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Abstract
Self-excited chatter vibration is one of the most unexpected phenomena during the milling operation, which is always combined
with time-varying and non-stationary characteristics. This paper presents a milling chatter detection approach combined with the
time-frequency analysis (TFA) method and instantaneous frequency and energy aggregation characteristics of the chatter vibra-
tion in the milling process. A zoom synchrosqueezing transform (ZST)-based chatter identification approach and several chatter
identification indicators are constructed for milling chatter identification. The TFA method ZST is used to characterize the time-
varying and non-stationary characteristics of the chatter vibration. The zoom strategy is used to improve the time-frequency
resolution and energy concentration of the obtained time-frequency distribution. From an energy aggregation characteristic
perspective, 13 instantaneous frequency domain statistic indicators and an instantaneous energy ratio indicator based on the
time-frequency distribution obtained by ZST are developed for milling chatter identification. Four groups of cutting tests with
both end milling and peripheral milling are conducted to validate the effectiveness of the developed chatter identification
indicators, and results show that the developed chatter identification indicators can effectively identify chatter in the milling
process and are insensitive to the cutting parameters.
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1 Introduction

Chatter is one of the most unexpected phenomena during
the milling operation, which is a severe self-excited vibra-
tion that always combined with time-varying and non-
stationary characteristics. Chatter occurrence in the ma-
chining processes has several negative effects, such as
poor surface quality, unacceptable inaccuracy, shortened
life of the cutter and machine tool, and excessive noise
[1, 2]. Since the regeneration theory of the chatter was
proposed in the 1960s, a great deal of studies have been
conducted to investigate the chatter in the machining pro-
cess not only on an analytically study of chatter stability

[3–9], but also on chatter detection [10–13] and online
active control [14, 15].

Due to the tight coupling and high time-varying properties
of the whole cutting system, the analytic methods could not
accurately model the cutting system and perfectly prevent the
occurrence of chatter in machining. In comparison, the online
chatter detection of the milling process based on the vibration
signal has more potential value for practical use, as it does not
need to consider the coupling and parameter identification of
the cutting for system modeling and time-varying properties
of the cutting system. Once the chatter is identified, some
control strategies, e.g., changing the cutting parameters of
the machining process, can be automatically adjusted to make
the cutting process in a stable condition.

In order to conduct the cutting status monitor and chat-
ter identification, various kinds of sensors and signals
have been utilized, including cutting force [12, 16–20],
vibration acceleration and displacement signals [21–25],
acoustic emission [16, 17, 26], servo current [27, 28],
sound signal [29, 30], etc. Kuljanic et al. [16] presented
an investigation on multisensor approaches for chatter
identification in the face milling process. Sensors
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including rotating dynamometer, accelerometers, acoustic
emission, and electrical power sensors were all applied
and compared to determine which kinds of signal are sen-
sitive to chatter onset. Chatter detection methods based on
force, displacement signals, and machined surface topog-
raphy in high-speed micromilling were compared by
Singh et al. [31].

As important as sensor technologies, in order to realize
accurate cutting status monitoring and chatter onset detec-
tion as early as possible, efficient signal processing algo-
rithm is another critical issue that should be carefully
considered. A lot of researchers have conducted signifi-
cant studies on the signal processing algorithm for chatter
detection, and methods in time domain [27, 30, 32], fre-
quency domain [18, 24, 33], and time-frequency domain
[20, 21, 25, 29, 34] have all been presented and investi-
gated. In time domain methods, Li et al. [35] proposed a
time domain method using the coherence function of two
crossed acceleration signals to identify chatter and tool
wear in turning processes. Results showed that the nor-
malized coherence function was close to unity at the onset
on chatter and severe tool wear. Yamato et al. [28] pro-
posed to use the power factor theory based on phase mon-
itoring for the turning chatter detection in the time domain
without additional sensors. Schmitz [30] proposed to use
a statistical evaluation of the once per-revolution milling
audio signal for milling chatter detection based on a
Poincare mapping technique. In frequency domain
methods, Lamraoui and Thomas et al. [18, 33] used the
cyclostationarity approach for monitoring chatter and tool
wear in high-speed milling based on acceleration signals,
cutting forces, and instantaneous angular speeds (IAS).
Milling chatter is a non-stationary phenomenon, and sig-
nals corresponding to milling chatter are full of time-
varying properties. Since the traditional time domain
method conceals the frequency domain information and
the Fourier transform method conceals the time domain
information, hence, they are blind to state transition in
non-stationary signals and ineffective for online detection
of chatter onset. In comparison, the time-frequency do-
main and non-stationary signal automatic decomposition
methods could provide alternative approaches to identify
fault features for the non-stationary process. These
methods could be classified into two groups. In the first
group, the methods are mainly used as a signal prepro-
cessing technology to automatically decompose the non-
stationary signals and extract the useful components.
These methods include the discrete wavelet transform
(DWT) [10, 36], wavelet packet decomposition (WPD)
[12, 21, 47], ensemble empirical mode decomposition
(EEMD) [22, 24], variation model decomposition
(VMD) [12, 48], etc. Then, the extracted useful compo-
nents will be further processed to construct the chatter

detection indicators. In the second group, the time-
frequency analysis (TFA) methods are used to obtain the
time-frequency distribution of the signal which will be
used to construct the chatter detection indicators.
Methods such as the Hilbert-Huang transform [21, 24,
32], continuous wavelet transform, short-time Fourier
transform [34], and synchrosqueezing transform [29] are
included in this group. Sometimes two groups of methods
are combined together and used for chatter detection. Cao
et al. [21] presented a chatter identification method in the
end milling process using wavelet packets and the Hilbert
transform. The wavelet packets transform was used as a
preprocess approach to denoise the measured signal, and
the Hilbert transform is used to obtain the time-frequency
energy distribution of the reconstruct signal. The mean
value and the standard deviation of the Hilbert-Huang
spectrum were used to detect the chatter. Fu et al. [24]
proposed an energy aggregation characteristic-based
Hilbert-Huang transform method for online chatter detec-
tion. The EEMD is used to decompose the measured sig-
nal to obtain feature intrinsic mode functions (IMFs)
using majority energy rule. The Gaussian mixed model
is used to automatically calculate the thresholds.

