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Abstract
Chatter is investigated for a single degree of freedom model of turning process, where the tool is simplified into a cantilever beam,
and the modal parameters of the tool can be obtained from the theory of continuous beam. The cutting force is modeled as a force
system distributed along the rake face of the tool. And the distributed cutting force combines the Taylor approximation of the cutting
force with an exponential shape function. The distributed cutting force model results in a discrete time delay and a continuous time
delay in the governing equation of the system, while the conventional cutting force model only involves a discrete time delay. It is
shown that the delay terms significantly influence the stability of machining operations, especially at low spindle speeds. The effect
of the continuous time delay is further studied in this paper by ignoring the discrete time delay in the governing equations of the
system. The semi-discretization technique is used to compute the stability lobe diagrams of turning operations. The sensitivity of
stability charts to the shape of force distribution and the ratio of the discrete time delay and the continuous time delay q is analyzed.
Turning stability tests are also conducted to verify the accuracy of the distributed cutting force model.

Keywords Stability . Distributed cutting force . Turning . Discrete time delay . Continuous time delay

1 Introduction

Turning is the most widely used machining process and main-
ly produces different products by cutting metal. In the process
of cutting metal, there is an unstable relative vibration between
cutting tools and workpieces, which is chatter. The occurrence
of chatter during metal cutting processes is an important prob-
lem in manufacturing technology. Chatter has a lot of unfa-
vorable effects: it reduces the productivity and the surface

quality, causes noise, reduces the life of machine tool and
cutting tool, and even leads to tool damage in some cases.
Therefore, it is highly necessary to avoid chatter for the ma-
chine tool industry.

In the past half century, considerable researches have been
conducted to study the governing physical phenomena behind
chatter in order to understand its nature and describe methods to
avoid it. One of the most widely accepted explanations of ma-
chine tool chatter is the theory of surface regeneration [1, 2]: the
machined surface becomes wavy due to the relative vibrations
between the tool and the workpiece. Therefore, delay effects
appear in the models of metal cutting operations since the cut-
ting force is determined by the chip thickness, which depends
both on the actual tool position and the delayed position at the
previous cut. Hence, the delay-differential equations are used to
describe machine tool vibrations, and the regenerative machine
tool chatter can be considered as the manifestation of self-
excited oscillations in a time-delay system. After the theory of
surface regeneration, process damping was studied in stability
determination in the processes of turning, which is an energy
dissipation mechanism at low speeds [3, 4]. An alternative
physical explanation for process damping is the distributed cut-
ting force model, which distributed over the tool–chip interface.
A distributed force and continuous delay model was improved
for stability analysis of low-speed turning, in contrast to the
conventional approach, which uses a point force acting at the
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tool tip [5]. A continuous delay model was given to analyze
stability of turning process at low cutting speeds by assuming
an alternative physical explanation for process damping where
a distributed cutting force model, along with a function distri-
bution over the tool–chip interface [6]. The abovementioned
researches have laid foundations for the analysis of chatter in
machining processes.

In recent years, the issue of turning stability has become the
focus of many scholars, and a large number of researches have
been carried out. Molnar et al. [7] proposed the bistable zone
for machining operations, which is estimated for the case of a
distributed cutting force model. Huang et al. [8] presented a
method for investigating the probabilistic analysis of the re-
generative chatter stability in turning by using the Monte
Carlo simulationmethod and advanced first-order second-mo-
ment method. Insperger et al. [9] proposed a model of turning
operations with state-dependent distributed time delay by ap-
plying the theory of regenerative machine tool chatter and
describing the dynamics of the tool–workpiece system during
cutting by delay differential equations. Ozturk et al. [10] for-
mulated stability of parallel turning processes in frequency
and time domain for two different parallel turning cases to
determine chatter-free cutting process parameters.
Gyebrószki et al. [11] proposed a combined model of the
surface regeneration effect and chip formation to predict the
stability of turning processes. Comak et al. [12] proposed a
general mathematical model to predict the chip thickness, cut-
ting force, and chatter stability of turn milling operations.
However, most of these studies either ignore the effect of
distributed cutting forces on turning stability or only use the
distributed cutting force and the point cutting force to compare
the difference in stability analysis of turning, they do not il-
lustrate exactly what the impact of distributed cutting force is
in the stability analysis of turning.

