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Abstract
Latest bioinspired approaches in tissue engineering focus on the creation of biomaterials withmicro- and nanoscale topographical
features. Various additive manufacturing techniques have been applied for scaffold fabrication; however, creating three dimen-
sional (3D) nanofiber structure within a scaffold remains to be challenging. This paper presented an innovative divergence
electrospinning strategy to fabricate 3D polycaprolactone (PCL) scaffolds comprised of uniaxially aligned nanofibers. The effects
of collector geometry on the nanofiber structure were characterized by polynomial regression analysis. The length-to-width ratio
and inclination angle of the collector were found to be critical to nanofiber distribution within the 3D scaffold. The nanofiber
orientation was consistent with the direction of electric field vectors between the two bevels of the collector. After a continuous
culturing for 7 days, fibroblast cells were uniaxially organized within the 3D scaffolds, closely resembling the fibrous structure in
musculoskeletal tissues. This study provided a novel approach to biomimetic native tissue microstructures and showed a great
potential as a future fabrication additive manufacturing platform for tissue engineering.
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1 Introduction

Tissue engineering, together with materials science, bioengi-
neering, and advanced manufacturing, has emerged as a re-
search frontier and potential therapy for repair of living tissues
using biomaterials, cells, and growth factors. To mimic the
native tissue architecture, composites are engineered using
organized scaffolds, a cellular solid support structure compris-
ing an interconnected pore network or matrix to perform var-
ious functions, including the support of cell colonization, mi-
gration, growth and differentiation, and the formation of the
extracellular matrix (ECM) [23]. Successful scaffolds should
meet some basic requirements, generally involving biocom-
patibility, biodegradability with controlled kinetics, an inter-
connected porous structure with a tailored pore size, mechan-
ical properties close to the target tissue and predefined geom-
etry and size [25]. As net-shaping processes, additive
manufacturing (AM) techniques offer a great potential to fab-

ricate scaffolds for tissue engineering. A variety of AM tech-
niques and methodologies have been studied to generate scaf-
folds with geometrically complex internal architecture.
Common methods include fused deposition modeling
(FDM) [11], stereolithography [8], inkjet printing [44],
bioplotting technique [3, 27], direct laser writing [35] and
selective laser sintering [22]. Although substantial progress
has been made in AM for tissue engineering constructs in
recent years, the resolution limits of most current AM process-
es are still at levels of sub-millimeter to 10 μm [6, 37]. Latest
bioinspired approaches focus on the creation of biomaterials
with micro- and nanoscale topographical features, macroscale
gradient structures, and biological domains to interact with
target growth factors and cells [31]. Nanotopography and lo-
cal environment influence trends in cell behavior by providing
chemical and physical stimuli to promote cell adhesion, pro-
liferation, morphogenesis, and motility [24]. The dimension
constraints limit the further applications of existing AM tech-
niques to mimic the unique structures and properties of natural
tissues.

Among various nanostructures, electrospun nanofibers
have been extensively studied for scaffold applications [13,
47]. The ultra-thin continuous fibers can form non-woven
webs which possess multiple desirable properties, such as
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high surface-to-volume ratio, highly interconnected porous
structure, and adjustable pore size distribution, etc. The
nanofibrous scaffolds mimic the ECM structure and provide
an appropriate substrate for cell attachment and nutrient trans-
port [2]. Various electrospinning strategies have been devel-
oped in recent decades. For example, Pan et al. obtained con-
t inuous and well-al igned fibers with two-needle
electrospinning design, and it can be deposited over a large
area [30]. With side-by-side electrospinning, Niu et al. fabri-
cated interbonded nanofiber membranes with improved chem-
ical and physical properties [28]. Shin et al. successfully in-
corporated sustainable released drug inside of nanofibers, with
core-shell electrospinning design [36]. Other electrospinning
strategies, such as magnetic electrospinning [43] and
electrospinning with salt/polymer leaching [34], provide con-
trollable, highly porous scaffolds as well.