As milling chatter is a nonlinear and non-stationary phe-
nomenon, some researchers proposed to use entropy and com-
plexity index to reflect the irregularity and complexity of the
signal with chatter onset. Daniel et al. [25, 37] proposed to use
the approximate entropy (ApEn) to deal with the nonlinear
and non-stationary data in milling operation and to identify
chatter instability. Gradišek et al. [19] used the coarse-grained
entropy rate of the cutting forces’ signals to detect chatter in
the turning process and found that a high value of the entropy
rate is typical for chatter-free cutting, while for chatter a low
value is typical.

Sometimes, the entropy and complexity index are com-
bined with the abovementioned TFA methods for milling
chatter identification. Cao et al. [22] presented a chatter
identification method in the end milling process based on
EEMD and nonlinear dimensionless indicators. First, the
EEMD is used to decompose the comb-filtered signal to
obtain the sensitive IMFs contacting rich chatter informa-
tion. Then, two nonlinear dimensionless indicators, i.e.,
C0 complexity and power spectral entropy, of the selected
sensitive IMFs were calculated to identify the chatter in
milling operations. Rafal et al. [32] proposed to use the
time forces and torque series measured by a rotating dy-
namometer during the milling process for chatter identifi-
cation. The recurrence plot (RP) technique, HHT, and ap-
proximate entropy were used to analyze the measured
force and torque signals and detect the chatter in the mill-
ing process. Zhang et al. [12] proposed to use the energy
entropy combined with the VMD and WPD for the chatter
detection in milling operation.
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Some authors considered the chatter from the energy ag-
gregation characteristic perspective, and pointed out that chat-
ter is a phenomenon reflecting changes of frequency and en-
ergy distribution in the machining process. Based on this per-
spective, many significant researches have been conducted.
Uekita et al. [34] proposed to use the short-time Fourier trans-
form (STFT) combined with spectral kurtosis (SK) analysis in
the time-frequency domain to identify chatter and transient
vibration information from an acceleration signal during the
deep-hole drilling process.

As for chatter identification based on the energy aggrega-
tion perspective, how to accurately reflect the change of the
spectrum and energy distribution of the signal with chatter
onset is of great importance. Appropriate signal processing
method which can provide good time-frequency resolution
and energy concentration time-frequency distribution, and ap-
propriate indicators which can effectively reflect the change of
the spectrum and energy distribution of the signal with chatter
onset is of great importance.

This study focuses on the milling chatter identification
based on the energy aggregation perspective. A novel ef-
fective TFA method named zoom synchrosqueezing trans-
form (ZST) is adopted to obtain the time-frequency dis-
tribution (TFD) of the measured vibration signal. ZST is
an improvement of the synchrosqueezing transform (ST).
ST proposed by Daubechies et al. [38] is a powerful TFA
method that can efficiently improve the readability of the
TFD with time-varying frequency. Based on the original
ST, several improvement algorithms have been proposed
and used for instantaneous speed estimation and mechan-
ical fault diagnosis of rotating machinery, such as gener-
alized syschrosqueezing transform (GST) [39], second-
order synchrosqueezing transform [40], frequency-shift
synchrosqueezing [41], ZST [42, 43], and the matching
demodulation transform and synchrosqueezing [44]. ZST
is a powerful TFA method which can provide both excel-
lent time and frequency resolution, and good energy con-
centration TFD.

In this study, ZST is used to accurately display the
instantaneous spectrum and energy distribution, and to
obtain accurate TFD of the signal with both excellent
time and frequency resolution and good energy concen-
tration. Then, from the frequency and energy aggregation
perspective of the chatter vibration, 13 instantaneous fre-
quency domain indicators and an instantaneous energy
ratio indicator based on the TFD obtained by ZST are
presented and compared to find which indicators are
more effective to reflect the change characteristics of
the instantaneous spectrum and energy distribution of
the signal with chatter onset. Four groups of cutting tests
with both end milling and peripheral milling are conduct-
ed to validate the effectiveness of the developed chatter
identification indicators.

2 Zoom synchrosqueezing transform-based
chatter identification

2.1 Algorithm of short-time Fourier transform-based
ZST

As the CWT-based ZST has been introduced in detail in [42],
the STFT-based ZST is presented here.

2.1.1 STFT-based ST

The modi f ied STFT is used in the STFT-based
synchrosqueezing transform. For a given signal x(t), the mod-
ified short-time Fourier transform is defined by:

Sgx u; ξð Þ ¼ ∫∞−∞x tð Þg t−uð Þe−i2πξ t−uð Þdt ð1Þ
where g(t) is the window function. Different from the tradi-
tional STFT, the modified short-time Fourier transform is
modulated by a modulation factor ei2πξu.

