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Abstract
Tool condition monitoring (TCM) is especially important in the modern machining process. In order to distinguish different tool
wear states accurately and reduce the computation cost, it is of great significance to extract and select appropriate features that can
reflect changes in tool wear states but are insensitive to cutting parameters. In this work, Fisher’s discriminant ratio (FDR) is
adopted as the criterion for feature selection by evaluates every feature’s classification ability. However, it is found that the
continuous hidden Markov models (CHMM) trained based on the features selected by the conventional method could recognize
some tool state well, but have poor ability to classify other wear states. The reasons for this phenomenon have been analyzed, then
a simple and effective method that used two feature sets for TCM has been proposed to improve the recognition performance.
Four tests with different cutting parameters are carried out, and the new method has been implemented and verified its usefulness
and validity.

Keywords Featureselection .Fisher’sdiscriminant ratio .HiddenMarkovmodel .Toolconditionmonitoring .Cuttingforce .Tool
wear

1 Introduction

Cutting tool wear can undermine machining efficiency, pro-
cessing accuracy, and surface quality of workpieces to a cer-
tain extent, thus tool condition monitoring (TCM) is of great
significance during cutting process and has attracted much
attention from researchers for decades [1].

A complete TCM process mainly consists of signal acqui-
sition, feature extraction, and system identification [2]. The
signals commonly used for TCM include cutting force [3],
cutting vibration [4], acoustic emission [5], and motor current
or power [6], which have all been proved feasible to some
extent, and among which cutting force is the most widely
applied signal. As for system identification, artificial neural

networks (ANN) and support vector machines (SVM) have
been used widely [2]. Besides, hiddenMarkov model (HMM)
with strict data structures and reliable computing performance
has also attracted lots of attentions. In recent years, many
researchers have applied HMM in TCM and achieved good
results [3, 7].

The raw signal during cutting process has a lot of useless
information including noise. For reliably and effectively mon-
itoring tool condition, a variety of features in time, frequency,
and time-frequency domains have been extracted and
researched. In order to reduce the computation cost and im-
prove TCM model robustness, it is necessary to select feature
subset from numerous features that can reflect changes in tool
wear states but are insensitive to cutting parameters. As a
result, various feature selection algorithms have been
proposed.

Some researchers applied the Pearson correlation coeffi-
cient to find the features that can best characterize tool wear
conditions [8, 9]. However, this method was based on uncer-
tain assumption that the correlation between features and tool
wears was linear [1]. Zhu et al. [10] modified the Fisher’s
linear discriminant analysis for feature selection. They used
the Fisher’s discriminant ratio (FDR) to evaluate each fea-
ture’s class-discriminant ability. For calculating FDR, no
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specific tool wear values are required, just need to determine
the tool wear states. The approach was also compared with
principal component analysis (PCA) and automatic relevance
determination (ARD) and showed superiority in HMM
modeling. Geramifardet al. [11] have also conducted a com-
parative study about FDR with other three feature selection
methods for TCM, which are ridge regression (RR), principal
component regression (PCR), and least absolute shrinkage
and selection operator (LASSO).Applicability of these
methods are compared based on their diagnostic results in
two cases using a single hidden Markov model (HMM) ap-
proach, and the FDR has a good performance. Due to the
effectiveness of the FDR-based feature selection method, it
has gained many applications in TCM [12–14].

However, the selected feature may not be the optimal set to
classify all states in practical applications, if calculating the
FDR of each feature directly using the data from all classes
just like in [10–14]. In this paper, FDR is also adopted as the
criterion to select the appropriate features to recognize differ-
ent tool states. It is found that the features selected by the
conventional method could distinguish some tool state well,
but have poor ability to classify other wear states. The reasons
for this phenomenon have been analyzed, and a simple and
effective method to improve the performance of tool condition
monitoring has been proposed.

The paper is organized as follows: in Section 2, the exper-
imental work is done, and cutting force and tool wear data in
different cutting parameters under the tool full life cycle are
acquired for subsequent analysis. Then the features are ex-
tracted and selected according to their FDR values.
Section 3 shows the construction work of tool wear states
monitoring based on CHMM. The results are analyzed and
the discussion about the poor recognition ability on some
states is provided in Section 4. In Section 5, a method to
improve the TCM performance is proposed, and its perfor-
mance is verified. Finally, the conclusions are given in
Section 6.

