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Abstract
The present investigation deals with the proposal of a combined fuzzy-genetic algorithm (F-GA) model able to describe the
inherent uncertainties related to the manufacture of open-cell aluminum foams by using the dissolution and sintering process
(DSP). The use of the F-GAmethod allows to take into account, within the same model, both the uncertainty related to the model
and the statistical manufacturing process variability. The developed model is aimed at controlling the capability of this material at
absorbing energy in compressive deformation, for a different set of process parameters. In particular, the use of genetic algorithms
allows the optimization of the support of the fuzzy numbers defined in the model in order to take into account most of the
experimental data in combination with the smallest uncertainty. Then, the input uncertainty, related to both the process variability
and the chosen model, is propagated to the output variables by the Transformation Method. The fuzzy results are then compared
with the measured data and the membership level of the dataset to the uncertain model is evaluated. The process maps generated
allow to select the operational parameters in order to obtain a desired process output, in combination with the lowest uncertainty
level, providing, as additional information, how much the uncertainty of the model and the process varies by changing those
operational parameters.
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1 Introduction

In the last decades, metal foams have become increasingly
attractive for their interesting physical, mechanical, thermal,
electrical, and acoustic properties. Foam combines part of the
characteristics of a bulk metal with the structural advantages
of a foam [1, 2], offering potential for lightweight structures
[3], for energy absorption [4–7], and for thermal management
[8–12]. Both the attention and the progress in crashworthiness
of vehicles have experienced a significant improvement, fo-
cusing the design on the passenger safety. The current philos-
ophy adopted in the automobile industry is to structurally
harden the passenger compartment against collapse and

intrusion. Then, the features of metallic foams make them
suitable to applications requiring high stiffness-to-weight ratio
and efficient energy absorption. The challenge is to employ
these innovative materials in a controlled manner [13]. The
improvement of many manufacturing techniques has allowed
the development of different foaming processes, making it
possible to easily control the shape and distribution of the
space holders as well as the morphology of the porosity in
the foams, promoting an improved repeatability, which allows
designing the material properties by simply choosing the char-
acteristics and the amount of the space holder [14].

The main interest of manufacturers is the optimization of
the production and the subsequent quality of components.
However, both aspects are governed by a complex interaction
between the process parameters and the properties of the proc-
essed materials. In particular, the parameters are usually ad-
justed and tuned one by one to obtain the desired quality [5, 6,
15–18]; however, this approach consumes time and effort. At
the same time, foam quality cannot be easily predicted. To
date, many studies have been aimed at analyzing the foam
processing based on Analytical Modeling [19–21] and
Numerical Modeling [8, 19, 22]. In the first case, modeling
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based on an analytical solution is usually centered on some
assumptions oversimplifying the problem and overestimating
or underestimating the solution [19]. On the other hand, the
lack of reliable, comprehensive, and yet computationally fast
physical models of such a multivariable system still makes
numerical modeling of technological processes a difficult, if
not impossible task.

In this light, engineering problems which involve complex-
ity and non-linearity, such is the foam manufacturing process,
have benefited from artificial intelligence (AI)-based methods
[23–26]. These methods use mathematical tools and treat the
model as a black-box dealing only with input-output
relations, thus overcoming all the model complexity.
Moreover, AI models are able to handle vague informa-
tion without requiring knowledge of internal system pa-
rameters and providing a compact solution for multivariable
problems [27, 28].

Several process routes have been developed to make metal
foams [3]. However, some drawbacks as low process repeat-
ability, its unsuitability in manufacturing of complex shapes,
and high associated running and plant costs constitute an ad-
ditional limit to the ultimate development of foam production
technologies [2, 14]. Most of this problems may be solved by
using a novel process, named Dissolution and Sintering
Process (DSP), which consists of four main steps [29]: (i)
mixing the starting metal powder with the space-holder parti-
cles (SHP); (ii) compacting the mixture in order to obtain a
green compact; (iii) dissolution of the SHP with an appropri-
ate solvent in order to obtain a cellular structure; (iv) sintering
of the latter structure to produce metallurgical bond among the
metallic powders. In this way, the shape and distribution of the
space holders as well as the morphology of the porosity in the
foams can be easily controlled. In general, DSP is a flexible
process by which many different pore sizes and densities can
be produced. However, the achievement of the desired char-
acteristic for the considered application could be time and
effort consuming, since the manufacturing process parameters
should be accordingly tuned. For this reason, empirical-, nu-
merical-, and artificial intelligence-based methods can be ap-
plied in order to find the optimal operational parameters.
However, since this kind of process suffers from a strong
process variability and hence a low repeatability, traditional
statistical approaches may fail at identifying which factors are
the most influential. On the other hand, models that include all
the factors and the interactions, thus very complicated, may be
unsuitable for modeling and prediction. Moreover, even com-
plicated models still will represent only the median process
leaving the user with little information about the dispersion
around the mean. For this reason, more uncertain models
based on expert systems such the fuzzy logic with ge-
netic algorithms optimization can be considered a valu-
able alternative for modeling the experimental data and for
simulation purposes.

