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Abstract
In this paper, we propose a solder joint defect type classification method for automatic optical inspection machines in the
manufacturing system of printed circuit boards. The inspection procedure for the solder joint defect type classification consists
of an offline stage, which sets the optimal feature extraction region, and an online stage which classifies a defect type. In the
offline stage, we use an optimization technique, namely, the genetic algorithm, to optimize the feature extraction region. In this
stage, the optimal feature extraction region for defect type classification is constructed automatically. In the online stage, feature
extraction regions are used to segment the solder joint image after component image acquirement. We then extract various color
features from the segmented feature extraction regions. Next, we use support vector machine, which is one of the machine
learningmodel’s method to classify the solder joint defect type. To evaluate the performance of the proposedmethod, ten types of
solder joint defects were used in an experiment. The experimental results verified the effectiveness of the method in terms of the
recognition rate, and its convenience.
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1 Introduction

The development of the electronics industry seems to have
incurred a necessary decrease in the size of mobile electronic
devices such as mobile phones, tablet PCs, smart watches, and
head-mounted displays. Accordingly, components mounted
on a printed circuit board (PCB) are also being miniaturized
and the board density is increasing. In addition, defect inspec-
tions have becomemore important for the surface-mount tech-
nology (SMT) process, where components are mounted onto a
PCB. The traditional manual method using the naked eye
cannot guarantee the inspection quality or reliability for min-
iaturized high-density PCBs. According to some estimates,
the defect rate of SMT assembly is about 5%, and the defect
of solder joint can account for up to 80% of all SMTassembly
defects [1]. This problem was addressed by applying an auto-
mated optical inspection (AOI) to the SMT process. An AOI

system inspects the defects of mounted components by
obtaining images from an optical apparatus such as a camera.

There are two main methods for inspecting and classifying
SMT defects. One is a modeling-based method, and the other
method is based on a feature extraction region. The modeling-
based method [2–5] creates a defect model through a feature
map analysis [2], statistical modeling [3], or a Gaussian mix-
ture model [4] for defect images of each component, and then
inspects and classifies the defects. However, this method
makes it difficult to analyze the details of defect images of
components and requires a long inspection time.

The feature extraction region-based method [6–18] desig-
nates regions for feature extraction in defect images to classify
the defect types. With this method, after features such as the
average brightness and highlight values are extracted from a
feature extraction region, machine learning techniques such as
support vector machine (SVM) and multi-layer perceptron
(MLP) are applied to these features to classify the defects.
Compared to the modeling-based method, defects can be an-
alyzed in detail and a high level of accuracy is achieved.
Accordingly, this method is utilized for SMT defect type clas-
sification. The representative feature extraction region-based
methods include H. W. Xie’s [6] method using AdaBoost and
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a decision tree, H. Wu’s [7] method using a Bayes classifier
and an SVM, and W. Hao’s [8] application of a genetic algo-
rithm and backpropagation network. Every feature extraction
region-based method obtains component images from the
RGB illumination system and sets a feature extraction region
for the component images acquired. Features are extracted
from the region and defects are classified. Some studies have
used wavelet of the image for SMD defect detection and clas-
sification [17, 18]. Each of these methods was verified for its
recognition rate and speed during the experiments.

However, the existing methods commonly use a feature
extraction region, which was set manually by an operator
[14–16]. Hundreds of component types are currently used in
industrial sites. If the features and sizes of such numerous
components are considered to set the feature extraction region
manually, it will significantly degrade the efficiency of the
SMT process. In addition, such a manual method is available
for classifying only about five defect types, which is far below
the actual number of defect types occurring in the SMT pro-
cess. Thus, it is impossible to efficiently classify the defect
types.

In this study, focusing on a determination of the feature
extraction regions, we propose an SMT defect type classifica-
tion method based on the optimization of the feature extrac-
tion regions. A genetic algorithm (GA) is used to set an opti-
mal feature extraction region for all defect types to be classi-
fied, and color features are extracted from the feature extrac-
tion region. An SVM then classifies the defect types using the
extracted features as inputs.

The remainder of this paper is organized as follows.
Section 2 describes an illumination system used for obtaining
component images for defect type classification and the SMT
defect types that are to be classified. Section 3 describes the
existing defect type classification methods, which adopt a
manual setting of the feature extraction regions, and their re-
sults. Section 4 presents an optimization of the feature extrac-
tion regions, as proposed in the present study. Section 5 re-
ports and analyzes the experimental results for defect type
classification using the proposed method. Finally, Section 6
summarizes the characteristics of the proposed method and
presents several conclusions.