Consider signal x(t) = A cos(ω0t) as a purely harmonic sig-
nal. By Plancherel’s theorem, the STFT of signal x(t) can be
rewritten in the frequency domain as:

Sgx u; ξð Þ ¼ ∫∞−∞x tð Þg t−uð Þe−i2πξ t−uð Þdt

¼ 1

2π
∫∞−∞F ωð ÞG ϖ−ωð Þe−iϖudϖ

¼ 1

2π
∫∞−∞δ ϖ−ω0ð ÞG ϖ−ωð Þeiϖudϖ

¼ A
2π

eiω0uG ω0−ωð Þ

ð2Þ

where F(ω) is the Fourier transform of x(t) and G ϖ−ωð Þe−iϖt

is the complex conjugate of the Fourier transform of the mod-
ulated window function g(t − u)e−i2πξu. Then, from Eq. (2), the
following equation can be obtained by calculating the partial
derivative of Sgx u; ξð Þ to u:
∂
∂u

Sgx u; ξð Þ ¼ iω0
A
2π

eiω0uG ω0−ωð Þ ¼ iω0Sgx u; ξð Þ ð3Þ

For any (u, ξ) satisfying Sgx u; ξð Þ≠0, a candidate IF of signal
x(t) can be obtained by:

ωx
⌢

u; ξð Þ ¼ ω0 ¼ ∂tSgx u; ξð Þ
iSgx u; ξð Þ ¼ −i Sgx u; ξð Þ� �−1 ∂

∂t
Sgx u; ξð Þ ð4Þ

Final ly, the discre te form of the STFT-based
synchrosqueezing transform can be obtained based on the
calculated candidate IF:

Ts u;ωlð Þ ¼ ∑
k:jω⌢x u;ξkð Þ−ωl j≤Δω=2

Sgx u; ξkð Þ Δξð Þ ð5Þ

where ξk is the discrete frequency series, withΔξ = ξk − ξk − 1.
The synchrosqueezing transform is likewise determined only
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at the center frequency ωl of the successive bins: [ωl − 1/
2Δω, ωl + 1/2Δω], with Δω = ωl − ωl − 1 and Sgx u; ξkð Þ≥γ≥0.

2.1.2 STFT-based zoom synchrosqueezing transform

In most cases, for a considered signal, only a certain frequency
band of the signal is valuable or useful to us. Thus, we only
need to analyze the useful components of the signal in the
specific frequency band and do not need to paymuch attention
to the whole frequency band. The idea of the ZST is to obtain
both excellent time and frequency resolution to analyze the
signal in a selected frequency range, so as to accurately dis-
play the time-varying characteristics of the signal and obtain
good energy concentrated TFD.

For a selected frequency band [fm, fM] which includes the
concerned frequency components of the signal, the final dis-
crete frequency sequence of the ZST-TFD is defined as:

f *zs lð Þ ¼ f m þ l
na

f M− f mð Þ; l ¼ 0; 1; 2⋯; na: ð6Þ

where na is the total number of the frequency bins in the ZST-
TFD, which can be determined according to the actual need
for frequency resolution.

Then, the discrete angular frequency sequence can be writ-
ten as:

ω*
zs lð Þ ¼ 2π f m þ l

na
2π f M−2π f mð Þ; l ¼ 0; 1; 2⋯; na: ð7Þ

Finally, the discrete form of the STFT-based ZST can be
obtained:

Tzs u;ω*
l

� � ¼ ∑
k:jωx

⌢
u;ξkð Þ−ω*

zs lð Þj≤Δω*
zs=2

Sgx u; ξkð Þ Δξð Þ ð8Þ

In this way, the frequency sequence of the considered
frequency is refined and the instantaneous energy of the
signal can be squeezed into a much more accurate instan-
taneous frequency location, which can largely improve the
frequency resolution as well as the energy concentration
of the obtained TFD. As for the improvement of the time
resolution, the STFT-based ZST is proposed to use the
window function with a much smaller width so as to ob-
tain better time resolution for the analysis of the signal.
This differs from the CWT-based ZST which improves the
time resolution of the TFD by the frequency-shift method
[42]. In the proposed method, the Gaussian function:

g tð Þ ¼ πσ2
� �−1=4

e−t
2= 2σ2ð Þ ð9Þ

is used as window function for the STFT-based ST and
ZST. The standard deviation σ of the Gaussian function is
used to determine the width of the Gaussian function. The
smaller the value of σ, the smaller the width of the

Gaussian function and as well as better time resolution
can be obtained.

2.1.3 Simulation case study

A simulation signal is defined as:

x tð Þ ¼ sin 2π600t þ 0:2sin 2π10tð Þð Þ
þ sin 2π650t þ 0:2sin 2π10tð Þð Þ t > 1ð Þ
þ sin 2π700tð Þ þ sin 2π750tð Þ t > 2ð Þ

ð10Þ

The time domain waveform, STFT-based ST-TFD and the
STFT-based ZST-TFD with a zoom frequency band (550–
800 Hz) are shown in Fig. 1. In this case, the Gaussian win-
dow function defined in Eq. (9) with σ = 0.02 is used.

From Fig. 1, it can be seen that due to the relative bad time
and frequency resolution, the instantaneous frequency func-
tion of the frequency demodulation components in the signal
cannot be accurate characterized by the STFT-based ST.
While as the STFT-based ZSTcan provide both excellent time
and frequency resolution, the IF of the demodulation compo-
nents can be accurately characterized by the STFT-based ZST
with much better energy concentration.