Several papers have been recently published in the scien-
tific literature regarding the application of the fuzzy theory to
the optimization of the manufacturing processes [30–33], but
none of them concerns the manufacturing process of the metal
foams. In this light, the present study is aimed at proposing a
combined fuzzy-genetic algorithm (F-GA) approach able to
describe the inherent uncertainties related to a DSP foam
manufacturing process, with the aim of predicting the
resulting absorbing energy properties and the compressive
deformation behavior, for different set of process parameters,
i.e., weight percentage of carbamide particles, mesh size of
carbamide particles, and compression speed, which are sug-
gested to be the main control factors by the ANOVA test
carried out on existing experimental data. The use of the ge-
netic algorithm allows the optimization of the support of the
fuzzy model in order to take into account most of the experi-
mental data in combination with the smallest uncertainty level.
Then, the input uncertainty, related to both the process vari-
ability and the chosen model, is propagated to the output var-
iables by the Transformation Method. The fuzzy results are
compared with the measured data and the membership level of
the dataset to the uncertain model was evaluated. The process
map obtained by the application of the fuzzy model is used to
select operational parameters in order to obtain a desired pro-
cess output, providing as additional information how much
the uncertainty of the model and the process varies by chang-
ing operational parameters. The large variability of the process
is highlighted by the proposed model through a large band of
uncertainty that occurs in the process map generated. The F-
GAmodel has also been used to assess the optimal parameters
in order to satisfy the requirement of the highest energy ab-
sorption and the lowest deformation in combination with the
lowest level of uncertainty.

2 Process engineering control: F-GAmodeling

Generally speaking, the implementation of a direct model able
to accurately describe the effect of control parameters on the
quality of technological process is a challenging task due to
the inherent variability of the process, which derives from the
complex nature of the process, and the approximation intro-
duced in the model, which is typically due to the lack of
knowledge on the physics occurring into the process itself.

The source of uncertainty related to a manufacturing pro-
cess is usually random and can be easily modeled with sto-
chastic methods provided that enough experimental data are
available. On the other hand, statistics is not useful in model-
ing the systematic error introduced by model approximations.
In the latter case, fuzzy arithmetic can be considered a viable
alternative [27, 34, 35]. In other words, the advantage of using
fuzzy modeling is related to the possibility to model at the
same time both the systematic and the random errors [30].
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2.1 Fuzzy model optimization

The fuzzy model, proposed in a previous work [30], imple-
ments the Transformation Method [36] that performs a map-
ping of points in the input parameter hyperspace onto points in
the output space, reducing the fuzzy arithmetic to a set of
operations for the intervals at each α-cut by avoiding standard
interval arithmetic, as defined by Moore [37], and with the
purpose of finally obtaining a quantification of the uncer-
tainties in the output variables. Each input interval is sampled
independently from the others. Therefore, at each α-level, the
hyper-interval in the input space is defined by the Cartesian
product between each vector representing each sampled inter-
val. Moreover, the fuzzy model can also be numerically
inverted to evaluate the samples that are described by the
model for a given membership level. In other words, it is
possible to first assign the desired output value and then cal-
culate those scenarios that satisfy that initial condition.

In [30], the support of each fuzzy parameter was chosen in
order to take into account most of the experimental data, ac-
cording to the confidence level of 95%. This, however, be-
cause of the non-stochastic nature of the model uncertainty,
resulted in the loss of several data points (about 20%).
Moreover, the extent of the uncertainty region provided by
the fuzzy model, which is directly related to the confidence
level adopted, increases as the number of the data points con-
sidered increases, e.g., by increasing the confidence interval to
99% there is a corresponding reduction to about 10% of the
data points excluded but with a far less precise estimation of
the model output. In this light, it is here proposed a genetic
algorithm in order to optimize the extent of the uncertainty
region according to a fixed number of experimental data to
take into account.

