4: Record the position of first three best wolves as Xα, Xβ and Xδ, respectively and update accordingly

Step 5: Update the position of wolves through hunting process using Eqs. (12–14)

Step 6: Discretize the elements of position vectors obtained in step5 X→tþ 1 using the floor function

Step 7: Perform range checking for values obtained in Step6 and map out of bound values (if any) into the allowed space according to Eq. (15)

Step 8: Select Pc × n the number of parents for crossover operation and Pm × n the number of parents for mutation operator according to Eq. (16), where
Pc and Pm are the probability of crossover and mutation, respectively

Step 9: Perform the two-point crossover on the selected parents

Step 10: Perform the swap mutation operator on the selected individuals for a mutation

Step 11: Merge the populations created in Steps 9 and 10 with the original population obtained after Step7

Step 12: Sort the step 11’s population in descending order and only keep the first fittest n individuals.

Step 13: Replace this new population as the initial population for the next iteration

Step 14: Memorize the best solution achieved so far. Assign t + 1→ t.

Step 15: If the step criterion is not reached go to step 2.

Step 16: Output the best solution

(3) Output
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6.1 Performance of the proposed hybrid GWO
algorithm (HGWO) compared with DGWO and GA

As our first evaluation, the aggregated fitness values of
the best-composed services are obtained according to sce-
nario 1 and the average and standard deviation values are
reported as each experiment has been repeated 10 times.
As one can see from Fig. 4a, the average values for
HGWO slightly decreases as the number of available can-
didates M increases from 50 to 150 and also from 150 to
300, which can generally be attributed to the fact that as
the size of the solution space grows, the probability of
finding an optimal solution drops. However, the results
indicate a positive trend over the span of 150–200 M
(number of candidates), which can mark the optimal size
of SCOS problem to be solved by our proposed HGWO
algorithm as M = 200, when N (number of subtasks) is
equal to 10. Moreover, in all of the scenario 1 cases,
HGWO outperform GA and DGWO in terms of the ob-
tained optimal QoS value and this superiority compared
with DGWO, becomes more notable in the large-scale
problems (average fitness value equal to 0.65 for
HGWO, versus value of 0.41 for DGWO in case of M =
300 and N = 10). In addition, GA proves a more stable
performance as the number of candidates increases and
according to Fig. 4a, DGWO is the one that experiences

the most significant deterioration in performance as we
move towards large-scale problems.

According to Fig. 4b, the optimal QoS fitness values ob-
tained by all three algorithms, decrease drastically as the num-
ber of subtasks increases. However, HGWO still outperforms
the others with an average fitness of 0.61, followed by GA
which has obtained an average fitness of 0.52 and DGWO
with the worst performance among them with an average
QoS equal to 0.48. Comparing a and b in Fig. 4, we can notice
that the performance of these algorithms is heavily influenced
by an increment in the number of subtasks, while that does not
change obviously and meaningfully as the number of avail-
able candidates goes up. This can be due to the fact that the
size of the solution space associated with SCOS problem can
be obtained through an exponentiation operation bn, where the
base b is equal to the number of available candidates M, and
the exponent n would be equal to the number of subtasks N.
As a result, any increase in the number of subtasks will lead to
a bigger impact on the size of the solution space and subse-
quently, a higher reduction in the probability of finding an
optimal solution in a certain number of iterations.

In order to investigate the efficiency of the proposed algo-
rithm, CPU consumption time associated with both scenario 1
and scenario 2 are recorded and the average amounts are pre-
sented in Fig. 5a, b, respectively. It can be seen that, generally,
GA has the least computational time, followed by DGWO and

Fig. 4 The proposed HGWO compared with DGWO and GA for different scales. a N = 10, M varies from 50 to 300. b M = 5, N varies from 5 to 25

Table 2 Parameter settings

Algorithm Initial population Crossover probability Mutation probability x-value of Sigmoid’s
midpoint (x0)

Steepness of the logistic
function (k)

HGWO 20 0.15 0.85 – –

DGWO 20 – – 0.5 10

GA 20 0.15 0.85 – –
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HGWO (this is the case expect for the last two cases of sce-
nario 2, where N = 20 or N = 25). To clarify the reason behind
this pattern, we have to take a look at the structure of these
algorithms. In fact, the proposed HGWO algorithm takes ad-
vantage of both haunting process (the main time-consuming
mechanism of DGWO) and crossover and mutation processes
(the main evolutionary mechanisms of GA) and as a result,
takes more time to complete a certain number of iterations
compared with each of these algorithms. Nevertheless, be-
cause of the superior performance of the proposed HGWO
algorithm and considering the fact that the higher CPU time
is so insignificant even in the worst case scenario (2.13 s in the
N = 15 and M = 50 case), HGWO would be chosen over GA
and DGWO to solve the SCOS problem. Besides, the results
show a similar pattern to the fitness values, meaning that com-
putational time is more influenced by an increase in the num-
ber of subtasks compared with an increase in the number of
candidates. This can again be contributed to the bigger impact
ofM on the size of solution space thanN, and also the fact that
computation of aggregated QoS values for a composite task
with a higher number of subtasks, needs performing more
arithmetic operations and consequently, consumes more time
(see Table 1).