One of the major disadvantages of conventional
electrospun nanofibrous scaffolds, however, is the limited
th ickness (< 1 mm) at t r ibuted to the nature of
electrospinning [5, 29]. Although 2D scaffolds were wide-
ly used in tissue engineering applications such as skin
regeneration, for more complex tissues, they fail to reflect
some fundamental and crucial aspects of in vivo environ-
ments, including cell communication in spatial context,
mechanical cues, and nutrient transportation [33].
Compared with 2D scaffolds structure, 3D scaffolds have
shown a superior performance in inducing cell differenti-
ation and development [20], and genetic materials expres-
sion including ECM secretion and cell metabolism [12,
18]. Some efforts have been made to construct 3D nano-
fiber structures by post-processing the electrospun mats
[10] or integrating electrospinning with other AM tech-
niques [14, 17]; however, so far, few works have been
reported in direct electrospinning of 3D scaffolds with
nanofiber structure.

In this paper, we presented a novel electrospinning-based
additive manufacturing technique for 3D scaffold comprised
of polycaprolactone (PCL) nanofibers. This technique adopts
customized collectors with two axisymmetric bevels to form a
divergence electric field, which will induce a construction of
uniaxially aligned nanofibers in a layer-by-layer manner [48].
Polycaprolactone (PCL) is one of the most popular synthetic
materials for tissue engineering due to its excellent balance in
biocompatibility, biodegradability, and mechanical properties.
Preliminary study has demonstrated the feasibility of fabricat-
ing 3D nanofibrous scaffold by divergence electrospinning.
The hypothesis of this study is that the variation of the electric
field distribution will induce changes in the static electric field
during electrospinning, thus influence the internal structure of
the nanofiber scaffold. The objective of this study is to test this
hypothesis by investigating the effects of the collector dimen-
sional design on the gradients of nanofiber density and
alignment.

2 Materials and methods

2.1 Polymer solution preparation

PCL (MW= 80,000) pellets, acetone (> = 99.5%), and N,N-
Dimethylformamide (DMF, 99.8%) were purchased from
Sigma-Aldrich® (St. Louis, MO, USA). Through preliminary
experiments, we found that 15% (w/w) PCL polymer solution
resulted in the highest-quality nanofibers. The PCL solution
was prepared by dissolving PCL in DMF and acetone (1:1)
through magnetic stirring for 4 h at room temperature. The
viscosity of the PCL solution was measured by ALPHA
SERIES Rotational Viscometer from Fungilab® (NY, USA).

2.2 Collector design

In the phase-1 study, the electric field distribution was
changed by the width-to-height ratio of the double-bevel col-
lector. We focused on the variation of electric field density in
the horizontal direction. The designs of the double-bevel col-
lectors were illustrated in Fig. 1. Two axisymmetric bevels
formed a 115o-angle relative to the horizontal plane.
Polylactic acid (PLA) collectors were 3D printed by
Ultimaker 3 system (Ultimaker®, Cambridge, MA, USA).
The inner surfaces of the two bevels were covered with alu-
minum foils which were grounded through wire connectors.
The lengths of the collectors were set to be 50 mm, 25 mm,
and 10 mm, resulting in three levels of length-to-width ratios,
namely 1, 0.5, and 0.2.

In the phase-2 study, more factors were introduced to
change the electric field distribution in all three axes (x-y-z).
The variations in width, height, and inclination degree were
analyzed. Each factor has two levels, resulting in a total of
eight collectors. The dimensions of the eight collectors are
summarized in Table 1.

2.3 Electrospinning process

The electrospinning process was performed on the TL-Pro-
BM Robotic Electrospinning Platform (Tongli® Tech,
China), with a 50-kV high voltage power source. The collec-
tors were placed on a hollow insulating stand in the
electrospinning chamber. The aluminum foils on collectors
were grounded separately using electrical wires passing
through the inner cavity of the stand (Fig. 1a). The
electrospinning spinneret was placed at the central line of
the collector. The double-bevel induced a divergent electric
field so that nanofibers were deposited onto both bevels of
the collector while formed connecting fibers in between. The
process parameters were summarized in Table 2.
Conventional electrospinning was performed by using a flat
aluminum sheet as the collector to generate 2D random nano-
fiber mats.
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2.4 Modeling of the static electric field

The static electric field of the divergence electrospinning
was modeled and simulated by FlexPDE (PDE Solutions
Inc., WA). The collector in Fig. 1b was employed for the
simulation. A three-dimensional box was built to represent
the electrospinning chamber, with the outer surfaces simu-
lated as insulating surfaces (zero gradient in the potential).
The collector without aluminum foil was modeled as an
insulator as well. The conductivity of the steel nozzle and
the aluminum foils was set to be 8.96 × 103 Siemens/mm
and 3.54 × 104 Siemens/mm, respectively. The thickness of
aluminum foil was 2 mm. The geometry of the nozzle was
simplified to be a small cylinder with a radius of 2 mm and

a length of 10 mm. Other parameters were set as the same
as the actual experimental parameters.