2 Experimental work and feature selection

2.1 Experimental work and data acquisition

In order to obtain enough cutting force data in different tool
wear condition to research TCM, experiments have to be car-
ried out. In this paper, the work was performed on a vertical
machining center (VMC1600B) by end milling 45 steel under
dry cutting condition. Experiment setup is illustrated in Fig. 1.
The cutting force was measured by the smart tool holder sys-
tem developed by the authors in the previous study [15],
which is capable of measuring triaxial cutting force and a
torque simultaneously in a wireless environment system with
a sampling rate of 5000 Hz. In this study, the cutting forces in

three directions were chosen and collected as the raw signal
for further analysis. The smart tool holder was equippedwith a
32-mm diameter cutter arbor (BAP400R-35-160-C32) and a
PVD coated carbide insert (Mitsubishi APMT1604PDER).
The tool insert wear was measured using a microscope.
After getting the force and tool wear data, the features were
extracted and selected, and then models were constructed for
TCM.

The experiments were conducted in different machining
conditions as listed in Table 1 with different spindle speed
and feed per tooth. There are four tests and each one for a
new tool insert. The cutting tool inserts are usually replaced
when the width of the flank wear area (VB) reaches some pre-
defined limit. According to ISO 8688, the threshold for deter-
mining the tool life is maximum flank wear of 0.3 mm in
conventional machining [16]. During the cutting process, the
VB value was measured once finished a sample length of
cutting until the tool wear reached 0.3 mm. As a result, the
force and wear data of four inserts in total in different cutting
parameters under the full life cycle can be acquired in this
study. Moreover, the tool wear was divided into three states,
named initial worn (0–0.11 mm), medium worn (0.11–
0.23 mm), and severe worn (0.23–0.30 mm) based on the
experiment data by using tool wear rate as the criterion. In
initial worn state and severe worn state, the tool has a faster
wear rate than that in medium worn state. Cutting tool inserts
in different wear conditions were shown in Fig. 2.

2.2 Feature extraction and selection

Due to the intermittent cutting process of milling, the cutting
forces are typically time varying and nonstationary. The raw
signal collected by the smart tool holder included not only the
useful tool wear–related information but also the noise and the
information caused by the changes of the cutting parameters,
thus it cannot be directly used for TCM. Features have to be
extracted from the force data for robust and effective
representation.

Time-domain features are firstly extracted to show the
force statistics, like mean, root mean square, variance, skew-
ness, kurtosis, crest factor, and dynamic component. These
features have been adopted by many researchers to monitor
tool condition and achieved some results. In addition, wavelet
analysis, especially wavelet packet decomposition (WPD),
has been proved effective in processing the nonstationary sig-
nal. It was found that WPD coefficients include large valuable
information which is sensitive to tool wear and little influ-
enced by the variation of working conditions [17]. Features
extracted from the wavelet coefficients are widely used for
TCM. Among them, the energy of each frequency band after
WPD has attracted a lot of attention [18]. Besides, other sta-
tistics of WPD coefficients, like root mean square, variance,
kurtosis, and crest factor have also been researched. In this

3198 Int J Adv Manuf Technol (2019) 100:3197–3206



study, all these features in time domain and wavelet domain
are extracted from the origin cutting force signal. Due to the
Daubechies wavelet’s advantages of orthogonality, compact
support in the time domain, and computational simplicity,
the signal was decomposed using db4 wavelet packet into
three levels. The coefficients in the third level, 23 = 8 scales
in total, were selected. Forty-seven features have been calcu-
lated in each direction’s force as list in Table 2. As a result, a
total of 141 features were extracted from Fx, Fy, and Fz.

Where {xi}, i = 1, ⋯, N is feature sample set, N is the
number of the samples, and σ is the set’s standard deviation.
xamp is amplitude of raw force; xmed is mean force of the

segment [19]. dnj;k
n o

; n ¼ 1;⋯;N j is the set of the wavelet

coefficients in the jth level and kth scale, Nj is the number of
coefficients at jth level, and j = 3 in this work.