2.2 ZST-based chatter identification indicator
construction

2.2.1 Chatter mechanism

Chatter vibration in the milling process is a complex phenom-
enon which can cause great negative effects. The stability lobe
diagram (SLD) theory has beenwidely investigated for cutting
stability prediction, which can provide the border between the
stable cut and unstable cut with chatter in the form of axial
depth of cut as a function of the spindle rotating speed [3, 4].
According to the SLD theory, the region below the border of
the SLD is the chatter-free region, and the region above is the
unstable chatter region. In the chatter-free region of the SLD,
the energy of the tool is dominated by tooth passing frequency
(TPF) and its harmonics, and with the increase of the cutting
depth, the cutting force between the tool and workpiece in-
creases. As a result, the amplitude of the TPF and its har-
monics increase. When the cutting depth increases and
reaches the border of the SLD under certain cutting condi-
tions, chatter occurs. When chatter occurs, abnormal frequen-
cy components (i.e., the chatter frequencies) appear on the
spectrum of the dynamic vibration signal. With further in-
crease of the cutting depth, chatter vibration aggravates and
the amplitude of abnormal chatter frequencies increases sharp-
ly and finally dominates the frequency spectrum. During this
procedure, the frequency and energy distribution of the spec-
trum change sharply. This is the intrinsic difference between
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the stable chatter-free and unstable chatter signals, and is the
main characteristic for the chatter identification.

What should be noted is that both the amplitude of the
chatter frequencies and TPF and its harmonics increase with
the onset and aggravation of chatter. The neglect of the am-
plitude increase of the spindle rotational frequency (SRF) and
its harmonics will decrease the insensitivity of the TFA-based
chatter identification indicators to the cutting parameters.

Additionally, a special cutting condition is seldom consid-
ered in the current TFA-based chatter identification methods.
In this cutting condition, one of the harmonics of the TPF is
equal to or much close to the natural frequency of the tool-
workpiece coupling system. The critical cutting depth reaches
the peak (local maximum value) of the SLD at the correspond-
ing spindle speed. In this case, although in stable chatter-free
cutting condition, in the higher frequency region of the spec-
trum near the certain order natural frequency of the system
(which is sensitive frequency band for chatter frequencies in
ordinary cutting conditions), the amplitude of the TPF har-
monics gradually domain the spectrum with the increase of
the cutting depth. This special phenomenon has been intro-
duced in detail by Altintas and Weck [5] and Niels et al. [14].
Niels et al. [14] applied this theory to active chatter control in
the high speed milling process. However, this special

condition is seldom considered in current TFA-based chatter
identification methods, e.g., the energy ratio indicator. Thus,
the effectiveness of the proposed TFA-based chatter identifi-
cation indicators will be weakened without the consideration
of this special cutting condition.

Based on the time-varying and non-stationary characteris-
tic, a ZST-based chatter identification approach and several
chatter identification indicators are constructed for milling
chatter identification. The ZST is used to accurately character-
ize the time-varying and non-stationary characteristics of the
chatter vibration. The Zoom strategy is used to improve the
time-frequency resolution and energy concentration of the ob-
tained time-frequency distribution.

2.2.2 ZST-based indicators construction for chatter
identification

Firstly, chatter vibration in the milling process is highly time-
varying and non-stationary, which is suitable to be analyzed
by the TFA method to accurately represent the time-varying
and non-stationary characteristics of the signal. Secondly, the
change of instantaneous frequency and energy distribution is
the intrinsic difference between the stable chatter-free and un-
stable chatter signals, which is the most conspicuous

Fig. 1 The time domain
waveform, STFT-based ST, and
ZST TFDs of the simulation
signal
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characteristic for the chatter identification. Based on these two
factors, frequency domain statistic indicators based on the
ZST TFA method have been constructed and applied to detect
the transient changes of the cutting conditions so as to realize
the identification of the milling chatter.

As noted by Obuchowski et al. [45], it is of great signifi-
cance to enhance readability before performing feature extrac-
tion and decision-making. In this study, the ZST is presented
to enhance the time-frequency resolution and energy concen-
tration property before the feature extraction for chatter iden-
tification. Then, ZST-TFD-based frequency domain statistic
indicators are calculated and used to reflect the frequency
and energy distribution change of each transient of the cutting
process.

In order to remove the effect of the cutting parameters on
the chatter identification indicators and consider the special
cutting case mentioned in section 2.2.1, the harmonics com-
ponents of the SRF (including the harmonics of the SRF and
TPF) are filtered out from the ZST-TFD.

The harmonics of the SRF of the ZST-TFD are filtered with
a certain frequency band by the following approach:

Tzsf ti; f kð Þ ¼ Tzs

�
ti; f k

����
f k∈ nFr−Δf =2;nFrþΔf =2½ �f g

¼ 0; n ¼ 0; 1; 2;⋯ ð11Þ

where Fr is the SRF andΔf is the width of the filter frequency
band.

According to the statement of the chatter mechanism in
section 2.2.1, we find that when chatter occurs the frequency
components and energy distribution of the spectrum of the
vibration signal change. These changes mainly happen in the
frequency band which includes the system natural frequen-
cies, and we call this frequency band as the sensitive frequen-
cy band.

Thirteen instantaneous frequency domain statistic chatter
identification indicators based on the filtered TFD of the
ZST, i.e., the TFD without the harmonics of the SRF, are
presented and investigated to find which indicators are effec-
tive for milling chatter identification. The definition of the 13
frequency domain statistic indicators are given in Table 1.

In Table 1,K denotes the total number of the frequency bins
in the selected frequency band, fk denotes the kth frequency
value of the selected frequency band, and Szs(k) denotes the
amplitude corresponding to the frequency fk, i.e., Szs(k) =
Tzsf(ti, fk). All these parameters are calculated at a considered
transient ti, i.e., a column of the ZST-TFD matrix.