2.5 Scaffold characterization

Thin layers of nanofibers from the outer and inner sections of
the electrospun scaffolds were collected using glass slides as
illustrated in Fig. 2. Glass slides with double tapes were ver-
tically inserted into each collector with equidistant gaps and
swiped horizontally to collect nanofiber samples. In phase-1,
two slides were used to collect each half of the nanofiber
scaffold, while in phase-2, four slides were used to collect
each quarter section of the scaffold. The nanofiber morpholo-
gy and diameter were examined by scanning electron micros-
copy (SEM, Hitachi S-4300). The fiber density and alignment
were characterized based on optical microscopy (Invitrogen™
AMF4300). For each glass slide, a series of optical micro-
scope images with a scope of 1.1 mm were taken seamlessly
to cover the full range of the collected nanofibers.

Fig. 1 a Electrospinning set up;
Illustration of collectors with b
50-mm length, c 25-mm length,
and d 10-mm length

Table 1 Dimensions for eight collectors

Collector code Width
(W)(mm)

Height
(H)(mm)

Inclination degree
(A)(°)

20w5h135a 20 5 135

20w5h120a 20 5 120

20w10h135a 20 10 135

20w10h120a 20 10 120

40w5h135a 40 5 135

40w5h120a 40 5 120

40w10h135a 40 10 135

40w10h120a 40 10 120

Table 2 Divergence
electrospinning process
parameters

Process parameters Values

Pump rate 1.08 mL/h

Voltage 10 kV

Tip-to-base distance 100 mm

Nozzle size 22-gauge needle

Electrospinning time 2 min
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Fiber diameter was analyzed by DiameterJ (1.48) after the
SEM images were segmented and processed. Fiber density
was characterized by counting the number of fibers that
intersected with a middle line across a binary SEM image.
To quantify the fiber alignment, a fiber orientation histogram
was created by ImageJ (1.8) for each image. The percentage of
fibers within the 20-degree range around the peak value was
calculated. A higher percentage represented a higher degree of
fiber alignment. All Data were plotted by MATLAB into 3D
graphs. The gradient of the nanofiber attribute within one
scaffold was calculated by:

Grad ¼ 1−
Min data point cloudð Þ
Max data point cloudð Þ

� �
� 100%

2.6 Cell culture study

The 3D nanofiber scaffolds for cell culture study were fabri-
cated by a scaled collector (width 20 mm, height 10 mm,
inclination angle 135°) to fit the 6-well tissue culture
plate. 2D random nanofiber mats (23 mm× 23 mm) served
as the control group. Human fibroblasts (ATCC® MRC-5)
were seeded on the scaffolds with an initial concentration of
200 k cells/ml in Eagles’s Minimum Essential Medium
(EMEM, ATCC®, Manassas, VA) with 10% fetal bovine se-
rum (ATCC®, Manassas, VA). The collectors were sterilized
with 72% ethanol before electrospinning and the scaffolds
were UV-sterilized for 30 min after electrospinning. The scaf-
folds were incubated at 37 °C overnight for cells to attach and
then transferred to new tissue culture wells for continuous
culturing until the cell confluency reached approximately
80%. Finally, the cells were fixed with 4% formaldehyde,
and stained with Phalloidin Phalloidin CruzFluor™ 488

Conjugate (Santa Cruz Biotechnology, Dallas, TX) and 4′,6-
diamidino-2-phenylindole (DAPI, Santa Cruz Biotechnology,
Dallas, TX) for filamentous F-actin and nucleus, respectively.