2.2 Genetic algorithm

Genetic algorithms procedure generally consists of four steps
[38], i.e., initialization, crossover, selection, and mutation.
Furthermore, two other important concepts are the genetic
coding of the parameters and the formulation of the fitness
function.

A chromosome represents an individual solution in the
population. Encoding of chromosomes is one of the first
choices to make when using genetic algorithms. The principal
types of encoding are binary, permutation, value, and tree. In
this study, the binary encoding is used, in which every chro-
mosome is a string of bits. In particular, the values of the
statistic confidence intervals are encoded in the genes of the
chromosome.

The initial population of models is generated randomly,
and it evolves into the next generation by genetic operators,
crossover (i), mutation (ii), and selection (iii).

(i) The crossover is performed between two selected individ-
uals, called parents, by exchanging parts of their
strings, which start from a randomly chosen cross-
over point. Among the crossover types, in this
study, the single-point crossover is considered and
the site for the crossover operation is selected ran-
domly on every chromosome.

(ii) The mutation is used to avoid local convergence of the
algorithm [39], by introducing random variation in the
genome of some individuals. While increasing the num-
ber of generations, chromosomes are similar to each oth-
er even if a high crossover rate is determined. This situ-
ation blocks diversity and prevents the occurrence
of more powerful generations. For this purpose, the
mutation operator is used to increase the diversity
of chromosomes in population by altering one or
more genes. In particular, the mutation operator
only starts after some new generations with a fixed
probability of occurrence, which in this case is set
at 50%. A single-point mutation is considered and the
site for the mutation operation is selected randomly on
every chromosome.

(iii) Some of the chromosomes in the population can be
transferred to the next generation, while some of them
are eliminated. The selection operator decides which
chromosome will be transferred to the next generation,
by using selection probabilities of each chromosome.
Several methods such as roulette-wheel, ranking, tour-
nament, and sharing, have been introduced for selecting
genomes. In this case, the ranking method was adopted.
In particular, the selection of the individuals takes place
through sorting accordingly to their fitness values ob-
tained using an objective function. Rank selection first
ranks the population and then every chromosome re-
ceives fitness from this ranking. The worst will have
fitness 1, second worst 2, etc., and the best will have
fitness N (number of chromosomes in population).
Then, the first 50% of the best individuals are chosen
to mate. In particular, according to the target of this
research study, the fitness function returns the lowest
extent of the uncertainty region in combination with
the highest number of the experimental data to consider.
Specifically, this was achieved by defining an appropri-
ate weight between the two variables. The details are
given in the following section.

Table 1 Materials characteristics

Materials Grade (%) Size (μm) Factor shape

Aluminum powder 99.98 10 0.8

Carbamide particles 98 0.841–1.680 0.95
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3 Case study: open-cell aluminum foam DSP
manufacturing process

In the considered study [14], green samples were made from
aluminum powder (supplied by Pometon Srl., Italy) and car-
bamide ((NH2)2CO) particles (supplied by Aldrich Ltd.,
USA), whose characteristics are reported in Table 1. The
resulting dense paste was moved into a round-bottomed flask
and mixed and dried using a rotary evaporator (Heidolph
Rotavapor model 4000) at 40 °C bath temperature and re-
duced pressure (vacuum pump Chemat Technology model
KW-AVP). The resultingmixtures were compacted into a built
ad hoc stainless steel cylindrical mold using a static test ma-
chine (MTSmodel Alliance RT/50). Dissolution of carbamide
particles was operated in a hot water bath (Heidolph
Rotavapor model 4000) at about 70 °C and for 1 h, under
strictly monitored conditions. The dissolution rate was
verified by weighting the sample before and after the
dissolution and drying phase. In order to prevent oxida-
tion of the compacted but still not sintered aluminum
powders, drying of the precursors was performed in an
evacuated drying chamber (Binder model VD 23) over-
night at 40 °C. Sintering was subsequently performed
under low vacuum conditions (10−3 Pa) in a convective
furnace (Proba model VF1900) equipped with a diffu-
sion pump. Sintering temperature and time was fixed at
540 °C and 1 h, respectively. In Fig. 1 are represented
the main steps of the DSP foam manufacturing process
here described.

Figure 2 shows FE-SEM micrographics of the structure of
the precursor after the compaction (Fig. 2a) and the precursor
after the dissolution of the carbamide (Fig. 2b). In particular,
as shown in Fig. 2a, carbamide particles, (darker zones) are
encased in the aluminum matrix (clearer zones), preserving
almost their spherical shape, while Fig. 2b emphasizes the
good distribution of the porosity inside the precursor.