The cutting force models began to appear in literature about
half a century ago [13, 14, 15]. Many models have been pro-
posed to characterize the cutting forces as a function of the
cutting parameters, such as the instantaneous chip thickness
and the depth of cut whose product forms the instantaneous
chip area. These models treated cutting forces as a point force,
which acts at the tool tip. This conventional approximation of
the cutting forces has been verified experimentally in the mid-
dle range of cutting speeds. However, actual observations of
the cutting process at low speeds show improved stability
when compared with those obtained from theoretical predic-
tions. The concentrated force model cannot reflect the realistic
representation of the physical cutting forces at low cutting
speeds. Due to many machining operations that can be carried
out only at low speeds [16], it is necessary to put forward a
new cutting force model to solve the problem. Thus, many
scholars have proposed a distributed cutting force model for
the analysis of turning stability based on the actual contact
between tool and workpiece. The distributed cutting force

model has a great impact on low-speed cutting stability, which
reflects a more realistic representation of the physical cutting
forces. The distributed cutting force model results in a discrete
time delay and a continuous time delay in the governing equa-
tion of the system, while the conventional cutting force model
only involves a discrete time delay.

According to the references [17, 18], there are two main
analytic methods to solve the natural frequencies of cantilever
beams. One of the analytic methods is the lumped-parameter
system, the other is the continuous system. A lumped-
parameter system can be considered to be a system consisting
of point masses separated by springs and dampers. The pa-
rameters of the system are discrete sets of finite numbers. On
the other hand, in a continuous system, the mass, elasticity (or
flexibility), and damping are distributed throughout the sys-
tem. During vibration, each of the infinite number of point
masses moves relative to each other’s point mass in a contin-
uous fashion. The choice of modeling a given system as dis-
crete or continuous depends on the purpose of the analysis and
the expected accuracy of the results. For a continuous system,
the governing equation of motion is in the form of a partial
differential equation. Since the solution of a set of ordinary
differential equations is simple, it is relatively easy to find the
response of a discrete system that is experiencing a specified
excitation. On the other hand, solution of a partial differential
equation is more involved, and closed-form solutions are
available for only a few continuous systems that have a simple
geometry and simple boundary conditions and excitations.

In this paper, the so-called surface regeneration effect [19] is
followed to have the further results on themore accurate model-
ing of machine tool chatter. Firstly, the tool is simplified to a
continuous cantilever beam to analyze the modal parameters.
Secondly, the stability analysis of turning processes is investi-
gated by taking the distributed cutting forcemodel into account.
In the process of stability analysis, the distributed cutting force
model includes both a discrete time delay and a continuous time
delay, which has a great impact on low-speed cutting stability.
Here, the distributed cutting force model is extended to turning
processes and perform the stability analysis, where the discrete
time delay is negligible to illustrate exactly the impact of the
distributed cutting force. The semi-discretization technique [20,
21] is used to chart the stability boundaries for turning opera-
tion. Lastly, external turning operations are performed to verify
the accuracy of the proposed model.

2 Mechanical model

In the section, a single degree of freedom model of turning
process is investigated (as shown in Fig. 1). The governing
equation of motion for a rigid workpiece and a tool compliant
in one direction, x(t), is:
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m€x tð Þ þ cx˙ tð Þ þ kx tð Þ ¼ Fx tð Þ ð1Þ

Where m, c, and k are the modal mass, damping, and stiff-
ness parameters, respectively, and Fx(t) is the x-directional
cutting force component acting on the tool.

2.1 Calculation of tool modal parameters

In order to solve the governing equation of motion, it is nec-
essary to calculate the tool modal parameters. In the process of
turning large diameter solid workpieces, cutting chatter main-
ly occurs on cutting tools, because the stiffness of workpiece
is larger than that of the tool. The tool can be simplified to a
cantilever beam with one end fixed and one end free during
the modeling process. The cantilever beam has a simple ge-
ometry and simple boundary conditions. Moreover, the accu-
racy of the natural frequencies can be improved by using the
continuous system. Therefore, the cantilever beam is assumed
as a continuous system with infinite degrees of freedom. In
other words, there are infinite natural frequencies and natural
modes.