The purpose of feature selection is to find an appropriate
subset of features that can explicitly discriminate different tool
wear conditions. Therefore, the selected features should have
great differences between different categories and similarities
in the same category. Since the Fisher discriminant ratio
(FDR) can be used to rank the class-discriminant ability of
the features as mentioned before, it was adopted for feature

selection in this paper. A modified computational formula of
FDR introduced [10] is shown as follows:

FDR mð Þ ¼ SBm

SWm ¼
∑
K

i¼1
∑
K

j¼1
μi

m−μ j
m

� �2
∑
K

i¼1
sim

ð1Þ

where m is the serial number of the features, and K is the
number of classes. SBm and SWm are the scatter between
and scatter with of the mth feature. μi

m is the mean value of
the mth feature in the ith class Ci, which and si can be calcu-
lated with

μi
m ¼ 1

ni
∑
x∈Ci

x ð2Þ

si ¼ ∑
x∈Ci

x−μi
mð Þ x−μi

mð ÞT ð3Þ

where x is the feature samples which belongs to the class Ci,
and ni is the feature numbers in this class.

To compute the features’ FDR values, 10 s force data
from each tool wear state in Test 1 were taken and

Fig. 1 Experiment setup

Table 1 Experiment cutting
parameters Test

number
Spindle speed (r/min) Feed per tooth

(mm/Z)
Axial depth of cut (mm) Radial depth of cut (mm)

1 1600 0.10 0.5 16
2 1600 0.15

3 1900 0.10

4 2200 0.10

Int J Adv Manuf Technol (2019) 100:3197–3206 3199



processed. It should be noted that there are large differ-
ences in values between different features due to their
different dimensions and sources. Thus, all 141 features
need to be normalized into the [0, 1] interval firstly. After
calculating all the FDR values, the features are ranked in
descending order as demonstrated in Fig. 3.

There are two knee points at 5 and 10, as a rule of
thumb, these two may be the appropriate choice as the
number of features to be adopted from 141 features.
Features with top 14 FDR values, nearly top 10%, were
achieved as listed in Table 3, where the Decrease column
represents the percentage reduction of the current feature’s

FDR value compared to the previous one. Considering
that the 11th feature’s FDR has dropped to a particularly
small value, top 10 features were selected for TCM in this
paper.

Moreover, as can be seen from Table 3, the axial force
Fz is more sensitive to tool wear conditions, as the first
six features are all from Fz, and the next four are from
radial force Fx. This was in agreement with Zhu [14], in
whose work TCM was studied based on the analysis of
singularity of cutting force waveforms, and the Fz com-
ponent of the cutting force was proved more effective and
stable than Fx and Fy.

Table 2 Features extracted from cutting force

Domain Number Feature Formula

Time domain 1 Mean (μ)
μ ¼ 1

N ∑
N

i¼1
xi

2 Root mean square (Rms)
Rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

i¼1
xi2

s

3 Variance (Var)
Var ¼ 1

N ∑
N

i¼1
xi−μð Þ 2

4 Skewness (Ske)
Ske ¼ 1

N ∑
N

i¼1
xi−μð Þ 3=σ3

5 Kurtosis (Kur)
Kur ¼ 1

N ∑
N

i¼1
xi−μð Þ 4=σ4

6 Crest factor (Cf) Cf ¼ maxjxij
Rms

7 Dynamic component (Dc) Dc = ∣ xamp − xmed∣
Wavelet domain 8–15 WPD energy (wEk)

wEk ¼ 1
N j

∑
n¼1

N j

dnj;k
h i2

; k ¼ 1;⋯; 8

16–23 WPD coefficient Rms (wcRms)
wcRmsk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N j

∑
n¼1

N j

dnj;k
h i2s

24–31 WPD coefficient Var (wcVar)
wcVark ¼ 1

N j
∑
n¼1

N j

dnj;k−d j;k

h i
2

32–39 WPD coefficient Kur
(wcKur) wcKurk ¼ 1

N j
∑
n¼1

N j

dnj;k−d j;k

h i
4=σ j;k

4

40–47 WPD coefficient Cf (wcCf) wcCf k ¼ maxjd j;k j
wcRmsk

Fig. 2 Cutting tools in different wear states: a initial worn, b medium worn, and c severe worn
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3 CHMM for tool wear condition monitoring

HMM describes a double stochastic process that includes an
underlying finite-state hidden Markov process and an observ-
able process associated with the hidden states. In the tool state
monitoring, the tool wears are regarded as hidden states for
cannot be directly observed, while observations are the fea-
tures extracted from cutting force. HMM is mature and has
been used by many researchers for TCM as mentioned earlier.
The author has also applied HMM to diagnose tool wear con-
ditions based on cutting vibration signal and achieved good
results in the previous work [20].