The overall mechanical properties of the samples were
characterized by means of compression tests performed with
the same static test machine used during the aforementioned
compacting step. Load speed was set at 1 mm/min. Figure 3
reports the typical output of the compression tests performed.
As shown in the latter, the compressive deformation behavior
ΔL is the sum of the deformation during the elastoplastic and
extended plateau zone, while the mechanical energy absorp-
tion E is represented by the hatched area.

Since a large number of parameters are involved in the
foam manufacturing process, the experimental tests were
scheduled according to the developed full factorial plan based
on Design of Experiment (DoE), which is reported in Table 2,
for a total of 18 process scenarios (3 terms of C% · 3 terms of
CMS · 2 terms of S). Tests were repeated, at least, five times for
a total number of 90 experiments. It is worth to note that in this
study, among the pressures examined in [14], only the value of
300 MPa was maintained, because of the change in shape of
the carbamide particles when compacted under higher pres-
sure values (i.e., 400 and 500MPa), which does not ensure the
realization of homogenous spherical-like cells in the foams (as
highlighted in Fig. 2a by the dashed red circle).

Fig. 2 FE-SEM images of an
open-cell aluminum foam: (a)
compacted aluminum powders
with carbamide particles; (b)
precursor after the dissolution
process. The dashed red circle
highlights the ovalization of the
carbamide particles occurring
increasing the compaction
pressure

Fig. 1 DSP process highlights
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3.1 ANOVA test

The statistical significance of the control factors (C%, CMS, S)
for theΔL and E response variables are evaluated by using the
ANOVA test. The results consist of a table containing the
degrees of freedom (DoF), the adjusted sum of squares
(Adj.SS), the adjusted mean squares (Adj.MS), the F value,
the p value, and the contribution percentage (Π) of each pa-
rameter or parameter combination. In general, the termAdj.SS
provides the variation of each parameter with respect to the
response variables. This information is quantified by the Π
term, which is the ratio between the Adj.SS term of the ana-
lyzed parameter and the total one. The F value is used to
determine whether a term is associated with the response,
comparing the result with the corresponding tabulated value
(3.87 for 1-DoF and 3.03 for 2-DoF): the greater the F value
the greater the influence on the response variable. In this case,
the F value is defined as the ratio between the Adj.MS value of
the response variable investigated and the Adj.MS of the error.
Finally, the p value is used to determine the significance of the
factors (the analysis was carried out at a 95% confidence level;
thus, a process parameter or their combination is considered
significant if the p value is lower than 0.05). Tables 3 and 4
show the ANOVA results for the energy absorption and
the deformation, respectively, in which the F value, the p
value, and theΠ term of each significant effect are highlighted
by the italicized text (i.e., p value < 0.05, Π > 5%, F value >
3.984 for 1-DoF, F value > 3.134 for 2-DoF, and F value >
2.594 for 4-DoF).

As reported in Tables 3 and 4, the weight percentage of
carbamide particles (C%) was found to be of major influence

for both the energy and the compressive deformation. In par-
ticular, increasing C% means decreasing the amount of energy
the foam can absorb during its compression. This result can be
attributed to the loss of rigidity of the structure due to the
massive presence of porosities [14, 40]. On the other hand,
the low value of contribution percentage of mesh size of car-
bamide particles (CMS) could suggest the rather low capability
of such experimental factor to induce systematic variation in
the energy absorption and deformation. Even compaction
speed was found to be characterized by a very low Π term,
especially for the compressive deformation. In any case, the
understanding of which factor and/or interaction is significant
or not cannot be drawn by a simple examination of p values, F
values, and related contribution percentages. In fact, experi-
mental data are nearly homoscedastic. This determines
Fischer’s factors largely bigger than the corresponding values
tabulated and do not allow to deduce conclusions about the
meaningfulness of each investigated factor and interac-
tion [41]. However, a certain interest can be found in
the analysis of the interaction between the two factors
(C% and S), which were found to induce the most rel-
evant systematic variations in particular for the energy
output, while the major contribution on the deformation
output is given by the triple interaction C%·CMS·S.
Accordingly, all the factors and interactions should be
considered in the model and, for this reason, in the
present study, a sophisticated model based on fuzzy
logic with further support of genetic algorithms, with
the aim ofminimizing the conservativeness of the model, have
been selected for modeling the experimental data and for sim-
ulation purposes.