In the process of turning, the bending of the tool is mainly
caused by bending moment. Thus, for the sake of conve-
nience, the Euler-Bernoulli beam theory [22] is used to calcu-
late the first three order modal parameters of the tool, which
ignores the shear deformation. Assuming that the tool is a
uniform beam, the differential equation of motion of tool is:

EI
∂4w x; tð Þ

∂x4
þ ρA

∂2w x; tð Þ
∂t2

¼ 0 ð2Þ

If the tool is fixed at x = 0 and free at x = e (e is the overhang
length of tool), the transverse deflection and its slope must be
0 at x = 0, and the bending moment and shear force must be
0 at x = e. Thus, the boundary conditions are:

w 0ð Þ ¼ 0;
dw
dx

0ð Þ ¼ 0;
d2w
dx2

eð Þ ¼ 0;
d3w
dx3

eð Þ ¼ 0 ð3Þ

So, the natural frequency of the vibration system:

wn ¼ βneð Þ2 EI
ρVe4

� �1=2

; n ¼ 1; 2; 3… ð4Þ

Where, βn is the calculation coefficient of the natural fre-
quency; E is the modulus of elasticity of the tool; I is the
moment of inertia of the tool; ρ is the density of the tool; V
is the sectional area of the tool V = r × j; r is the width of the
cutter; and j is the height of the cutter. And, hence the nth
mode shape can be expressed as:

Wn xð Þ ¼ C1n cosβnx−coshβnxð Þ− cosβneþ coshβne
sinβneþ sinhβne

sinβnx−sinhβnxð Þ
� �

ð5Þ

The size and material properties of the tool are shown in
Table 1.

By submitting the parameters of Table 1 into Eq. (4), the
three first-order natural frequencies of the cutting tool can be
obtained: ω1 = 1704.1 Hz; ω2 = 10,680.0 Hz; ω3 =
29,907.1 Hz.

In order to verify the correctness of the natural frequencies
obtained by the Euler-Bernoulli beam theory, a hammer mode
experiment is conducted to obtain the natural frequency of the
tool, which is a necessary element to draw the stability lobe
diagram. In the hammer mode experiment, a hammer is used
to hit the tool that is clamped on a CNC lathe, and an acceler-
ometer with a sensitivity of 98.45 mv/g is used to collect sig-
nals. Due to the limitation of the modal parameter extraction
method, the hammer and accelerometer must be in the form of
“point-to-point” percussion. The hammermode experiment set-
up is shown in Fig. 2. The rest of the equipment includes a
B&K data acquisition box and a matching computer.

Through the hammer mode experiment, the first-order nat-
ural frequencyω1 is 1574.2 Hz, which is very close to the first-
order natural frequency (1704.1 Hz) obtained by the Euler-
Bernoulli beam theory.

2.2 Distributed cutting force model

In the process of turning, the tool and the workpiece are in
contact with each other on the front, edge, and back of the
tool; so, it is impossible that the practical cutting force is a
concentrated point force. Compared with the conventional
point cutting force, the distributed force model reflects a more
realistic representation of the physical cutting forces in turn-
ing. Besides, the distributed force model also provides an

h(t, s)

x(t- )

x(t)

v

c k

Tool

Workpiece

l

0

Px

Fig. 1 Schematic diagram of turning process with a distributed force
model

Table 1 Size and material properties of the tool

r (m) j (m) e (m) E (GPa) ρ (kg/m3)

0.025 0.025 0.11 206 7900
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alternative explanation for the improved stability at low
speeds. Therefore, the construction of distributed cutting force
model is of great significance to the study of the stability of
turning process. Instead of cutting forces concentrating on a
single point on the tool tip, these forces are assumed to have a
distribution per unit length p with varying magnitudes along
the tool–chip interface, as shown in Fig. 1. The cutting force
Fx(A) can be modeled as the resultant of a distributed force
system Px(A,s) on the contact area l between the rake face and
chip [23, 24].