The framework of HMM was demonstrated in Fig. 4,
where there are two processes: training process and recogni-
tion process. In the first process, the features that are strongly
correlated with tool wear state are extracted and used to train
HMM based on the expectation-maximization (EM) algo-
rithm [21], and three HMMs would be established for three
different wear states of the tool, denoted as HMM1, HMM2,

and HMM3. Then in the recognition process, when an un-
known tool wear state needs to be identified, the same features
used in training process were extracted and then sent to each
model to calculate the likelihoods using Viterbi algorithm.
The model in three with the largest likelihood value can be
considered that the current tool belongs to this wear state.

Due to the statistical characteristics of the observations and
always increasing tool wear, the left-right continuous HMM
was chosen in this paper. A CHMM can be represented as
λ = {π, A, μjm,Ujm, cjm}, where π is the initial state probability
distribution vector, in this paper π = [1 0 0 0 0] for the state
number was preliminary set to 5. A is the hidden state transi-
tion probability matrix, and for next step iterative training, it is
initialized as follows:

A0 ¼ aij
� �

5�5
¼

0:5 j ¼ i or j ¼ iþ 1; 1≤ i≤4
1 i ¼ j ¼ 5
0 others

8<
:

For CHMM, the probability distribution of observation se-
quence can be represented by a Gaussian mixture model
(GMM). Theoretically, a GMM can approximate any signal
to a certain precision when provided with enough mixture
components.M is the number of Gaussian components, which
was set M = 3; here, cjm is the mixture coefficient, μjm is the
mean matrix, and Ujm is the covariance matrix.

To gain features, the force signal needs to be segmented
into a sequence of observations. Too large segment window
may cause more time to compute, which would affect the real-
time ability of TCM system. However, if the window is too

Fig. 4 Framework of HMM for TCM

Table 3 Features with top 10 FDR values

Order Feature FDR Decrease (%)

1 Z-wE1 112.84 –

2 Z-Rms 107.39 4.83

3 Z-wcRms1 106.31 1.01

4 Z-wcVar1 96.55 9.18

5 Z-Var 86.26 10.65

6 Z-μ 36.32 57.90

7 X-wcRms1 35.11 3.33

8 X-wE1 34.52 1.68

9 X-wcVar1 26.60 22.94

10 X-μ 21.25 20.12

11 Y-wpe1 6.09 71.32

12 Y-wcRms1 5.90 3.10

13 Y-wcVar1 5.40 8.58

14 X-rms 4.68 13.33

Fig. 3 FDR values of all the features in descending order
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small, the signal is not stable and cannot be extracted effective
information. In this study, the sampled cutting force signals
were processed with a window segment of 500 points, which
is equivalent as about three revolutions of the cutter and cor-
responding period of 0.1 s.

4 Results analysis and discussion

Some force data were taken from Test 1, and 10 features listed
in Table 3 were extracted and used to train the three HMMs. In
recognition process, samples random selected from all four
tests were extracted the same features and then put into three
models to calculate the likelihoods and recognize the tool
wear states. Notice that the data for recognition in Test 1 were
randomly selected from what were not used for model train-
ing. The recognition results were shown in Table 4.

The recognition accuracy rate of the tool in severe worn
state was the best with a maximum value of 97.3% in Test 1
and an average value of over 93%, while initial worn tool and
medium worn tool were classified a trifle worse. To further
analyze this phenomenon, 60 samples from the identification
data of Test 3 (20 samples for each tool state) were selected
and plotted as exhibited in Fig. 5.Different colors and symbols
represent different models. The unknown tool worn was con-
sidered as the wear state of which the model had the maximum
likelihood. For instance, in Fig. 5a, when sample number = 1,
the likelihood value under HMM1, the circle symbol in blue is
the largest, which means the sample is identified as the state
corresponding to HMM1, that is, the initial worn state. All
samples in Fig 5a are from the initial worn data, thus the
identification result of the first sample is correct.