Fig. 3 Typical output of the
compression tests performed

Table 2 Full factorial plan: 3
terms of C% 3 terms of CMS 2
terms of S 5 replications = 90 tests

Parameters Values Units

Weight percentage of carbamide particles (C%) 40 50 60 wt%

Mesh size of carbamide particles (CMS) 12 (0.841) 16 (1.190) 20 (1.680) – (μm)

Compaction speed (S) 1 10 mm/min
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3.2 Empirical modeling

Based on the results of the ANOVA tests, an empirical
model of the foam manufacturing process has been pro-
posed for both the output variables E and ΔL. In this
case, the empirical models only consider the experimen-
tal parameters and their interactions whose calculated
p values are greater than 0.05; Fisher’s factors are big-
ger than corresponding Fisher’s factors tabulated and
characterized by a percentage of contribution of, at
least, 5%. In particular, regarding the energy absorption,
the experimental factors C%, CMS, S, and the interac-
tions C% · CMS, C% · S as well as CMS · S are consid-
ered, while for the deformation, the factors C%, CMS

and the interactions C% · CMS, C% · S, C% · CMS · S
were taken into account.

The numerical formulations of the empirical models can be
drawn as follows:

E ¼ F C%;CMS; Sð Þ ¼ aE∙C% þ bE∙CMS þ cE∙S

þ dE∙C%∙CMS þ eE∙C%∙S

þ f E∙CMS ∙S þ gE ð1Þ

ΔL ¼ G C%;CMS ; Sð Þ ¼ aΔL∙C% þ bΔL∙CMS

þ cΔL∙C%∙CMS þ dΔL∙C%∙S

þ eΔL∙C%∙CMS ∙S þ f ΔL ð2Þ

where the constant gE and the empirical coefficients aE, bE, cE,
dE, eE, fE, related to the energy absorption, and the constant
fΔL and the empirical coefficients aΔL, bΔL, cΔL, dΔL, eΔL,
related to the deformation, are used as calibration coefficients
in the fuzzy model definition. They were determined by non-
linear multiple regression analysis based on the whole exper-
imental dataset and are reported in Tables 5 and 6, in which are
also presented the corresponding 95% confidence intervals.

3.3 Fuzzy-genetic algorithm model

The aim is to produce a fuzzy input-output relation, based on
experimental observations, that links the control factors
highlighted by the ANOVA test (weight percentage of car-
bamide, mesh size of carbamide, and compaction speed) to
the achieved energy absorption E and deformation ΔL. The
model can be used to evaluate howmuch a given experimental
sample, characterized by a certain value ofC%,CMS, S, and the
corresponding E and ΔL, belong to the fuzzy set defined by
Eqs. 3 and 4: the idea is to start from the regression expres-
sions used to empirically model the DSP process (see Eqs. 1
and 2), with a different definition of the coefficients, which in
this case become fuzzy numbers, highlighted in the Eqs. 3 and

Table 3 ANOVA results for the energy absorption E

Source DoF Adj.SS Adj.MS F value p value Π (%)

C% (wt%) 2 2.82073 1.41036 4045.90 0 50.02

CMS 2 0.45969 0.22985 659.35 0 8.15

S (mm/min) 1 0.42745 0.42745 1226.22 0 7.58

C% · CMS 4 0.35117 0.08779 251.85 0 6.22

C% · S 2 0.44267 0.22134 634.94 0 7.85

CMS · S 2 0.92855 0.46427 1331.86 0 16.47

C% · CMS · S 4 0.18399 0.04600 131.95 0 3.26

Error 72 0.02510 0.00035 0.45

Total 89 5.63934

Table 4 ANOVA results for the deformation ΔL

Source DoF Adj.SS Adj.MS F value p value Π (%)

C% (wt%) 2 0.75359 0.376793 919.91 0 14.36

CMS 2 0.64436 0.322181 786.58 0 12.28

S (mm/min) 1 0.11053 0.110534 269.86 0 2.11

C% · CMS 4 2.03194 0.507985 1240.20 0 38.72

C% · S 2 0.39850 0.199248 486.45 0 7.59

CMS · S 2 0.16417 0.082086 200.41 0 3.13

C% · CMS · S 4 1.11515 0.278788 680.64 0 21.25

Error 72 0.02949 0.000410 0.56

Total 89 5.24774

Table 5 Calibration coefficients values and their 95% confidence
intervals for the energy absorption E