FX Að Þ ¼ ∫l0Px A; sð Þds ð6Þ

Where s is the distributed delay, which expresses the chip
contacting with the rake face of the tool. The local coordinate l
whose origin is fixed on the tip of the tool is used to describe
the contact distance between the sliding chip and the active
face of the tool. The value of l ranges from 0 to the length that
represents the position where the chip leaves from the tool.
Px(A,s) is composed of a time-dependent magnitude FT

x(A)
and a time-independent shape function Wx(s) [25]:

Px A; sð Þ ¼ FT
x Að ÞWx sð Þ; s∈ 0; l½ � ð7Þ

With the constraint:

∫l0Wx sð Þds ¼ 1 ð8Þ

It is necessary to choose a proper function FT
x(A), which

characterizes the magnitude of the cutting force distribution.
In the past half century, a lot of cutting experiments and cut-
ting simulations have been carried out to determine the force
magnitude FT

x(A). For the cutting force distribution magni-
tude FTx(A), there are two kinds of expressions that are more
widely applied, one is Taylor force [26], the other is Tobias
force [27]. But other kinds of force expressions also exist (see
Refs. [28, 29]). In this paper, Taylor’s formula is used:

FT
X Að Þ ¼ ϕ uð ÞKA ð9Þ

Where, φ(u) is a value 1 when the tool is cutting the work-
piece and 0 when the tool leaves the workpiece. K is the

cutting coefficient and is usually determined by experiment.
A is the instantaneous chip area.

Now, focus on the choice of the weight function Wx(s),
which characterizes the shape of cutting force distribution
along the rake face of the tool. There are five kinds of widely
accepted shapes for the distributions of the normal and the
shear stress, which are sine weight function, cosine weight
function, constant weight function, exponential weight func-
tion, and compound trigonometric weight function (as shown
in Fig. 3) [30, 31, 32]. The formulae of these three weight
functions are as follows:

1. Sine weight function

Wx sð Þ ¼ π
2l

sin
π
l
s

� �
; s∈ 0; l½ � ð10Þ

2. Cosine weight function

Wx sð Þ ¼ 1

l
1þ cos

π
l
s

� �h i
; s∈ 0; l½ � ð11Þ

3. Exponential weight function

Wx sð Þ ¼ 1

l
exp −

s
l

� �
; s∈ 0;∞½ � ð12Þ

4. Constant weight function

Wx sð Þ ¼ 1

l
; s∈ 0; l½ � ð13Þ

5. Compound trigonometric weight function

Wx sð Þ ¼ π
2l

sin
π
l
sþ ϕ

� �
; s∈ 0; l½ � ð14Þ

It is important to choose a suitable shape function Wx(s),
because the more appropriate Wx(s) is selected, the more
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p

0
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exponential
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Fig. 3 The weight functions of distributed cutting force

Tool

Accelerometer

Hammer

Fig. 2 The hammer mode experiment setup
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accurate results can be obtained. According to many studies,
which showed that the forces over the rake face vary expo-
nentially, thus, in this paper, the shape function Wx(s) is ap-
proximated by the exponential function.

Therefore, when the tool is cutting the workpiece, submit-
ting above results, Eqs. (9) and (12) into Eq. (6), yields:

FX Að Þ ¼ ∫l0Px A; sð Þds ¼ ∫l0F
T
x Að ÞWx sð Þds

¼ ∫l0ϕ uð ÞKA 1

l
exp −

s
l

� �
ds ð15Þ

2.3 The equation of motion

Equation (1) can be divided by m and written as:

€x tð Þ þ 2ξωnx˙ tð Þ þ ωn
2x tð Þ ¼ 1

m
Fx tð Þ ð16Þ

Where ωn ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural angular frequency of

undamped system and ξ ¼ c=
ffiffiffiffiffiffi
km

p
is the damping ratio.

Substituting Eq. (15) into Eq. (16) yields:

€x tð Þ þ 2ξωnx˙ tð Þ þ ωn
2x tð Þ ¼ 1

m
∫l0ϕ uð ÞKA 1

l
exp −

s
l

� �
ds ð17Þ

When the tool is cutting the workpiece, the cutting force is
proportional to the chip area, and the chip area is the product
of cutting width and cutting thickness. Hence, the chip area A
is:

A ¼ b h t; sð Þ−h0ð Þ ð18Þ

Where b is the chip width, h0 is the mean chip thickness,
and h(t,s) is the instantaneous chip thickness.