6.2 Effect of QoS ranges

In order to verify the effect of QoS value ranges on the per-
formance of the proposed HGWO algorithm, 15 possible
combinations of three different ranges including [0.5, 0.7],
[0.7, 0.9] and [0.5, 0.9] are generated as listed in Table 3. In
this experiment, the number of available candidates N is set to
200 and the number of subtasks M is set 10. Table 4 lists the
comparison results of the optimal QoS fitness values obtained
by each algorithm for each considered set of QoS values. As

one can see from that table, HGWO outperforms the GA and
DGWO in 11 cases out of the total of 15 sets (superiority rate
of 11/15 = 73.3%). GA obtains the highest optimal fitness
value in four of the cases (superiority rate of 4/15 = 26.7%)
and DGWO performs the poorest among all experiments. In
addition, DGWO has obtained an average value of 0.54453,
followed by an average of 0.489879 for GA and 0.31932 for
DGWO, which indicates the better overall performance of the
proposed algorithm as the range of QoS values varies.
Therefore, it can be concluded that the proposed HGWO al-
gorithm is a better choice compared to the GA and DGWO,
when the service composition problem has to deal with a
varying range of QoS values.

Fig. 5 Time consumption comparison for different scales. a N = 10, M varies from 50 to 300. b M = 5, N varies from 5 to 25

Table 3 Sets of QoS ranges

Sets Time Cost Reliability Availability

1 [0.5, 0.7] [0.5, 0.7] [0.5, 0.7] [0.5, 0.7]

2 [0.5, 0.7] [0.5, 0.7] [0.5, 0.7] [0.7, 0.9]

3 [0.5, 0.7] [0.5, 0.7] [0.5, 0.7] [0.5, 0.9]

4 [0.5, 0.7] [0.5, 0.7] [0.7, 0.9] [0.7, 0.9]

5 [0.5, 0.7] [0.5, 0.7] [0.7, 0.9] [0.5, 0.9]

6 [0.5, 0.7] [0.5, 0.7] [0.5, 0.9] [0.5, 0.9]

7 [0.5, 0.7] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]

8 [0.5, 0.7] [0.7, 0.9] [0.7, 0.9] [0.5, 0.9]

9 [0.5, 0.7] [0.7, 0.9] [0.5, 0.9] [0.5, 0.9]

10 [0.5, 0.7] [0.5, 0.9] [0.5, 0.9] [0.5, 0.9]

11 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]

12 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.5, 0.9]

13 [0.7, 0.9] [0.7, 0.9] [0.5, 0.9] [0.5, 0.9]

14 [0.7, 0.9] [0.5, 0.9] [0.5, 0.9] [0.5, 0.9]

15 [0.5, 0.9] [0.5, 0.9] [0.5, 0.9] [0.5, 0.9]

Int J Adv Manuf Technol (2019) 101:2771–2784 2781



6.3 Effect of QoS preferences

The corresponding weights of the four attributes comprising the
QoS function were all set to 0.25 in the abovementioned sim-
ulations. However, this is not always the case with regard to
customer preferences. As a result, in order to investigate the
performance of the proposed HGWO algorithm when dealing
with different QoS preferences, 10 different random QoS vec-
tors are considered as shown in Table 5. The experiments are
conducted assuming a SCOS problem consisting of 10 subtasks
(N = 10) and 200 available candidate services for each subtask
(M = 200), similar to the previous experiment in Section 5.1.1.
The results are presented in Table 6. As one can observe from
Table 6, in 8 cases (out of a total of 10 vectors), the optimal QoS
value obtained by HGWO is higher than what is found by GA

and DGWO. The average optimal fitness value obtained by
HGWO equals to 0.6444, followed by 0.5672 for GA and
0.4471 for DGWO. In addition, as the weights associated with
time and cost increase (or weights associated with reliability
and availability decrease equivalently), the optimal QoS fitness
value decreases drastically in all three algorithms. This happens
in vector numbers 3, 4, 6, and 8 in which almost all three
algorithms obtain their lowest QoS value. On the contrary, in
vector numbers 1, 2, 7, and 10, with higher availability and
reliability weights, the algorithms achieve relatively higher fit-
ness values. This can be attributed to the fact that, in a sequen-
tial composition, availability, and reliability QoS values of the
collaborating services will be multiplied together according to
the third and fourth columns of Table 1, while the QoS values
associated with time and cost will be added together (see the
first and second columns of Table 1). As a result, an equal
decrease in the QoS value of availability or reliability will lead
to a higher drop in the value of aggregated QoS, as opposed to
the amount of drop resulting from an equal decrease in time and
cost Qos. In summary, the results prove the superior perfor-
mance of HGWO compared to GA and DGWO when facing
different user QoS preferences.