Calibration coefficients Values 95% confidence intervals

aE 0.0073 − 0.0089; 0.0235
bE 0.1088 0.0590; 0.1586

cE 0.2062 0.1611; 0.2514

dE − 0.0012 − 0.0021; − 0.0002
eE − 0.0016 − 0.0023; − 0.0009
fE − 0.0069 − 0.0087; − 0.0052
gE − 0.7297 − 1.5648; 0.1054

Table 6 Calibration coefficients values and their 95% confidence
intervals for the deformation ΔL

Calibration coefficients Values 95% confidence intervals

aΔL − 0.0045 − 0.0331; 0.0241
bΔL − 0.0238 − 0.1109; 0.0632
cΔL 0.0008 − 0.0010; 0.0025
dΔL − 0.0004 − 0.0014; 0.0006
eΔL 0.0000 − 0.0000; 0.0001
fΔL 0.4462 − 0.9751; 1.8675
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4 by the asterisk. It is important to notice that the values of the
process parameters are measured and deterministic thus re-
main a regular number, while the uncertainty is modeled with-
in the fuzzy coefficients.

E* ¼ F* C%;CMS ;CSð Þ ¼ aE*∙C% þ bE*∙CMS þ cE*∙S

þ dE*∙C%∙CMS þ eE*∙C%∙S

þ f E
*∙CMS ∙S þ gE

* ð3Þ
ΔL* ¼ G* C%;CMS ;CSð Þ ¼ aΔL

*∙C% þ bΔL
*∙CMS

þ cΔL
*∙C%∙CMS

þ dΔL
*∙C%∙S

þ eΔL
*∙C%∙CMS ∙S þ f ΔL

* ð4Þ

In both cases, it is possible to state that, the nominal models
(Eqs. 1 and 2) do not represent any experimental data (i.e.,
there is no experimental evaluation that can fall over the mod-
el surface). As the level of uncertainty is increased, measured
by a decrease in the membership function, the model accom-
modates a larger number of samples with lower membership
level. In other words, the fuzzy model is able to describe, as
the membership function decreases, an increasing number of
experimental data and, thanks to the genetic algorithm, with
the highest degree of belonging to the fuzzy set defined by the
model itself.

In Eqs. 3 and 4, all the fuzzy regression coefficients are
independent triangular fuzzy numbers (Fig. 4) whose mem-
bership functions μ*

i xið Þ are described by Eq. 5.

μ*
i xið Þ ¼

0; xi < li; xi > mi
xi−li
mi−li

li≤xi≤mi

ui−xi
ui−mi

mi≤xi≤ui

8
>>><

>>>:

ð5Þ

A triangular fuzzy number is characterized by three values:
a lower bound (li), an upper bound (ui), and a modal (or peak)
value (mi). The modal value has a membership function
μ*
i xið Þ ¼ 1, the highest possible set membership for the un-

certain parameters. When the value of the parameter reaches
the lower bound (or upper bound) the degree of belief that this
value truly represents, the chosen parameter is reduced to zero.
Finally, the interval (li, ui) represents the support of the mem-
bership function. Each of the fuzzy regression coefficients has
the modal value coinciding with the results provided by the
linear regression, while the support is defined by the genetic
algorithm, according to the fitness function (Eq. 6):

fit value ¼ w∙
n
N

þ 1−wð ÞHV

HC
ð6Þ

where w represents a weighting term, n refers to the number of
data not taken into account, and HV is the hypervolume cov-
ered by the F-GA model and related to the uncertainty disper-
sion of the considered data. As reported in Eq. 6, each term is
opportunely normalized in order to have two comparable
quantities. In particular, the first term is normalized by using
the total number of the available dataN, while the second term
is normalized by using the hypercube including all the data.
The use of such a fitness function is aimed at controlling the
highest number of considered data in combination with the
lowest hypervolume at μ*

i xið Þ ¼ 0.
All the fuzzy parameters are described by 8 α-cut and the

interval at each α-level is discretized with Ns = 2 points. For
each α-cut, the transformation method requires, in a combina-
torial scheme, the evaluation of Ns to the power of the number
of fuzzy parameters NE = 7 models for the absorption energy

Fig. 5 Genetic algorithm optimization: (a) w= 0.2; (b) w= 0.4; (c) w= 0.6

Fig. 4 Triangular Fuzzy number
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and NΔL = 6 models for the deformation, leading to 128 and
64 evaluations, respectively.

The Transformation method requires that, for each α-cut,
all these models are evaluated obtaining for each of them the
hypersurface of the output quantity (e.g., the energy absorbed
E) as a function of the process parameters (i.e., C%, CMS, S).
The fuzzy result for the given α-cut is then obtained by com-
puting the envelope of these hypersurfaces.