According to the theory of regenerative machine tool vi-
brations, the instantaneous chip thickness h(t,s) can be written
as a function of the tool position at the actual and the prior cut:

h t; sð Þ ¼ h0 þ x t−τ−sð Þ−x t−sð Þ; s∈ 0; l½ � ð19Þ

Where τ is the discrete time delay, which is associated with
the tool passage period: τ = 2π/Ω.

Submitting Eqs. (18) and (19) into Eq. (17) yields:

€x tð Þ þ 2ξωnx˙ tð Þ þ ωn
2x tð Þ

¼ ϕ uð ÞKb
m

∫l0
1

l
exp −

s
l

� �
x t−sð Þ−x t−τ−sð Þ½ �ds ð20Þ

By substituting u = vt into Eq. (20), then the equation can
be transformed into the following form:

d2x uð Þ
du2

þ 2ξωn

v
dx uð Þ
du

þ ωn

v

� �2
x uð Þ

−
ϕ uð ÞKb
mv2

∫l0
1

l
exp −

s
l

� �
x u−sð Þ−x u−τ−sð Þ½ �ds ¼ 0

ð21Þ

The integrodifferential form of Eq. (21) with distrib-
uted cutting force model includes the discrete time de-
lay due to the tool passage period, as well as the con-
tinuous time delay due to the chip sliding over the tool–
chip interface, which makes the stability of the system
more complex. For the choice of the shape functions,
the more realistic exponential weight function is select-
ed after comparing sine weight function, cosine weight
function, exponential weight function, constant weight
function, and compound trigonometric weight function.
In the same way, Taylor’s formula is selected as the
suitable force magnitude FT

x(A).

3 Stability analysis

In this section, Eq. (21) is transformed into the state-
space equation, which can be used to study the stability
analysis of the system by using the semi-discretization
method. The analysis is shown for the distributed force
model, which includes the short time delay and the long
time delay, and a similar analysis can be used for the
distributed force model, which only includes the short
time delay. As a result, stability boundaries are plotted
for continuous steady turning process.

By introducing dimensionless parameter:

~u ¼ u
dπ

ð22Þ

And the angular velocity:

n ¼ 2π
v

ð23Þ

Eq. (21) can be written as:

x 2ð Þ ~u
� �

þ 2ξωn
2π
n
x 1ð Þ ~u
� �

þ 2πωn

n

� �2

x ~u
� �

−
ϕ ~u
� �

kb

m
∫1=q0

1

l
exp −

~s
l

 !
x ~u−~s
� �

−x ~u−1−~s
� �� �

d~s ¼ 0

ð24Þ

Where the new parameter is described as:

q ¼ dπ
l

ð25Þ
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Transform variable s to the new variable θ:

Wx ~s
� �

¼ 1

l0
exp −

~s
l0

 !
⇒Wx −θð Þ

¼ q0exp −q0θð Þ; θ∈ −∞; 0½ � ð26Þ

Where l0 can be thought of as the measure of the short time
delay; q0 is defined as dπ/l0, which is the ratio of the long time
delay and the short time delay in the system.

Submitting Eq. (26) into Eq. (24) yields:

x 3ð Þ ~u
� �

þ q0 þ 2ξωn
2π
n

� �
x 2ð Þ ~u
� �

þ 2ξωnq0
2π
n

þ 2πωn

n

� �2
 !

x 1ð Þ ~u
� �

þ ωn
2 þ

ϕ ~u
� �

kb

m

0
@

1
A 2π

n

� �2

q0x ~u
� �

−
ϕ ~u
� �
m

2π
n

� �2

q0x ~u−1
� �

¼ 0

ð27Þ

Which can be written in state-space form as:

x˙ 1 ~u
� �

x˙ 2 ~u
� �

x˙ 3 ~u
� �

2
6664

3
7775 ¼

0 1 0
0 0 1

− ωn
2 þ

ϕ ~u
� �

kb

m

0
@

1
A 2π

n

� �2

q0 − 2ξωnq0
2π
n

þ 2πωn

n

� �2
 !