3 Results

The viscosity of the 15% PCL solution was approximately
1330 mPa s. At this viscosity, fine electrospun nanofibers
were obtained without beads. In phase-1, nanofibers formed
mats on the surfaces of two bevels and an aligned web struc-
ture between the two bevels from bottom to top (Fig. 3).
However, for the 10-mm collector, the nanofiber started ag-
glomerating at the top of the collector after 1 min and formed
twisted bundles between the spinneret and the top edge of the
collector. The bundles were manually removed after the
electrospinning. It was observed that the fiber density was
higher at the top layers than at the bottom layers for all three
collectors. The 25-mm collector had the densest fibers on the
side and top of the collector. SEM images of the nanofibers
were presented in Fig. 4. All double-bevel collectors resulted
in a highly aligned fiber organization, compared to the random
fiber distribution obtained by the conventional 2D
electrospinning configuration. The scaffold in the 25-mm col-
lector showed the highest fiber density among the three
designs.

A summary of fiber diameter distribution was shown in
Fig. 5a. All the electrospun fibers were at nanoscale, ranging
from 154 nm to 621 nm. The mean diameter of the nanofibers
was between 468 and 314 nm. No substantial difference in
fiber diameter was found among different scaffolds or be-
tween 3D nanofibers and 2D nanofibers.

A quantitative analysis of fiber density was summarized in
Fig. 5b. The mean fiber densities of the 3D scaffolds were 1–2
orders of magnitude lower than that of 2D mat. Therefore the
porosity of the 3D scaffolds was much higher than that of 2D
mat. A gradient in fiber density along the z-axis of the collec-
tor was confirmed for all three designs. The 25-mm collector
saw the densest fibers on both top layer and bottom layer
among the three collectors, while the 50-mm collector had
the lowest fiber density. The gradient degree, namely the ratio
of fiber density at the top layer to that at the bottom layer, also
varied among three collectors. It was obvious that the effect of
collector geometry had a non-linear effect on the nanofiber

Fig. 2 Collection of nanofibers for quantitative studies

a b c

Fig. 3 Electrospun nanofiber
scaffolds obtained by a 10-mm
collector, b 25-mm collector, and
c 50-mm collector
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distribution. The 25-mm collector had the greatest gradient,
while the 10-mm collector and 50-mm collector had the equiv-
alent gradient. The non-linear relationships between the col-
lector geometry and fiber density were approximated by poly-
nomial regression lines given as belowwith high goodness-of-
fit (R2 ≈ 1):

y ¼ −117:75x2 þ 465:25x−299:25 Top layerð Þ ð1Þ
y ¼ −4:875x2 þ 16:625x−0:25 Bottom layerð Þ ð2Þ
where y is fiber density in 100 × 100 μm area and x the length-
to-width ratio of the double-bevel collector.

The 25-mm collector resulted in the highest fiber density
gradient, while the 10-mm collector had the lowest gradient.
The polynomial regression line was given as

z ¼ −6:5769x2 þ 27:405x−16:633 ð3Þ
where z is fiber density ratio.

In the phase-2 study, three factors were studied, namelywidth,
height, and inclination angle, so that the electric field was altered
in three dimensions. The fiber density gradients for all eight
configurations were summarized in Fig. 6. In the MATLAB
plots, height represents the vertical direction of the collector,
and section represents the horizontal direction. The gradient in
fiber density decreased with a larger inclination angle. For exam-
ple, the fiber density gradient of the scaffold in the

40W10H135A collector was 84.7%, which was approximately
15% lower than that in the 40W10H120A collector. The
40W5H135A collector resulted in a fiber density gradient of
72.5%, compared to 83.4% from the 40W5H120A. The results
showed that when the collector the inclination angle increased,
more fibers were obtained at the lower section of the collector.
The collector height also seemed to be positively correlated to the
fiber density gradient. As height increased, the differences in
fiber density between the top section and the lower section of
the scaffold also increased. However, this was largely due to the
difference in scaffold thickness.Within the same thickness range,
the effect of collector height was negligible.

The fiber alignment gradients for all eight collectors were
summarized in Fig. 7. Collector height and width did not show
significant effect on the fiber alignment gradient. However, incli-
nation angle had a negative effect on fiber alignment gradient.
For example, the fiber alignment gradient of the scaffold in the
40W10H135A collector was 26.7%, while that of the scaffold in
the 40W10H120A collector was increased to 57.2%. Similarly,
the fiber alignment gradients in the 40W5H135A collector and
the 40W5H120A collector were 34.5% and 43.9%, respectively.
The average alignment level increased from 42.98% to 56.32%
with inclination angle increases from 120° to 135°. High incli-
nation angle resulted in more uniform nanofiber organization.