2 Problem definition

2.1 Illumination system

In this study, the component images used for defect type clas-
sification were obtained using an RGB illumination system, as
shown in Fig. 1 [6–14]. The RGB illumination system in-
cludes three LED lights of different colors (red, green, and
blue). Because these lights were installed at different angles,
each light was reflected on a different surface of the solder

joint. The red light was reflected on a flat surface, the green
light on a gentle sloped surface, and the blue light on a steep,
sloped surface. As shown in Fig. 2, the component images
acquired using such an illumination system showed a red,
green, and blue color distribution, and each color indicated
different height data of the solder joint. In this way, three-
dimensional height information of the components can be
secured in two-dimensional images.

2.2 Defect type

We classified ten defect types occurring during the SMT pro-
cess. These include a package defect determined based on the
package direction and location, a solder defect based on the
solder distribution and quantity, and a complex defect with
features of both package and solder defect types. Table 1
shows component images for each defect type, which were
obtained using the RGB illumination system.

In the case of a package defect type, if a different compo-
nent than the target is positioned, it is a “Wrong” defect. If no
component is inserted and only solder is present, it is a
“Missing” defect. In addition, a rotation defect indicates the
rotation of a component exceeding a specific angle;
“Tombstone” defect occurs when one side of a component is
normally soldered but the other side is not, thereby making the
component erect; a “Manhattan” defect refers to a component
that is soldered so as to be laterally erect; a shift defect indi-
cates a horizontally slanted component.

In the case of a solder defect type, “No-solder” defect in-
dicates a case in which a component is normally positioned
but one solder pad is not soldered at all, and “Exceed” defect
occurs when one solder pad is so excessively soldered that the
polarity is covered. Finally, “Pseudo” defect, which belongs to
a complex defect type, refers to a case in which a component is
soldered to completely float and be laterally slanted.

Fig. 1 RGB illumination system
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3 Defect type classification

3.1 Feature extraction region segmentation

A component image obtained using the RGB illumination
system includes two types of region according to the color
distribution: a package region and a solder pad region. The
color distribution of the package region varies depending on
the package defect type, whereas that of the solder pad region
changes according to the solder defect type. The existing
methods segment a component image into one package region
and two solder pad regions, as shown in Fig. 3a, and thus a
total of three regions are used for feature extraction [6–8].
Moreover, each package region and solder pad region are
further divided into three regions. Consequently, as shown in
Fig. 3b, a total of nine feature extraction regions are used [14].
To identify the effect of the segmentation of the feature ex-
traction region on the defect type classification performance,
we added another segmentation method using 15 feature

extraction regions, as illustrated in Fig. 3c, and conducted a
comparative experiment.

3.2 Feature extraction

Figure 4a shows a component image acquired through the
RGB illumination system. The color distribution of the image
consists of three colors (red, green, and blue). To use the

a

b

c

Fig. 3 Feature extraction region segmentation method using a 3-regions,
b 9-regions, and c 15-regions

Table 1 Component image according to defect type

Symbol Image

Normal 

Component
Normal

Package 

Defect

Wrong Missing Rotation

Tombstone Manhattan Shift

Solder 

Defect
No-Solder Exceed

Complex 

Defect
Pseudo

Fig. 2 Image acquired using RGB illumination system
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height information of the solder joint indicated by each color,
the component image was divided into each color. Because
the green light illuminated the gentle slope of the solder joint,
the green region was smaller than the other two regions, as
shown in Fig. 4a. Accordingly, excluding the green channel
image, as shown in Fig. 4b and c, the red channel image,
which illuminated the flat slope, and the blue channel image,
which illuminated the steep slope, were separated. From these
two channel images, the average intensity value was extracted
[7, 9].

In addition, binarization was conducted for each channel
image on the binary images of each channel, as shown in
Fig. 4d and e. A highlight value was then extracted from the
binary images of two channels [8, 14]. Because each feature is
extracted from each feature extraction region, if a component
image is segmented into s feature extraction regions, a total of
4 × s features are extracted. This is defined as

f i1; f
i
2; f

i
3; f

i
4 i ¼ 1;⋯; sð Þ, and each feature is calculated

through the following equations.

f i1 ¼
1

m� n
∑
m

x¼1
∑
n

y¼1
IR x; yð Þ ð1Þ

f i2 ¼
1

m� n
∑
m

x¼1
∑
n

y¼1
IB x; yð Þ ð2Þ

f i3 ¼
1

m� n
∑
m

x¼1
∑
n

y¼1
TR x; yð Þ ð3Þ

f i4 ¼
1

m� n
∑
m

x¼1
∑
n

y¼1
TB x; yð Þ ð4Þ

where i is the index of a feature extraction region fromwhich a
feature is extracted,m and n are the width and height of the i-th
feature extraction region, x and y are the coordinates of the
width and height for the region, and finally, IR and IB indicate
the red and blue channel images, and TR and TB indicate otsu
binarization images for IR and IB, respectively.