In these 13 frequency domain statistical indicators, P1 is the
mean value of the amplitude of the filtered instantaneous spec-
trum in the sensitive frequency band at a considered transient
ti, which is used to reflect the chatter vibration energy in the
sensitive frequency band. When the cutting condition is sta-
ble, there is only noise left on the filtered instantaneous

spectrum in the sensitive frequency band (as the harmonics
of the spindle rotating frequency and tooth passing frequency
have been filtered, and there is no chatter frequencies). The
mean value of the amplitude of the filtered instantaneous spec-
trum in the sensitive frequency band is very small. However,
when chatter occurs, there are lots of chatter frequencies on
the filtered instantaneous spectrum in the sensitive frequency
band. Thus, the mean value P1 of the amplitude of the filtered
instantaneous spectrum in the sensitive frequency band in-
creases and becomes a large value.

P2 is the variance of the amplitude of the filtered instanta-
neous spectrum in the sensitive frequency band and is used to
reflect the concentrative degree of the amplitude of the filtered
instantaneous spectrum in the sensitive frequency band. P3 is
the definition of kurtosis, which is used as a descriptor of the
shape of the amplitude of the filtered instantaneous spectrum
in the sensitive frequency band. P4 is the definition of skew-
ness, and it is used as a measure of the asymmetry of the
amplitude of the filtered instantaneous spectrum in the sensi-
tive frequency band. Additionally, other statistical indicators
were firstly defined to reflect the frequency and energy distri-
bution of the spectrum for fault identification of the rotating
machinery. In this paper, these statistical indicators are
adopted for chatter identification. Indicators P6 and P10 −
P13 are used to reflect the concentration or dispersion degree
of the filter instantaneous spectrum in the sensitive frequency
band. Indicators P5 and P7 − P9 are used as descriptors of the
position change of the main frequency band with the major in
the filter instantaneous spectrum in the sensitive frequency
band.

The schematic diagram of the ZST-based instantaneous
frequency domain statistic indicators construction for
milling chatter identification is given in Fig. 2.
According to the regeneration chatter theory, chatter fre-
quencies mainly appear around the system natural fre-
quencies. In this study, the sensitive frequency band
where chatter frequencies always appear, i.e., the frequen-
cy band includes main natural frequencies of the system,
is selected as the zoom frequency band.

The zoom frequency band can be selected based on the
tool-tip frequency response function (FRF) test or the analysis
of the measured chatter vibration signal. The principle of the
frequency band selection for ZST is that the main mode natu-
ral frequencies which mainly lead to chatter vibration should
be included. Additionally, the frequency band should include
least harmonics of TPF that has prominent amplitude in stable
cutting conditions, which can improve the time-frequency res-
olution and energy concentration of the obtained ZST-TFD.
The ZST is used to enhance the time-frequency resolution and
energy concentration property before the feature extraction for
chatter detection. Based on the obtained ZST-TFD, frequency
domain statistic indicators are calculated and used to reflect
the instantaneous frequency and energy distribution change of
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each transient of the cutting process. Then, the change of the
frequency and energy distribution over time can be obtained.

2.2.3 Energy ratio chatter identification indicator based
on ZST

With the onset and aggravation of the chatter, not only the
frequency distribution but also the energy distribution or
energy ratio between the chatter frequencies and the nor-
mal TPF and its harmonics of the signal instantaneous
spectrum change. Thus, some researchers have conducted
a significant investigation on the energy ratio indicator for
chatter identification both in milling [24] and turning [46]
operations. However, the special cutting condition men-
tioned in section 2.2.1 is seldom considered in the current
presented energy ratio indicators for chatter identification.

The neglect of the special cutting case will weaken the
effectiveness of the current energy ratio indicators.

In this study, an improved energy ratio indicator based on
ZST is developed for chatter identification in high-speed mill-
ing operation. In the proposed energy ratio indicator, the spe-
cial stable cutting condition is considered by filtering out the
effect of the harmonics of SRF. The energy ratio indicator is
defined as the ratio of instantaneous total energy of the chatter
frequencies in ZST-TFD to the instantaneous total energy of
the signal.

For a considered transient ti, the total energy of the har-
monics of SRF Ezstp in the ZST-TFD can be calculated by
the following equation:

Ezstp ¼ ∑ f k∈ nFr−Δf =2;nFrþΔf =2½ �∩ f m; f M½ �f gSzs kð Þ; n

¼ 0; 1; 2;⋯; k ¼ 1; 2;⋯na; ð12Þ

Fig. 2 The schematic diagram of
the ZST-based instantaneous
frequency domain statistic
indicators construction for milling
chatter identification

Table 1 Definition of the 13
frequency domain statistic
indicators

Indicators

P1 ¼
∑
K

k¼1
Szs kð Þ
K P2 ¼

∑
K

k¼1
Szs kð Þ−P1ð Þ2

K−1 P3 ¼
∑
K

k¼1
Szs kð Þ−P1ð Þ4

K

P4 ¼
∑
K

k¼1
Szs kð Þ−P1ð Þ3

K P5 ¼
∑
K

k¼1
f k Szs kð Þ

∑
K

k¼1
Szs kð Þ P6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1
f k−P5ð Þ2Szs kð Þ

K

s

P7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1
f 2k Szs kð Þ

∑
K

k¼1
Szs kð Þ

vuuut P8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1
f 4k Szs kð Þ

∑
K

k¼1
f 2k Szs kð Þ
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The total instantaneous energy of the ZST-TFD and ST-
TFD at transient ti is calculated respectively by:

Ezsto ¼ ∑ f k∈ f m; f M½ �f gSzs kð Þ; k ¼ 1; 2;⋯ ð13Þ
Esto ¼ ∑ f l∈ 0; f s=2½ �f gSs lð Þ; l ¼ 1; 2;⋯: ð14Þ