The front-view potential profile of the divergence
electrospinning was displayed in Fig. 8a. Within the collector,

a bb c d

Fig. 4 SEM images of nanofibers from a, b, c the top layer of 10-mm, 25-mm, and 50-mm collectors, and d electrospun 2D mat

Fig. 5 Violin/box plots for a fiber diameter distribution, and b fiber density distribution
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there is little change in electric potential along the z-axis. The
contour plots of the electric field vectors were shown in Fig. 8b.
The field is axially symmetric and diverges at the top surface of
the collector. The cross-section potential profiles at selected
planes from top to bottom were shown in Fig. 8c–f. It is clear
that the 2D potential profile gradually changes from a circle to an
ellipse and finally merges into two parallel lines as it moves from
the electrospinning tip to the collector.

The fluorescent cell culture images were shown in Fig. 9. For
the 3D scaffold comprised of aligned nanofibers (Fig. 9a), fibro-
blasts were stretched along the fiber orientation. The nanofibers
maintained a bundle structure in the culture medium and provid-
ed enough mechanical support for cells to attach and proliferate.
In addition, the peripheral areas of the picture were out of focus
showing that the cells were distributed in a 3D space. For the 2D
mat comprised of random nanofibers (Fig. 9b), cells were ran-
domly distributed on a flat surface. The low porosity impeded the
infiltration of cells into the mat.

4 Discussion

Because the structure of natural extracellular matrices varies
substantially for different tissues, there has been a growing

awareness that the hierarchical 3D structure of scaffolds may
affect the intercellular interactions, the material transportation,
fluid flow, environmental stimulation etc., and further influ-
ence the tissue growth and formation. Therefore, there is a
growing research need for the development of biomimical
scaffolds with intrinsic biological and microstructural proper-
ties. The scaffold developed in this study can be directly em-
bedded in cell-laden hydrogel to form the aligned nanofiber
support and guidance for cell proliferation in 3D structure.
This technique can be applied in the engineering of musculo-
skeletal soft tissues such as tendons, ligaments, knee menisci,
etc.[13], where a fibrous cytoskeletal organization is critical
for tissue formation and functions.

One of the most common methods for 3D organization of
the nanofibers is to process the nanofibrous mesh into desir-
able form after the electrospinning. For example, a 3D scaf-
fold can be created by stacking multiple layers of nanofiber
mesh for cell seeding [19, 32, 45]. An aligned nanofiber mesh
can also be rolled onto a tubular [41] or core-shell structure
[40]. The advantage of this method is the high degree of flex-
ibility in creating the final form of scaffolds. Concurrent nano-
fiber mesh formation can be achieved by utilizing intermedi-
ate supporting substrate, in either liquid or solid form, to col-
lect nanofibers. Water and solvents such as methanol and

Fig. 6 Fiber density plots for eight collectors

Fig. 7 Fiber alignment plots for eight collectors
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ethanol have been used as the liquid collector due to their low
surface tension, which allows easy assembly of the deposited
mesh into a yarn [9, 46] or a 3D nanofibrous scaffold [15]
without breaking the fibers. To overcome the compaction of
the deposited fibers, salt particles [26] or sacrificial polymers
[1] can be sprinkled concurrently with electrospinning. These
additives enable rapid build-up of the nanofibrous volume and
can be washed away after the desired thickness is reached. A
more effective method is to neutralize the deposited mash
during the electrospinning by a charged electrode so that the
nanofiber may decelerate sufficiently and a charged air current
may be used to gather the nanofibers into block structures [4,
39]. Electrospinning can also be integrated into a hybrid
manufacturing process which creates scaffolds with microfi-
ber decks and nanofiber fillers. This process may require rapid
prototyping technique [21, 38] to build the body of scaffolds,
or different settings of electrospinning to create different
layers of fibers [16].