3.3 Machine learning algorithm

3.3.1 Decision tree

A decision tree is a machine learning algorithm that is most
widely used for classification problems. It has a similar archi-
tecture as human decision-making. A total of 4 × s features
extracted from s feature extraction regions are used as input
data, and the data are classified based on a specific value of the
descriptor of each node. In a decision tree, the final node,
where the input data arrive after passing every node, is called
the terminal node, and the data are ultimately classified using
the value of the terminal node.

3.3.2 Multi-layer perceptron

A multi-layer perceptron (MLP) is a neural network that has
one or more hidden layers between the input and output
layers. This machine learning algorithm overcomes the limit
of a single-layer perceptron, which enables only linear classi-
fication through a hidden layer. In particular, MLP has been
widely utilized for PCB-related classification [14, 15]. As
shown in Fig. 5, this study used an MLP with a single hidden
layer. The input layer had 4 × s nodes with features extracted
from s feature extraction regions as the input data. The hidden
layer has 16 nodes including bias. Because the results of the
activation function for the ten defect types to be classified are
used as the output, the output layer has ten nodes.

The activation function of the MLP used in this study is a
bipolar sigmoid function, which can be expressed as follows
[19].

τ f xð Þ ¼ β � 1−e−α f x

1þ e−α f x
ð5Þ

where fx indicates the input feature, and α and β are the slope
parameters of the activation function, for which 0.5 and 2 are
used based on the experimental results.

a

c

ed

b

Fig. 4 Component image: a
image acquired from RGB
illumination system, b red
channel image, c blue channel
image, d binary image of red
channel image, and e binary
image of blue channel image
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3.3.3 Support vector machine

A support vector machine (SVM) is a machine learning algo-
rithm that has been designed to maximize the generalization
capability based on statistical learning theory. The kernel
function [20–22] maps a non-linear space including the input
data, which are not available to linear classification, into a
higher dimensional space where linear classification is possi-
ble. Next, data are classified by finding an optimal hyperplane
that maximizes the margin between classes. Here, the margin
is the minimum distance between the optimal hyperplane and
each dataset. This study classified defects using an SVM with
4 × s input nodes, which is the same number as the features
extracted from s feature extraction regions, and ten output
nodes.

In this study, the chi-square χ2 function is used as the
kernel function of the SVM and can be expressed as follows
[22].

K f x; f y
� �

¼ e
−γ

f x− f yð Þ2
f xþ f yð Þ2 ; γ > 0 ð6Þ

where fx and fy are data of a non-linear space where linear
classification is impossible, and γ is the scale parameter of
the kernel function, which has a value of 0.001 based on the
experimental results.

3.3.4 Classification experiments

To evaluate the defect type classification performance of the
manual setting of the feature extraction regions, we conducted
an experiment by obtaining images of real PCB components
from AOI. A total of 1400 components of the ten defect types
were used in this study, 1065 components of which were used
for the training dataset, and the remaining 335 components
were used for the test dataset.

Among the package defects, the wrong defect refers to
a situation in which a resistor mistakenly takes the place
of a capacitor or vice versa. Because a wrong defect in-
cludes normal soldering, with the exception of the mount-
ing of a wrong component, it has the same color distribu-
tion as a normal component image. Accordingly, the de-
fect types of normal and wrong defects were changed to
normal (capacitor) and normal (resistor) for the defect
type classification. As presented in Table 2, the defect
types were classified for each dataset. All component im-
ages used for defect type classification in this study have
the same pixel resolution of 160 × 480.

The defect type classification performance was evaluated
based on the level of accuracy, which utilizes the following
formula.

Accuracy %ð Þ ¼ NC

NT
� 100 %ð Þ ð7Þ

where NT is the total number of test datasets, and NC is the
number of datasets that are classified as equal to real values.

Table 3 shows the result of defect type classification for test
dataset of Table 2 using the feature extraction region of Fig. 3.
It turns out that the SVM achieved higher classification accu-
racy for three feature extraction regions than the decision tree
and MLP. This study also used the SVM to classify the ten
defect types.