Then, the total energy corresponding to the chatter frequen-
cies and noise in ZST-TFD can be obtained by:

Ezsc ¼ Ezsto−Ezstp ð15Þ

Finally, the energy ratio indicator defined as the ratio
of instantaneous total energy of the chatter frequencies
in ZST-TFD to the instantaneous total energy of the
signal is defined as:

ERzs ¼ Ezsc=Esto ð16Þ

3 Validation and application

3.1 Experiment setup introduction

In order to validate the effectiveness of the developed chatter
identification indicators, cutting tests were carried out on a
CNCmilling machine. Both end milling and peripheral milling
tests were conducted with two different kinds of milling cutter.
A single-blade milling cutter was used for end milling condi-
tion and a three-fluted milling cutter was used for peripheral
milling condition. The tests were conducted by milling an aero-
nautical aluminum alloy 7075 workpiece, and all tests were
conducted without coolant. Both cutters have a diameter of
12 mm and installation overhang of 70 mm. The cutting forces
during the milling operation were collected by a Kistler dyna-
mometer 9129AA, and the vibration displacement signals of
the tool and tool holder were measured using the Lion non-
contact capacitive displacement sensors (CPL290 with sensi-
tivity as 80 mV/μm). The signals were recorded by an ECON
data acquisition system. The sampling frequency was 6000 Hz.
The displacement signals were used to identify the chatter on-
set. The experiment setup for the endmilling is shown in Fig. 3.
Three groups of end milling cutting tests were conducted, and
the corresponding cutting parameters are listed in Table 2. One
group of peripheral milling was conducted, and the correspond-
ing parameters are given in Table 3.

Fig. 3 The experiment setup for end milling

Table 2 Cutting conditions for
end milling Group Test Milling

type
Axial
depth of
cut (mm)

Radial
depth of
cut (mm)

Feed
rate
(mm/
min)

Spindle
speed
(r/min)

Milling method
(end or
peripheral
milling)

Cutting
condition

I a1 Up 0.2 5 300 6500 End milling Stable

a2 Up 0.4 5 300 6500 End milling Stable

a3 Up 0.6 5 300 6500 End milling Chatter

a4 Up 0.8 5 300 6500 End milling Chatter

a5 Up 0.9 5 300 6500 End milling Chatter

a6 Up 1.2 5 300 6500 End milling Chatter

II b1 Up 0.2 10 300 6500 End milling Stable

b2 Up 0.4 10 300 6500 End milling Stable

b3 Up 0.6 10 300 6500 End milling Chatter

b4 Up 0.8 10 300 6500 End milling Chatter

b5 Up 0.9 10 300 6500 End milling Chatter

III c1 Up 0.2 5 300 4000 End milling Stable

c2 Up 0.4 5 300 4000 End milling Stable

c3 Up 0.6 5 300 4000 End milling Stable

c4 Up 0.8 5 300 4000 End milling Stable
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3.2 Results and discussion

In the first three cutting groups, as the cutter has only one
blade, the TPF is equal to the SRF. The time domain wave-
form and spectrum of the displacement signals under different
cutting conditions in the cutting group I are shown in Fig. 4.

From Fig. 4, it can be seen that the amplitude of the time
domain waveform of the displacement signal increases with
the increase of the axial cutting depth. When the cutting pro-
cesses are stable, the spectrums of the displacement signals are
mainly composed of the harmonics of the TPF in the low-
frequency region, and there is only a few TPF component in

Table 3 Cutting conditions for
peripheral milling Group Test Milling

type
Axial
depth of
cut (mm)

Radial
depth of
cut (mm)

Feed
rate
(mm/
min)

Spindle
speed
(r/min)

Milling method
(end or
peripheral
milling)

Cutting
condition

IV d1 Up 10 0.2 1500 6200 Peripheral
milling

Stable

d2 Up 10 0.5 1500 6200 Peripheral
milling

Stable

d3 Up 10 1 1500 6200 Peripheral
milling

Stable

d4 Up 10 2 1500 6200 Peripheral
milling

Chatter

d5 Up 10 2.5 1500 6200 Peripheral
milling

Chatter

d6 Up 10 3 1500 6200 Peripheral
milling

Chatter

Fig. 4 The time domain
waveform and spectrum of the
displacement signals under
different cutting conditions in the
cutting group I (white circle the
harmonics of the tooth passing
frequency, black down-pointing
triangle the chatter frequencies)
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the high-frequency region. The amplitudes of the harmonics
of TPF increase with increase of the axial cutting depth.

With the onset of the chatter, a lot of abnormal chatter
frequency components appear in the high-frequency region
of the signal spectrum. With the aggravation of the chatter,
the amplitudes of the chatter components as well as the num-
ber of the chatter frequencies increase with the increase of the
axial cutting depth. Additionally, the amplitudes of the TPFs

also increase with the increase of the axial cutting depth, as
shown in Fig. 4.

The finished workpiece surfaces of six different cutting
conditions are shown in Fig. 5. From Fig. 5, it can be seen
that when axial cutting depths are 0.2 and 0.4 mm, the
cutting process is much stable, and the finished workpiece
surface is very good. When the axial cutting depth in-
creased to 0.6 mm, chatter vibration occurs and the cut-
ting process becomes unstable, and there are slight chatter
marks left on the finished workpiece surface. With the
increase of the axial cutting depth as well as the aggrava-
tion of the chatter, the chatter marks become more and
more serious and the finished surfaces become worse
and worse, as shown in Fig. 5.