The divergence electrospinning strategy presented in this
paper was able to directly fabricate nanofiber scaffold with
spatial structures in a bottom-up manner. The nanofibers were
uniaxially aligned in the 3D scaffold. The results from fiber
density analysis revealed a gradient of fiber density from top
to bottom layers: all the collectors showed a significant de-
crease in fiber density from top to bottom. A majority of the
nanofibers were accumulated at the peripheral area of the col-
lector. We hypothesized that this phenomenon was due to the
repulsive effects attributed to the residual charges on the
electrospun nanofibers. For regular electrospinning, the nano-
fibers are deposited on a grounded surface, where the repul-
sive forces from the accumulated residual charges are fraction-
al compared to the static electric force until the fiber density
and thickness reach a very high level. In our case, the bridging
nanofibers were hanged between two grounded bevels. The
static electric forces exerted on the nanofiber were diverged to
two directions, led to a weaker resultant force downward.

Fig. 8 Simulated electric field distribution of the divergence
electrospinning. a Equal potential profile from the front view. b Electric
field density vectors from the front view. c Equal potential profile from

the top view at 75 mm. d Equal potential profile from the top view at at
55 mm. e Equal potential profile from the top view at 35 mm. f Equal
potential profile from the top view at 15 mm

Fig. 9 Florescent images for cells
in a a 3D scaffold and b a 2Dmat.
The nuclei were stained blue and
the filamentous actins were
stained green
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When nanofibers accumulated, the repulsive forces between
the fibers might soon exceed the static electric forces and thus
pushed the later electrospun fibers to the peripheral space.
Once the nanofibers at the peripheral areas became denser, it
would be more difficult for the electrospun jet reach the cen-
tral area. Therefore, the gradient of fiber density would only
increase as electrospinning continued.

It was found that the geometry of the double-bevel collec-
tor, specifically the length-to-width ratio and the inclination
angle, influenced the nanofiber distribution within the 3D
scaffold. These factors essentially influenced the structure of
static electric field between the spinneret and the grounded
aluminum foils which acted as two electrodes. The 10-mm
collector showed the lowest fiber density gradient; however,
it resulted in an undesired agglomerate fiber bundle on the top
layer, which was not included in the fiber density analysis.
With a lower length-to-width ratio, the static electric field
could be highly distorted near the collector, inducing unstable
nanofiber trajectory which prevented fiber bridging between
the two bevels. The 25-mm collector had the highest fiber
density at both top and bottom layers, indicating that a bal-
anced static field is critical to sustaining a stable fiber bridging
effect between the two axisymmetric bevels. In addition, the
50 mm collector showed the lowest fiber density inside the
collector, which is probably attributed to its highest space
volume.With the same amount of polymer solution, the nano-
fiber density will be lower in a larger space. The results indi-
cated that there should be an optimal range of the length-to-
width ratio of the collector to fabricate a 3D nanofiber scaffold
with a maximized fiber density and a homogenous fiber dis-
tribution. Furthermore, the inclination angle substantially in-
fluenced the microstructure homogeneity of the nanofiber
scaffold. The polarization of nanofiber density and alignment
can be significantly reduced by adopting a high inclination
angle. This phenomenon is probably due to the change of
intensity gradient of the electric field towards the inner sur-
faces of the collector bevels. The electric field gradient de-
creases as the inclination angle increases, which can mitigate
the instability of the nanofiber self-assembly.

With regard to nanofiber diameter, the collector geometry
did not show a significant influence. Fridrikh et al. [7] pro-
posed an analytical model for the forces that determine jet
diameter during electrospinning. The model solves the equa-
tions of motion for the jet, as a function of material properties
[dielectric permittivity (ε ), surface tension (γ)] as well as
operating characteristics [flow rate (Q), electric current (I)]

ht ¼ γε
Q2

I2
2

π 2lnχ−3ð Þ
� �1

3

ð4Þ

where ht is the terminal jet diameter, χ=R/h is the dimen-
sionless wavelength of the bending instability (R is the radius
of the bending perturbation and h is the jet radius). Equation

(4) predicts that the terminal diameter of the whipping jet is
controlled by the flow rate, electric current, and the surface
tension of the fluid. Equation (4) neglects elastic effects and
fluid evaporation, and also assumes minimal jet thinning after
the saturation of the whipping instability. They also found that
theoretical predictions were in agreement with experimental
data obtained from electrospinning PCL solutions.