7 Conclusions and recommended future work

Service composition and optimal selection is one of the most
pivotal problems in the field of CMfg. The complexity asso-
ciated with this problem arises from the fact that as the size of
the solution space grows, the probability of searching that in
polynomial time decreases. This very fact explains the grow-
ing interest dedicated to developing novel suitable algorithms
that can deal with the problemmore efficiently. For addressing
such SCOS problems with large solution spaces, a hybrid grey
wolf optimizer algorithm with evolutionary operators has

Table 4 Comparison results for each set of QoS ranges

Set HGWO GA DGWO

1 0.7246 0.509364 0.377289

2 0.55024 0.496296 0.39358

3 0.54024 0.468342 0.352245

4 0.55521 0.42813 0.240125

5 0.57765 0.446643 0.197525

6 0.5345 0.454167 0.166672

7 0.48792 0.580671 0.499651

8 0.51453 0.58941 0.362515

9 0.50895 0.411912 0.337499

10 0.36951 0.551457 0.253033

11 0.71412 0.536931 0.445687

12 0.7455 0.53514 0.325672

13 0.42242 0.359397 0.329998

14 0.35261 0.580788 0.235945

15 0.5705 0.399888 0.272606

Average 0.54453 0.489879 0.31932

Superiority rate 73.3% 26.7% 0

The highest value of each row is indicated by an italic font.

Table 5 Different user QoS preference vectors

Vectors w1 w2 w3 w4

1 0.18 0.16 0.33 0.33

2 0.11 0.28 0.24 0.37

3 0.29 0.32 0.11 0.28

4 0.46 0.11 0.08 0.35

5 0.34 0.12 0.22 0.32

6 0.35 0.38 0.22 0.05

7 0.1 0.17 0.56 0.17

8 0.35 0.1 0.4 0.15

9 0.13 0.16 0.4 0.31

10 0.15 0.36 0.25 0.24

Table 6 Comparison results of different user QoS references

Vectors HGA GA DGWO

1 0.64417 0.575928 0.459644

2 0.78924 0.575982 0.458107

3 0.54774 0.557496 0.478126

4 0.55317 0.552339 0.434594

5 0.58366 0.564813 0.441499

6 0.61126 0.606447 0.363826

7 0.75292 0.553266 0.501433

8 0.54141 0.596376 0.393712

9 0.66592 0.557757 0.47542

10 0.7550 0.532116 0.46469

Average 0.644449 0.567252 0.4471051

Superiority rate 80% 20% 0

The highest value of each row is indicated by an italic font.
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been proposed in this paper. In the structure of the proposed
algorithm, the embedded crossover and mutation operators
carry out a twofold functionality: they make it possible to
adapt a continuous algorithm such as GWO to a combinatorial
problem such as SCOS, and they help to avoid the stagnation
at the hunting process through providing more exploration
strength. Needless to say, the proposed structure of the
HGWO algorithm can also be implemented to solve any other
combinatorial problem without the need of significant further
adaption and is expected to obtain competitive or superior
results relative to existing metaheuristics.

In order to validate the efficacy of the proposed HGWO
algorithm in solving large-scale SCOS problems, a series of
experiments were designed and conducted which proved the
superior performance of the algorithm compared to GA and
DGWOalgorithms. The results demonstrated that HGWO can
obtain higher optimal fitness values in the majority of the
experimental cases, at the expense of a negligible increase in
computational time. It was also verified that the proposed
algorithm remains superior when facing different QoS prefer-
ences and/or varying QoS value ranges.

In this work, we have converted the SCOS problem to a
single objective optimization model using the SAW method.
However, there are some drawbacks to this approach when
compared to Pareto-based multi-objective methods [45].
Also, the services involved in service composition are treated
as independent ones from each other, which can be further
improved by considering correlations among them. People
may extend the proposed algorithm with Pareto-based ap-
proaches to solve correlation-aware multi-objective SCOS
problems, and also implement the HGWO to solve other com-
binatorial optimization problems.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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