The filtered ZST-TFD of the displacement signals under
different cutting conditions in the cutting group I is shown in
Fig. 6. From Fig. 6, it can be seen that when the cutting con-
dition is stable the filtered ZST-TFD is composed of noise
with little amplitude, while when chatter vibration occurs ab-
normal chatter frequencies appear in the ZST-TFD. With ag-
gravation of the chatter vibration, both the number and ampli-
tude of the chatter frequencies in the ZST-TFD increase.

The 13 instantaneous frequency statistic indicators for chat-
ter identification are calculated based on the ZST-TFD shown
in Fig. 6, and the results are given in Fig. 7. From Fig. 7, it can
be seen that the indicators P1, P2, P6, P10, P12, and P13 can
provide clear identification between stable milling and unsta-
ble milling with chatter vibration.

Fig. 5 The finished workpiece surfaces under different cutting conditions
in the cutting group I

Fig. 6 Filtered ZST-TFD of
displacement signals under
different cutting conditions in
group I
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As the TPF components have been filtered out, the
influence of the cutting parameters on the indicator calcu-
lation results in the stable cutting condition can be effec-
tively removed. When the cutting condition is stable, the
indicators calculation results of P1, P2, P6, P10, and P13
in stable cutting conditions are much smaller compared
with the indicator calculated results in unstable condition
with chatter vibration, as shown in Fig. 7. Take indicator
P1 as an example; P1 denotes the mean value of the am-
plitude of the instantaneous spectrum on the filtered ZST-
TFD. When the cutting condition is stable, the filtered
ZST-TFD is mainly composed by noise, and the mean
value of the amplitude of the instantaneous spectrum is
very small and approaches zero. With the onset and ag-
gravation of the chatter, chatter frequencies appear in the
higher frequency region and their amplitude increases
sharply. As a result, the mean value of the instantaneous
spectrum amplitude increases sharply with the aggrava-
tion of the chatter vibration, as shown in Fig. 7. The P2
indicator is the variance of the instantaneous spectrum of

the filtered ZST-TFD. In stable milling conditions, the
filtered ZST-TFD mainly consists of noise which is dis-
tributed in the whole zoom frequency region; thus, the
variance of the instantaneous spectrum is very small and
less than 1.5 × 10−6. With the onset and aggravation of
chatter and appearance of the chatter frequencies, the var-
iance of the instantaneous spectrum increases and is much
bigger than that in stable milling conditions, as shown in
Fig. 7.

As for the indicator P12, it is much different from the indi-
cator explained above, and it has a much larger value in stable
cutting conditions and much smaller value in unstable chatter
conditions. When the milling conditions are stable, the values
of P12 are always larger than 6 × 103 and fluctuate with very
large amplitude, while in unstable chatter milling conditions,
the values of P12 are always smaller than 2.5 × 103, and the
fluctuation amplitude is very small.

Additionally, the kurtosis P3 and skewness P4 of the in-
stantaneous spectrum of the signal at a considered transient
can also effectively identify the stable and unstable chatter

Fig. 7 The 13 frequency domain
statistic indicators calculation
results of different cutting
conditions in the cutting group I
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milling conditions. As shown in the partial enlarged detail in
Fig. 7, the kurtosis P3 and skewness P4 are almost equal to
zero when the cutting condition is stable. Although the value
of the kurtosis P3 and skewness P4 is also very small when the

milling condition is unstable and chatter, those values are
much larger than that of stable cutting conditions. Thus, the
kurtosis P3 and skewness P4 can also be used for chatter
identification in milling operation.

The 13 frequency domain statistic indicators calculation
results and the final finished workpiece surface of different
cutting conditions in the cutting group II are shown in
Figs. 8 and 9, respectively. Results shown in Figs. 8 and 9
are similar to that of the cutting group I.When the axial cutting
depths are 0.2 and 0.4 mm, the milling operation is stable and
the finished workpiece surface is very smooth. Slight chatter
occurs when the axial cutting depth is 0.6 mm, and there
leaves slight chatter marks on the finished surface. When the
axial cutting depths increase to 0.8 and 0.9 mm, the chatter
vibration aggravate and the finished workpiece surface is very
bad. The frequency domain statistic indicators calculation re-
sults for both stable and unstable chatter cutting conditions are
similar to that of group I. The indicators P1, P2, P6, P10, P12,
P13, P3, and P4 can provide a clear identification between
stable milling and unstable milling with chatter vibration.
However, indicators such as P5, P7, P8, P9, and P11 are not

Fig. 8 The 13 frequency domain
statistic indicators calculation
results of different cutting
conditions in the cutting group II

Fig. 9 The finished workpiece surfaces under different cutting conditions
(axial cutting depths) in the cutting group II
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suited for chatter identification in the milling process, as
shown in Figs. 7 and 8.

The special cutting condition mentioned above in sec-
tion 2.2.1 appears in the cutting group IIII. The time do-
main waveform and spectrum of the displacement signal
under different cutting conditions in the cutting group III
are shown in Fig. 10. The finished workpiece surfaces
under different axial cutting depths are shown in
Fig. 11. From Fig. 11, it can be seen that the spectrum
of displacement signal under all different axial cutting

depths are composed of the harmonics of the TPF. When
the axial cutting depth is small, the spectrum is mainly
composed of low orders of TPF harmonics at the low-
frequency region. With the increase of axial cutting depth,
the amplitude of the displacement signal increases and
more high-order harmonics of the TPF appear at the
high-frequency region of the spectrum with their ampli-
tude increasing gradually. The cutting conditions are sta-
ble without chatter vibration, and the finished workpiece
surfaces are very good as shown in Fig. 11.