The results of the genetic algorithm optimization are report-
ed in Figure 5. The experimental data, ordered for increasing
value of energy absorption obtained by the nominal model, are
represented as blue circle and the F-GA model results are
represented by the shaded area, where lighter zones refer to
lower membership level.

As shown in the latter figure, increasing the weight, w, both
the number of data covered by the model and the width of the
fuzzy bands increase. However, Fig. 5a shows that a too low w
value involves very few data, while a too highw value (see Fig.
5c) results in a too large dispersion of the fuzzy uncertainty
bands, even if the model is able to take into account all the
experimental data. Among all the weight values investigated,

the most suitable was 0.27. The results obtained applying this
weight are presented in Fig. 6, in which the samples are ordered
for increasing values of E (Fig. 6a) andΔL (Fig. 6b) provided
by the nominal models (red line).

From the inspection of the fuzzy results reported in Fig. 6,
the uncertainty level related to the fuzzy models appears to be
not constant with respect to the parameter combination used
during the experimental test for both the energy absorption
and the deformation. It is worth to note that the extent of the
input uncertainty in the model, due to the choice of a specific
confidence interval, is not only related to the accuracy of the
regression model adopted but also to the variability of the
process. So, the transformation method, which in this case
was used to propagate the uncertainty to the outputs, also
provides information about the uncertainty at the input level
due to the regression model adopted. This effect can be there-
fore considered the reason for a non-constant level of
uncertainty.

In general, this kind of process map can be used to select
operational parameters in order to obtain a desired process
output. They provide, as additional information, how much

Fig. 6 Results of the Transformation Method (gray shaded area), experimental results (blue circles), nominal model results (red line) for (a) energy
absorption E and (b) deformation ΔL

Fig. 7 Fuzzy maps with experimental occurrences (red dots and green numbers) obtained for C% = 40%: (a) E > 90% and (b) ΔL < 50%
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the uncertainty of the model and the process varies by chang-
ing operational parameters. It is important to notice here that
the large variability of the process is highlighted by the com-
bined fuzzy-genetic algorithm model through a large band of
uncertainty, represented in the latter figure by gray shaded
areas. Moreover, it is worth to note that this information is
not available by considering just the nominal regression mod-
el, nor directly obtained from the values of the confidence
interval. Finally, for this case study, the F-GA results warn
the analyst on the high level of uncertainty, which is inherently
present in the investigated foam manufacturing process.

The proposed model can also be inverted so that it is pos-
sible to obtain the most suitable operational parameters lead-
ing to a desired output. For the case study, the fuzzy model has
been used to assess the optimal parameters in order to satisfy
the highest energy absorption in combination with the lowest
deformation requirement. This combination is useful for
crashworthiness purposes. In fact, in crash situations, in order
to ensure the safety of occupants inside a vehicle, the restraint

structures should assure the highest absorption of the kinetic
energy, minimizing crash loads transferred to the vehicle oc-
cupants, and at the same time, these systems should control
the deformation areas in order to maintain the adequate space
in a passenger cell and avoid intrusion of the surrounding
structure.

The results can be represented in two-dimensional graphs
by varying the input parameters one by one while fixing the
others. In this way, different maps for each parameter combi-
nations can be drawn. Figure 7 shows the results obtained by
applying the inverse fuzzy approach fixing the weight percent-
age of the carbamide to 40%, while varying the other two
terms, i.e., the mesh size of the carbamide and the compaction
speed. In particular, the fuzzy maps are obtained in order to
satisfy the highest energy absorption requirement (Fig. 7a),
which in this case was set over 90% of the highest value of
the absorbed energy obtained in the experimental tests, while
maintaining small deformation (Fig. 7b), set below 50% of the
maximum level measured. Figure 8 shows the results obtained

Fig. 9 Fuzzy maps with
experimental occurrences (red
dots and green numbers) obtained
for C% = 50% and E = 55%

Fig. 8 Fuzzy maps with experimental occurrences (red dots and green numbers) obtained for C% = 50%: (a) E > 90% and (b) ΔL < 50%
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forC% = 50%. For both Figs. 7 and 8, the membership level of
the fuzzy model is represented as a gray shaded area, while the
experimental data and their occurrences as red dots (the di-
mension of each dot is proportional to the number of occur-
rences reported as green numbers respectively).