In Fig. 5a, three samples are wrong classified and recog-
nized as the medium worn state, and five samples in Fig. 5b
are recognized as the initial worn state incorrectly. Moreover,
the likelihood values of those samples under HMM1 and
HMM2 in Fig. 5a, b are very similar. This is probably due to
that the features selected in Section 2.2 have poor performance
to classify the first two wear states. To verify this hypothesis,
more analysis is necessary.

In Section 2.2, the FDR values, recorded as FDRI-M-S here,
were calculated using the force data from all three-tool wear
states, reflecting the features’ average classification

performance of these three categories. To find the feature sub-
set that can better classify initial worn and medium worn
states, only take force data from these two states and compute
each feature’s FDR, denoted as FDRI-M here. Meanwhile,
FDRM-S is also calculated by the data only frommediumworn
and severe worn for comparison analysis. Respective 10 fea-
tures with top values are achieved as listed in Table 5. The
corresponding FDR values are shown in the Fig. 6. The solid

Fig.5 a Initial worn, bmedium worn, and c severe worn tool wear states
recognition results

Table 5 Top 10 features in descending order of respective FDR values

Ordered by FDRI-M-S Ordered by FDRI-M Ordered by FDRM-S

Number Feature Number Feature Number Feature

1 Z-wE1 4 Z-wcVar1 2 Z-Rms

2 Z-Rms 5 Z-Var 1 Z-wE1

3 Z-wcRms1 11 Y-μ 3 Z-wcRms1
4 Z-wcVar1 3 Z-wcRms1 4 Z-wcVar1
5 Z-Var 1 Z-wE1 5 Z-Var

6 Z-μ 2 Z-Rms 6 Z-μ

7 X-wcRms1 12 Y-Rms 7 X-wcRms1
8 X-wE1 13 Y-wE1 9 X-wcVar1
9 X-wcVar1 14 Y-wcRms1 8 X-wE1

10 X-μ 15 Y-Var 10 X-μ

Table 4 Recognition results

Recognition accuracy rate in different test (%)

Test 1 Test 2 Test 3 Test 4 Average rate

Initial worn 90.0 82.0 92.9 90.8 88.3

Medium worn 78.3 88.2 81.4 83.3 82.6

Severe worn 97.3 92.0 91.4 91.4 93.6
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symbols on solid lines represent the selected features, and the
hollow ones on dash lines are not selected.

The top 10 features ordered by FDRI-M-S values and
the ones by FDRM-S are the same, except slight difference
in the values and sorting, see Table 5 and Fig. 6.
Moreover, these two group FDR values are much larger
than FDRI-M. It shows that compared to the difference
between severe worn and the other two wear states, the
features between initial worn and medium worn have less
differences. This leads to the fact that in the selection of
features which can classify the three states, the actual
selected features can mainly recognize severe worn state,
and some features that can better identify initial worn and
medium worn are not selected. This situation exists that
different features have different ability to recognize dif-
ferent tool states. Liao et al. [22] has observed that the
kurtosis of wavelet coefficients can easily distinguish se-
vere worn condition while it has no distinct difference
between initial worn and medium worn.

As can be seen from Table 5, there are five new fea-
tures, marked in italics, in top 10 ordered by FDRI-M

values, which are all from Y-direction cutting force. In
order to visually observe the difference of the two sets

of features, {Features}I-M-S and {Features}I-M, between
the three categories, 150 samples of features, 50 for each
tool wear state, were extracted from force data in Test 1
and analyzed. The two feature sets were both ten-dimen-
sional, so they were reduced to two dimensions based on
PCA to plot and display. The {Features}I-M-S and
{Features}I-M sets in two-dimensional space were shown
in Fig. 7. It should be noted that a little bit of information
would be lost after dimension reduction, but it still can
basically reflect the distribution of original multi-
dimensional features in different categories.

In Fig. 7a, features from three-tool wear states show
different distribution, especially that from severe worn
tool, which is far away from other two states. Moreover,
the features from initial worn tool and that from medium
worn are very close in distribution. It undoubtedly means
{Features}I-M-S could distinguish out severe worn tool
well, but classify between initial worn and medium worn
tools worse, which is consistent with the previous recog-
nition results in Table 4. While in Fig. 7b, the distance
between first two categories is expanded, but shortened
between medium worn and severe worn tools. To assess
the classification effect of the new feature set {Features}I-
M, they were also taken to conduct model training, and the
new model set {HMM1, HMM2, HMM3}I-M was obtained
and used for TCM.