q0 þ 2ξωn
2π
n

� �
2
66664

3
77775�

x1 ~u
� �

x2 ~u
� �

x3 ~u
� �

2
6664

3
7775þ

0 0 0
0 0 0

ϕ ~u
� �
m

2π
n

� �2

q0 0 0

2
6664

3
7775

x1 ~u−1
� �

x2 ~u−1
� �

x3 ~u−1
� �

2
6664

3
7775

ð28Þ

The state-space Eq. (28) could be written in an equivalent
form as:

X˙ ~u
� �

¼ B ~u
� �

X ~u
� �

þ C ~u
� �

X ~u−1
� �

ð29Þ

This model involves the distributed cutting force model,
which contains the short time delay and the long time delay.
The parameter q has an important role in the stability investi-
gation. It can be expressed bymeans of distances: it is the ratio
of the circumference dπ of cylindrical workpiece and the
length l of the contact line of chip and the active face of the
tool [33, 34]. When the long time delay effect is negligible,
i.e., q = 0, the ordinary differential equation of a simple
damped oscillator can be transformed into the following form:

x 3ð Þ ~u
� �

þ 2ξωn
2π
n

x 2ð Þ ~u
� �

þ 2πωn

n

� �2

x 1ð Þ ~u
� �

¼ 0 ð30Þ

Which can be written in state-space form as:

x˙ 1 ~u
� �

x˙ 2 ~u
� �

x˙ 3 ~u
� �

2
6664

3
7775 ¼

0 1 0
0 0 1
0 − 2πωn=nð Þ2 2ξωn 2π=nð Þ

2
4

3
5

x1 ~u
� �

x2 ~u
� �

x3 ~u
� �

2
6664

3
7775 or X˙ ~u

� �

¼ D ~u
� �

X ~u
� �

ð31Þ

The stability analysis of the resulting state-space equations
is then performed using the numerical analysis method. In this

method, the main point of the semi-discretization technique is
to approximate the solution operator of the infinite-
dimensional delayed system by a large but finite dimensional
matrix. The delayed terms are discretized, while the current
terms are unchanged and the time-periodic coefficients are
approximated by piecewise constant functions [35].

4 Results and discussion

4.1 Experimental verification

According to first-order natural frequency and mode shape of
the cutting tool, the modal mass, damping, and stiffness pa-
rameters can be obtained. The ratio q0 can be obtained by the
measurement of the diameter of the workpiece and the length
l, which is the contact length of chip and the rake face of tool.
The length l can be acquired by the following equation:

l ¼ ηz ð32Þ

Where η is the ratio of wearing length and contact length, z
is the wearing length of the tool’s front face. η = 1.67–3.33 in
this paper [36, 37].

As a result, the stability chart for the distributed force mod-
el including the short time delay and the long time delay in
continuous turning process by using the calculating parame-
ters of Table 2 is shown in Fig. 4.

As shown in Fig. 4, the stability chart tends to shift upward
at low cutting speeds, which is attributed to the interference of
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the tool flank with the wavy surface of the workpiece. The
energy dissipation through this interference mechanism is
called process damping: the increased stability is due to an
additional damping force inversely proportional to the spindle
speed. An alternative physical explanation for process
damping is the distributed cutting force model, which is
modeled as the resultant of a force system distributed along
the rake face of the tool. Since the chip needs a finite time to
slip along the tool, an additional continuous time delay is
introduced in the model equations. Although the continuous
time delay is significantly shorter than the discrete time delay,
it may result in qualitative changes in the stability lobe dia-
grams. Thus, the improved stability behavior at low spindle
speeds can be described by a multi-scale mechanism: by
means of the interplay of the discrete time delay and the con-
tinuous time delay.

To verify the accuracy of the proposed model, external
turning operations are performed on a CNC lathe (14.9 kW,
4500 rpm spindle). A rhombic carbide insert (KYS25) with
the cutting tool holder (PCLNR2525M12) is employed to cut
a workpiece of aluminum alloy (Ø70 × L250 mm). The exper-
imental setup is shown in Fig. 5. The rest of the equipment
includes a B&K data acquisition box, a matching computer,
and GRAS40ppmicro-microphone with sensitivity of 50 mV/
Pa to collect acoustic signals. During the cutting tests, chatter
is measured using the machined surface finish and the micro-
phone, whose signals are analyzed via fast Fourier transform
(FFT) in order to observe the frequency content and compare
it with the expected behavior of a stable cut to verify the
predicted stability limits [38–41].