The maps highlight that for C% = 40%, in terms of energy
absorption (Fig. 7a), it is possible to range along the whole axis
of the compaction speed at the largest size of carbamide parti-
cles (CMS = 20) and along the whole axis of the mesh size at the
highest compaction speed (S = 10 mm/min). However, the best
result is given by the combination of the lowest value of Swith
the largest size of CMS, because it is characterized by the
smallest uncertainty dispersion width. On the other hand, in
terms of deformation (Figure 7b), the requirement can be satis-
fied for any value of the compaction speed in combination with
the smallest and largest CMS. But, in order to have the lowest
uncertainty dispersion, the best combination is given by S =
1 mm/min and CMS = 12. However, since the goal is to find the
best solution that satisfies both requirements at the same time,
the combination of the highest compaction speed and the larg-
est size of carbamide particles can be considered the optimum,
even if the fuzzy maps suggest that in this scenario, the uncer-
tainty is quite dispersed compared to the average nominal val-
ue. It is worth to note that from the experimental point of view,
this solution was measured but with an energy absorption value
slightly lower, i.e., 88% instead of 90%.

By increasing the percentage of carbamide particles to
C% = 50% (Fig. 8), for the energy absorption there is not any
solution that can satisfy the requirement of E > 90%. This is
highlighted in Fig. 8a by the fact that the fuzzy map obtained
is empty, while for the deformation, all the range of S can be
used. This is true, in particular, at the highest value of CMS. It
is worth to note that for C% = 50%, it is possible to find a
valuable solution only for an absorbing energy level of 55%
of the highest value measured in the experimental tests (see
Fig. 9). In the latter case, the combination with a low defor-
mation (Fig. 8b) can be satisfied, even in this case, by
adopting S = 10 mm/min and CMS = 20.

Each of these maps provides a relation between S, CMS, and
E orΔL, so each of them can be used to select the optimal level
considering both the desired output and uncertainty. In this case
study, for both E andΔL, it is therefore convenient to use large
carbamide particles (CMS = 20) which lead to large porous in
the metallic foam and high compaction speed (S = 10 mm/min)
which is useful because it reduces the process time, while C%

should be the lowest (i.e. C% = 40%) in order to achieve high
energy absorption in combination with small deformation.

Finally, comparing the experimental results (red dots, Figs. 7,
8, and 9) with the fuzzy-GA maps, it is possible to confirm the
validity of the proposed model. In fact, the red dots appear to be
present only in the shaded areas and in particular in the darkest
ones. This suggests the ability of such a model to simulate the
strong inherent variability of the aluminum foammanufacturing

process and to predict the best combination of the input param-
eter in order to satisfy the fixed outputs, which in this case are
the energy absorption and the compressive deformation.

4 Conclusions

This work deals with the proposal of a combined fuzzy-
genetic algorithm methodology able to model the experimen-
tal data available from a metal foam manufacturing process.
The aim of such a method is to select the manufacturing op-
erational parameters in order to obtain the desired process
output, i.e., the absorption energy and the deformation during
a compressive test, and, as additional information, understand
how much the uncertainty of the model and the process varies
by changing those operational parameters.

The input parameters were considered as triangular fuzzy
numbers, and the Transformation Method was used to handle
uncertainty propagation to the response variables. The genetic
algorithm is used to optimize the support of each fuzzy pa-
rameter in order to find the best combination in terms of the
maximum number of experimental data considered and the
hypervolume containing such data.

The variability of the process is highlighted by the fuzzy
model through the bands of uncertainty that occur in all the
process maps generated. It is important to notice that this
information is not available by considering just the nominal
regression model, nor directly obtained from the values of the
confidence interval.

For the purpose of energy absorption during the crash of
vehicles, it is necessary to maximize the energy absorbed dur-
ing the impact while reducing the maximum deformation in
order to maintain the adequate space in passenger cell.
Therefore, the fuzzy model was inverted in order to assess
the optimal parameters needed for this aim: by using the larg-
est mesh size of carbamide particles and the highest compac-
tion speed, the best results in terms of energy absorption,
deformation, and uncertainty level can be achieved while
using 40% of carbamide, while for 50% of carbamide parti-
cles, only a lower level of absorbed energy is achievable, i.e.,
the maximum absorption energy is about 55% of the highest
value obtained in the experimental tests.

In conclusion, as highlighted by the matching of the exper-
imental results with the darkest areas of the fuzzy maps, which
represents the most suitable combination of input parameters
for a desired output, the fuzzy-genetic algorithm can be con-
sidered a valid and helpful tool in predicting, controlling, and
managing the output variables, proving to be practical for
modeling complex and variable manufacturing processes.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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