For comparison, the data used in this training is the
same as the previous one, and the identification data were
the 60 samples in Fig. 6. The test results are shown in
Fig. 8. The samples in the rectangle were the ones whose
recognition results were changed. The tests show that the
identification results of the first two wear states have im-
proved, while the recognition accuracy of the third state
has decreased, which means that the newly selected fea-
tures are indeed better able to identify initial worn and
medium worn states. This can be used to improve the
accuracy of TCM. The specific method is described in
the following section.

Fig. 6 FDR values of features calculated by three different methods

Fig. 7 a {Features}I-M-S and b
{Features}I-M sets in two-
dimensional space
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5 Method for TCM performance promotion

5.1 Method introduction and implement

Since some features can identify the severe worn condition
well and some others has good ability to discriminate between
initial worn and medium worn states, it probably be a good
choice to use two sets of features to monitor tool wear states.
The flowchart of the new method, re-recognize based on dif-
ferent features, rR-DF for short here, is illustrated in Fig. 9.
The key point of themethod rR-DF is to select two appropriate
sets of features to train twomodel sets.When an unknown tool
wear state needs to be identified, use one model set to deter-
mine whether the state belongs to severe worn. If not, use
another model set to re-recognize if the tool wear is initial
worn or medium worn.

5.2 Performance verification

In order to verify the reliability of the rR-DF method for im-
proving the performance of tool wear condition monitoring,
the data from all four cutting tests listed in Table 1 were taken
for identification. The results are summarized in the Table 6.
The data in Comparison rows refers to the improvements of

recognition accuracy rate based on the new method compared
to the results in Table 4.

As the rR-DF method only re-recognizes initial worn
and medium worn tool states, the recognition rate of se-
vere worn remains unchanged, marked as “→” in the ta-
ble. However, it shows obvious improvements on discrim-
ination of the first-two wear states, marked as “↑.”
Compare to recognizing initial worn tool, the proposed
method can better improve the medium worn recognition
accuracy, and the maximum value of increment was
13.4% occurred in Test 1. Overall, the recognition rates
of the initial worn and medium worn states in four cutting

Fig. 9 Flowchart of the new method rR-DF
Fig. 8 a Initial worn, bmedium worn, and c severe worn tool wear states
recognition results based on {Features}I-M
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tests have increased by an average of 3.7% and 8.4%,
respectively. Also, the new method has reduced the influ-
ence of cutting parameters on the monitoring model to
some extent, and improved the robustness of the system,
resulting in that the recognition accuracy rates of all the
tool wear states in all the tests are above 90%.

6 Conclusions and future work

In this paper, multiple sets of cutting experiments have been
conducted in order to obtain cutting force and wear data to
facilitate tool wear monitoring research in the next step.
Numerous time domain and wavelet domain features were
extracted, and their FDR values were calculated to assess their
classification ability. The 10 features with top values were
selected and used to establish the CHMMs to recognize the
tool wear conditions. The results show the selected features
could distinguish severe worn tool state well, but have poor
ability to classify other states. This is mainly due to that the
FDR calculated using the force data from all three-tool wear
states reflects the average classification performance of these
three categories, and some features which can better classify
initial worn and medium worn states were not selected. Thus,
a simple and effective method to improve the recognition per-
formance has been proposed. The new idea of this method is
using two different feature sets to monitor different tool wear
conditions. The specific implementation step was introduced,
and it was verified by four cutting tests with different cutting
parameters. The recognition results show that the proposed
new method does effectively improve the TCM performance.
The recognition accuracy rate of the initial worn and medium
worn states increased by an average of 3.7% and 8.4%,
respectively.

Nevertheless, there are still some improvements that can be
made in future work. The authors intend to analyze more
kinds of signals during cutting process, like cutting vibration
and acoustic emission, etc., to extract more features for TCM,
and more features will be evaluated their classification ability
based on FDR. Besides, the proposed method avoids the need
to find or construct new features to classify all categories, and

obtain good identification results only using common features
by two-step classifying. Whether this method can be applied
to other areas of pattern recognition is worth studying.
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