In the experiment, point A (n = 300 rpm, Kb = 1800 MN/
m), point B (n = 300 rpm, Kb = 4200 MN/m), point C (n =
740 rpm, Kb = 4270MN/m), and point D (n = 740 rpm, Kb =

850 MN/m) are selected from the stability lobe diagram to
verify the accuracy of the proposed model. The processing
parameters corresponding to point A from point D are used
to machine the workpiece of aluminum alloy. Experiment re-
sults of external turning, workpiece surface and acoustic sig-
nals, are shown in Fig. 6 and Fig. 7, respectively.

There is obvious vibration pattern in the machining area
corresponding to point A and point D. By comparison, the
turning process corresponding to point B and point C is stable
according to the smooth machined surface finish. Since ener-
gy concentration in frequency domain is a key characteristic
of chatter occurrence [42], chatter frequency is 1523 Hz at
point A and 1496 Hz at point D, which obviously indicates
there is chatter at point A and point D from Fig. 8. As a result,
these experimental results verify the accuracy of the proposed
model.

4.2 Parameter analysis

In the actual processing situation, q is impossible to equal to 0.
Therefore, the distributed cutting force only with the short
time delay on the stability of turning can be investigated by
decreasing the value of q. The stability chart is shown in
Fig. 9.

The stability lobe diagram shows that the distributed cut-
ting force model, which includes both a discrete time delay
and a continuous time delay, influences the stability of turning
greatly, especially at low spindle speeds. For the distributed
cutting force model only with a continuous time delay, the
stability lobe diagrams show that when q keeps approaching
0, regions of stability are becoming greater and greater.

The parameter q is the ratio of the discrete time delay and
the continuous time delay in the system, which can be
expressed as the ratio of the circumference dπ of cylindrical
workpiece and the length l of contact line of chip and the
active face of tool. Therefore, the ratio q decreases along with
the decrease of the contact length l when the diameter of
workpiece is fixed (as shown in Fig. 10a). By comparison,
when the contact length l is assumed as a constant, the ratio
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Table 2 The calculating
parameters m (kg) ωn (Hz) ζ q0

40 1704.1 0.05 22.6
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q increases along with the increase of the diameter of work-
piece (as shown in Fig. 10b). As a result, chatter can be effec-
tively avoided when the diameter of workpiece is larger and
the contact length between tool and workpiece is shorter (as
shown in Fig. 10c).

5 Conclusions

In this paper, a one-degree-of-freedom mechanical mod-
el is considered to describe chatter in turning operations
with a distributed cutting force model, which is modeled
as the resultant of a force system distributed along the
rake face of the tool. An exponential shape function is
used to approximate the force distribution on the tool–
chip interface. The distributed force model results in a

more complicated governing equation, a second-order
delayed integrodifferential equation, which involves both
a discrete time and continuous time delay. The continu-
ous time delay results from a certain amount of time it
takes the chip to slide along the rake face of the tool,
while the discrete time delay is from the period between
consecutive passages of the cutting tooth. An approach
to transform and normalize the governing equation of
motion into a third-order discrete system is described
and the state-space representation of the new system is
obtained. The semi-discretization method is used to
compute the stability lobe diagrams of turning opera-
tions. In order to verify the accuracy of the proposed
model, external turning operations of an aluminum alloy
workpiece are performed on a CNC lathe. The accuracy
of the proposed model can be verified to be correct
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from the workpiece surface and acoustic signals which
are analyzed via FFT.

Moreover, contrary to the cutting force model with a dis-
crete time delay and a continuous time delay, assume that the
cutting force model only includes a continuous time delay to
study the effect of the continuous time delay on the stability of
turning. The results show that the continuous time delay has
little influence on the stability of turning.When the workpiece
diameter is larger and the contact length between tool and
workpiece is shorter, the tool is more stable. Finally, construct-
ing a solution strategy that can accommodate different shape
functions for the force distribution and the contact length be-
tween the tool and the workpiece will be the subject of future
research.
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