Thompson et al. [42] established a theoretical model to
characterize the effects of material and operating parameters
on electrospun fiber diameters. The results show that the five
parameters (volumetric charge density, distance from nozzle
to the collector, initial jet/orifice radius, relaxation time, and
viscosity) have the most significant effect on the jet radius.
The governing quasi-one-dimensional continuity, momentum
and charge conservation equations were given as follows:

∂λf
∂t

¼ − jev ð5Þ

ρ
∂λfV
∂t

¼ τ
∂P
∂t

þ λ kj jPnþ λ kj j πaσ−qe1ð Þn−λeU 0

h
k ð6Þ

eλ ¼ e0λ0 ð7Þ

where λ is geometrical In Eq. (4) l is the geometrical
stretching ratio, f = πa2 is the cross-sectional area (a: the
cross-sectional radius), subscript zero denotes the parameter
values at time t = 0. ρ is the liquid density, V is velocity vector,
P is the longitudinal force in the jet cross-section, U0/h is the
outer electric field strength (U0: the potential difference, h: the
inter-electrode distance), σ is the surface tension, k is the local
curvature of the jet axis, e is the charge per unit jet length, qe1is
the net Coulomb force acting on a jet element, and jev is the
flux describing mass loss due to solvent evaporation. In Eq.
(6), the inter-electrode distance h (distance between nozzle
and collector) has a negative relationship with cross-
sectional fiber diameter. Given that the height of the collectors
in this study was marginal relative to the jet travel distance, no
substantial change in fiber diameter was found.

The modeling of the electric field revealed that the nanofi-
ber orientation was consistent with the direction of electric
field vectors between the two bevels of the collector.
Because the two bevels were symmetric to the electrospinning
tip, the top-view potential profile of the collector can be sim-
plified as two parallel rectangles with equal field strength gra-
dient, which caused the whipping polymer jets to form a high-
ly aligned nanofiber matrix. The change of collector geometry,
such as height and angle, will influence the field strength
gradient along z-axis, thus may affect the nanofiber organiza-
tion. The simulation also showed that there was no gradient of
the field strength within the collector. Therefore, we speculate
that the nanofiber density gradient was due to the charge re-
tention of the deposited nanofibers. PCL, like many other
polymers, is poor electrical conductor therefore tends to retain
charges after electrospinning. The repulsive forces among
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charged nanofibers decentralized the fiber deposition,
resulting in a higher fiber density at the peripheral areas of
the scaffold.

In the fluorescent cell culture images, we observed that in the
3D nanofiber scaffold, the cells were uniaxially organized within
the whole space, closely resembling the common fibrous struc-
ture in musculoskeletal tissues. This is the main advantage over
conventional 2D nanofiber scaffold in which cells were random-
ly distributed only on the surface. We believe that the 3D nano-
fiber scaffoldwith a biomimetic pattern provides a novel solution
for creating the microarchitecture of extracellular matrix on a
clinically relevant scale. It should be noted that most of the fibro-
blasts were accumulated on the peripheral areas of the 3D scaf-
fold, and the cell density was positively correlated to the nanofi-
ber density. The homogeneity of nanofiber distribution needs to
be enhanced in future work.

Future work will focus on homogenization of the fiber
density within the 3D scaffold by minimizing the residual
charges on the fibers. Potential methods include an increase
of the polymer concentration, addition of inorganic salts in
solution, etc. In addition, mechanism-based models will be
needed to describe, simulate, and predict the divergence
electrospinning process to optimize the outcomes.

5 Conclusion

This paper presented a novel divergence electrospinning strat-
egy with double-bevel collectors for 3D nanofiber scaffold
fabrication. The effects of electric field distribution on fiber
density and diameter were characterized. The results showed
that the geometry of the double-bevel collector, specifically
the length-to-width ratio and the inclination angle, influenced
the nanofiber organization within the 3D scaffold. A length-
to-width ratio close to one and a high inclination angle are
desirable to achieve more homogenous nanofibrous structure.
This study provided an innovative approach to biomimic na-
tive tissue microstructures and showed a great potential as a
future fabrication AM platform for tissue engineering.
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