The 13 frequency domain statistic indicators of the filtered
ZST-TFD calculation results are shown in Fig. 12. Indicators
P1, P2, P3, P4 P6, P10, P12, and P13 provide excellent results.
All the value of these indicators agrees well with the stable
cutting condition results of group I and group II, and the effect
of the TPF harmonics components has been effectively re-
moved. These indicators can provide effective chatter identi-
fication with the consideration of the special cutting condi-
tions mentioned above.

As for the peripheral milling tests in group IV, the 13 fre-
quency domain statistic indicators calculation results of differ-
ent cutting conditions are shown in Fig. 13, and the finished
workpiece surfaces are shown in Fig. 14.

From Fig. 14, it can be seen that when the radial cutting
depths are 0.2, 0.5, and 1.0 mm, the peripheral milling pro-
cesses are stable and the finished workpiece surfaces are very
smooth. When the radial cutting depths increase to 2.0, 2.5,
and 3.0 mm, the cutting processes become unstable with

Fig. 10 The time domain
waveform and spectrum of the
displacement under different
cutting conditions in the cutting
group III (white circle the
harmonics of the tooth passing
frequency)

Fig. 11 The finished workpiece surfaces under different cutting
conditions in the cutting group III

Int J Adv Manuf Technol (2019) 101:1197–1213 1209



chatter vibration, and the finished workpiece surfaces are very
bad with obvious chatter marks.

From Fig. 13, it can be seen that indicators P1, P2, P3, P4,
P6, P10, P12, and P13 also provide excellent results. The
calculation results of these indicators for both stable and un-
stable cutting processes agree well with those of the first cut-
ting test groups, i.e., groups I, II, and III.

Synthesizing the results of the above four groups of cutting
tests, it can be found that the proposed instantaneous frequen-
cy domain statistic indicators based on the filtered ZST-TFD,
such as P1, P2, P3, P4, P6, P10, P12, and P13, can provide
excellent chatter identification results under different cutting
methods (such as end milling and peripheral milling) with
different cutting parameters.

The calculation results of the proposed energy ratio
indicator ENGR of four different cutting test groups with
different cutting parameters are shown in Fig. 15. From
Fig. 15, it can be seen that when the cutting condition is
stable without chatter vibration, the ENGR indicator is
always less than 0.2. However, when the cutting process

is unstable with chatter vibration, the value of the ENGR
indicators is always larger than 0.4. Additionally, from
Fig. 15, it can be found that under the same cutting con-
ditions (stable or unstable), the values of the ENGR indi-
cators always concentrate in a very narrow band, and the
indicator values with different cutting parameters always
cross with each other. Take group I as example; when the
cutting conditions are stable with axial cutting depth as
0.2 and 0.4 mm, the instantaneous ENGR indicators con-
centrate at the range from 0 to 0.1 and cross with each
other. When the cutting conditions are unstable with chat-
ter vibration under axial cutting depths from 0.6 to
1.2 mm, the values of instantaneous ENGR indicators
concentrate in the range from 0.55 to 0.65 and cross with
each other. For one considered cutting group, the instan-
taneous energy of both the tooth passing components and
the chatter frequency components increases with the in-
crease of the cutting depth, and this is the reason why the
difference between the indicator values of different cut-
tings with chatter vibration is very small. From Fig. 15c,

Fig. 12 The 13 frequency domain
statistic indicators calculation
results of different cutting
conditions in the cutting group III
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it can be seen that the stable condition of the special
cutting case can be effectively identified by the proposed
instantaneous ENGR indicator.

Above all, from Fig. 15, it can be concluded that the pro-
posed instantaneous ENGR indicator is an effective chatter
identification indicator. The special cutting condition can be
effectively monitored by the proposed ENGR indicator.

4 Conclusions

This paper presents a milling chatter identification approach
combined with the time-frequency analysis method and in-
stantaneous frequency and energy aggregation characteristics
of the chatter vibration signal in the milling process.

In this paper, a zoom synchrosqueezing transform time-
frequency analysis method is used to process and deal with
the time-varying and non-stationary characteristics of the chat-
ter vibration signal in the milling process. The ZST is used as
the preprocessing approach to firstly accurately characterize
the time-varying and non-stationary characteristics of the

Fig. 13 The 13 frequency domain
statistic indicators calculation
results of different cutting
conditions in the cutting group IV

Fig. 14 The finished workpiece surfaces under different cutting
conditions in the cutting group IV
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milling chatter signal with both excellent time and frequency
resolution and to obtain energy concentrated time-frequency
distribution. In order to get rid of the influence of the cutting
parameters on the effectiveness of the developed chatter de-
tection indicators, the harmonics of the spindle rotating fre-
quency have been filtered from the ZST-TFD.

This paper considers the chatter from the energy aggrega-
tion characteristic perspective. Thirteen instantaneous fre-
quency domain statistic indicators and an energy ratio indica-
tor based on the time-frequency distribution obtained by ZST
are developed for milling chatter identification. The instanta-
neous frequency domain statistic and energy ratio of the TFD
at a considered transient is used to characterize and monitor
the instantaneous frequency and energy distribution of the
vibration signal, respectively. Four groups of cutting tests with
both end milling and peripheral milling are conducted to val-
idate the effectiveness of the developed chatter identification
indicators. The results under different cutting conditions with
different cutters indicate that the proposed method can effec-
tively identify the chatter onset in the milling process. The
results also indicate that the proposed approach and indicators
are insensitive to the cutting parameters. The instantaneous
frequency statistic indicators P1, P2, P6, P10, P12, and P13,
and the energy ratio indicator ENGR can provide a clear

identification between stablemilling and unstablemillingwith
chatter vibration, while indicators such as P5, P7, P8, P9, and
P11 are not suitable for chatter identification in the milling
process.
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