Fig. 5 Multi-layer perceptron

Table 2 SMT defect
dataset Defect type Train Test

Normal (capacitor) 111 35

Normal (resistor) 95 21

Missing 110 36

Rotation 106 35

Tombstone 106 37

Manhattan 105 30

Shift 108 36

No-Solder 108 34

Exceed 108 36

Pseudo 108 35

Total 1065 335

Table 3 Defect type classification accuracy according to machine
learning methods and feature extraction regions (%)

Defect type Number of regions

3 regions 9 regions 15 regions

Decision tree 44.8 43.6 45.7

SVM 69.6 94.9 45.1

MLP 44.8 94.6 94.0
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Using 9 feature extraction regions produced higher ac-
curacy than using 3 feature extraction regions but using
15 feature extraction regions lowered the accuracy com-
pared with the use of 9 feature extraction regions. This
indicates that the shape and number of feature extraction
regions significantly affect the defect type classification
performance. In this regard, we propose a new method
that applies an optimization technique to determine a fea-
ture extraction region.

4 Optimization of feature extraction regions

During the phase of feature extraction region optimiza-
tion, using a genetic algorithm, which is an optimization
technique, the feature extraction regions are automatically
set for the ten defect types. An initial population is creat-
ed for the genetic algorithm, and the fitness of the popu-
lation is calculated. After the fitness calculation, if the
fitness does not converge, a genetic operation should be
conducted, whereas if the fitness converges, the feature
extraction region optimization is completed. Ultimately,
the optimal feature extraction regions for the ten defect
types are automatically set, and these regions are used for
defect type classification.

4.1 Initial population generation

The solution to be obtained using the genetic algorithm is
expressed as a chromosome. The initial population is an entity
that is needed only for later solutions, and thus does not have

to be composed of good solutions. Accordingly, it is created
randomly.

First, an input component image is segmented using a 15 ×
10 lattice. The feature extraction region generated using the
existing methods has overlapped areas, as shown in Fig. 6.
This study uses four spaces of the lattice as a single feature
extraction region, and thus there are some overlapped areas
between regions. Consequently, 126 feature extraction re-
gions, namely, 14 × 9 in size, are created.

The chromosome for the genetic algorithm has the same
14 × 9 size as the segmented feature extraction region and a
two-dimensional integral arrangement. Each region is ran-
domly set as a selected or unselected region. The selected
region is designated as 1, and the unselected region is desig-
nated as 0. The chromosome has an ultimate shape, as shown
in Fig. 7.

4.2 Fitness calculation

When a chromosome is judged with respect to the optimal
solution, the higher the fitness calculation of the chromosome,
the more probable it is that the chromosome will be passed
down to the next generation. In this study, an optimal chro-
mosome needs to show a good classification performance
when the feature extraction region of this chromosome is
used. Accordingly, a variance ratio for the extracted features
is used for the fitness calculation [5].

As the variance ratio of the features increases, the classifi-
cation performance is improved using the features. If every
variance ratio for the four features has a high value, the best
classification performance is achieved. In this case, the vari-
ance ratio of the features has the smallest standard deviation,

Fig. 7 Chromosome

Fig. 6 Feature extraction region
segmentation method
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which is used to calculate the fitness of the chromosome.
Because a lower standard deviation results in a better defect
type classification performance, the reciprocal of the standard
deviation is used to calculate the fitness of the genetic algo-
rithm used in this study.

In this study, the chromosome fitness calculation proceeds
in the following manner.

Step 1. When s feature extraction regions are used, the ma-
trix Fj ∈ Rs × 1, (j = 1,…, 4) is defined for four fea-
tures extracted from each region.

F j ¼ f 1j ; f
2
j ;⋯; f sj

h i
; j ¼ 1; 2; 3; 4 ð8Þ

Step 2. An s × s dimensional variance matrix Sj ∈ Rs × s or the
j-th feature is calculated using Fj as follows.

S j ¼ F j−M F
� �

F j−M F
� �T ð9Þ

where MF ∈ Rs × 1 is the average of the extracted feature ma-

trices and is calculated using M F ¼ 1
4 ∑

4
j¼1F j.

Fig. 8 Two-point crossover

Int J Adv Manuf Technol (2019) 101:1303–1313 1309



Step 3. The feature variance matrix SWj ∈ Rs × s for the same
defect types is calculated using the variance matrix
Sj ∈ Rs × s [23].

SWj ¼ ∑
4

j¼1
S j ð10Þ

Step 4. The feature variance matrix SBj ∈ Rs × s for different
defect types is calculated using the feature variance
matrix Sj ∈ Rs × s [23].

SBj ¼ M F−MDð Þ M F−MDð ÞT ð11Þ

where MD ∈ Rs × 1 is the average of MF calculated for each of
the ten defect types to be classified and is calculated using

MD ¼ ∑10
d¼1MFd.

Step 5. The variance ratio for the j-th feature is calculated
using two feature variance matrices, SWj and SBj, and
the standard deviation σ of the variance ratio for all
features is calculated.

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
∑
4

j¼1

det SBj
� �

det SWj
� � −ms

 !2
vuut ð12Þ

where ms is the average variance ratio of four extracted fea-

tures and is calculated using ms ¼ 1
4 ∑

4
j¼1

det SBjð Þ
det SWjð Þ.

Step 6. The reciprocal of the standard deviation is calculated
and used to obtain the ultimate fitness calculation.

g ¼ 1

σ
ð13Þ

4.3 Genetic operation

4.3.1 Selection

In this phase, the candidate chromosomes that can be inherited
in the next generation are selected. We used the remaining
stochastic sampling with replacement as the selection method.
The procedure is as follows.

Step 1. The selection probability pi and expected quantity of
duplicates ei for each chromosome of the present
generation are calculated.

pi ¼
gi
∑gi

ð14Þ

ei ¼ popsize� pi ð15Þ
where gi is the value of the fitness calculation for the i-th
chromosome, and popsize is the total number of chromosomes
in a single generation.

Fig. 9 Single-point mutation
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Step 2. The i-th chromosome is duplicated in the next gen-
eration into asmany numbers as the integer part of ei.

Step 3. A roulette wheel is constructed using the fraction
mantissa of ei to randomly duplicate the insufficient
genes.

4.3.2 Crossover

A new chromosome is created by making two chromosomes
cross over each other with a specific probability. This study
used a two-point crossover. In this method, two cut points are
set at the same location in two chromosomes, as shown in
Fig. 8, and the genes between the two cut points cross over
each other.

4.3.3 Mutation

In this phase, one or more chromosomes are mutated with a
specific probability to create a new chromosome.We applied a

single-point mutation. As shown in Fig. 9, after a single gene
is selected from a chromosome designated as either 0 or 1, if
the value of the gene is 1, it is mutated into 0, and vice versa.

5 Experimental result

The genetic algorithm used for the feature extraction region
optimization has the following specifications: a total of 100
generations, 50 genes per generation, a 0.25% crossover, and a
0.03% mutation. Components of the training datasets in
Table 2 were used to set the optimal feature extraction regions
for the ten defect types.

Figure 10 shows the fitness values of each generation dur-
ing the genetic algorithm application. The optimal feature ex-
traction region obtained using the genetic algorithm described
in Section 4 is illustrated in Fig. 11a. The result of the optimal
region applied to the component image acquired from the
RGB illumination system is shown in Fig. 11b.

Fig. 11 Result of feature
extraction regions optimization: a
optimal feature extraction region
chromosome, b optimal region in
component image

Fig. 10 Fitness value according
to generation number
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Table 4 compares the manual feature extraction region se-
lection method (15, 30, 45 regions) with the automatic feature
extraction region selection method (proposed method) in clas-
sification accuracy. All methods used SVM for defect type
classification and Eq. (7) is used for accuracy calculation.
The proposed method classified 335 defects with 96.0% ac-
curacy, which was better than the existing method.

Table 5 shows the average computation time for the manual
methods and proposedmethod. This table shows that the com-
putational time of the proposed method (3.70 ms/component)
is not so larger than the other cases (1.54 to 4.42 ms/compo-
nent). Actually, the advantage of the proposed method is not
computational time but region setup time. The manual cases
spend a lot of time to determine the feature extraction region,
but our method determines the regions automatically.

6 Conclusion

We proposed a new method for SMT defect type classifica-
tion. A genetic algorithm is implemented to determine the
optimal feature extraction regions for SMT defect types to
be classified. Features are extracted from the determined fea-
ture extraction regions and used as input data for an SVM
applied to classify the defect types. The experimental results
showed that the proposed method achieves a superior

classification performance in setting the feature extraction re-
gions than the existing method.

We classified the defect types by optimizing the feature
extraction regions. However, there are some problems with
the proposed method. First, the components used for defect
type classification are limited to the capacitor and resistor.
Second, only component images obtained using RGB illumi-
nation are applicable to the defect type classification.
Therefore, further studies will attempt to include other com-
ponents such as an integrated circuit and tantalum capacitor
and extend the illumination conditions to include general
lighting.
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