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Abstract
Absolute accuracy is one of industrial manipulator’s key performance characteristics, which is critical for emerging robotics
applications such as laser cutting, riveting, and carbon fiber placement as well as for many machining operations. On the
other hand, arrival of new uses such as collaborative robots needs the estimation of interaction efforts with the operator
or with the environment (hand-guiding, collision detection, and free backlash assembly). This paper presents an approach
to organize an integrated kinematic and dynamic calibration procedure to improve quality of models appropriate for
trajectory planning and motion control. Along with bringing theoretical insights and novel arguments, we give hands-
on recommendations on selection of parameters priors, initial guesses on calibration poses and trajectories, setting active
constraints, algorithms tuning, and experimental data filtering which is necessary to perform consistent robot calibration
in practice. We illustrate the study with experimental data and description of actual calibration performed on the KUKA
Light-Weight Robot using vision-based metrology and dedicated software. In contrast to authors preceding works, this paper
includes a more complete entire procedure description, analysis of dynamic calibration sensitivity with respect to kinematic
parameters estimates and a chapter on how calibration results can be used for model-based trajectories planning using virtual
holonomic constraints approach.
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1 Introduction

Erroneous estimates of robot parameters used by a motion
planner or a controller can significantly degrade an overall
system performance. Thereby, one of prerequisites for such
applications is a properly organized and implemented cal-
ibration procedure. However, this task is rarely completely
automated. In most cases, in order to arrive to consistent
results, standard identification approaches and computa-
tional schemes require tuning, supervision, and manual
adjustments [20]. An expert should categorize which effects
can have the major influence on the robot for expected oper-
ations and which can be disregarded trading-off between
the model complexity and its relevance to a behavior that
the real system will perform. In doing so, s/he typically
decides on a number of degrees of freedom that is suffi-
cient for representing a particular motion of the robot, on
kinematic and dynamic features of an end-effector, and on
a necessity to include in analysis properties of actuators and
transmissions. S/he scrutinizes characteristics of measure-
ment instruments available for recording robot’s motion and
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tunes various filters and observers for recovering signals
impossible to measure directly. For instance, if an expected
motion is relatively slow, then one may require accurate
friction models and observers for reconstructing velocities
of related coordinates to compensate detrimental effects of
such forces [9]. On the other hand, if an expected motion is
relatively quick, then one might need to increase a number
of degrees of freedom to capture non-negligible links and
joints flexibility [29].

Usually, kinematic and dynamic calibration tasks are
treated separately. The first one represents the task to
identify kinematic parameters of a manipulator typically
required to reach a maximal accuracy in positioning
of its tool for point-to-point motions and assumes the
presence of an external measurement device that can be
used for validation of an absolute location of a robot’s
tool in the world frame. While the second one is aimed
at developing an accurate dynamic model appropriate
either for rigorous simulation and trajectories planning
or for high-performance control, when, for instance, a
robot is to be programmed to follow a time-optimal
behavior with demanding velocity and acceleration profiles.
It relies on a measurement system of the robot and,
therefore, serves primarily for the internal representation of
trajectories and feedback design strategies. The translation
of the robot motion from its internal representation into
a task -specific coordinate system is left as a minor
step in the majority of the dynamics calibration case
studies. At the same time, interference from the robot
incorrect kinematics representation on its dynamic model
identification both at the calibration trajectories planning
and parameters calculation steps was reported in previous
research (e.g. [37]).

This work describes analytic, computational, and exper-
imental steps implemented for estimating kinematic and
dynamic parameters of a robot equipped with an advanced
research interface for signal acquisition and control used
together with an advanced metrology instrument and ded-
icated software for tracking robot behaviors in the world
frame.

Namely, the discussed calibration procedure has been
implemented on the KUKA Light-Weight Robot (LWR4+),
which is a redundant serial manipulator with seven
rotational joints. Its attractive features such as kinematics
redundancy and joint torque sensing as well as real-
time control capabilities provided via the Fast Research
Interface (FRI) [3] have helped the robot to serve as one
of popular and widely used platforms in robotics research
specifically for developing and testing new motion planning
and motion control algorithms. Being appropriate for some
assignments, parameters of a robot extracted from its
CAD model require refinements for others tasks, where
by necessity an experimenter should take into account

neglected or averaged effects due to motors’ dynamics,
friction, non-uniform mass distribution of links, and robot-
to-robot variations.

Apart from the manipulator, the robotic cell under the
study has been equipped with the Nikon K610 optical
coordinate measuring machine (CMM). The advanced
software tools enables their synchronization resulting in
tracking of a selected frame’s origin and orientation at the
sampling rate of 1 kHz and with the volumetric accuracy of
60 μm over a workspace of 17 m3.

The rest of the paper is organized as follows. The next
section highlights the novelty and contribution of this study,
particularly addressing the difference between this work
and other researchers and authors previous publications.
Sections 3 and 4 are devoted to kinematics and dynamics
calibration respectively, where we added formal problem
statements and analytic and experimental steps in their
solutions. In Section 4.5 the case study setup and the
realization of generic arguments for identification of its
Inverse Dynamic Models (IDMs) are presented. Section 5
presents a comment for model-based trajectory planning
based on the developed IDMs. Finally, discussion on the
obtained results and concluding remarks are given in
Section 6 and Section 7 respectively.

2 Novelty and contribution

To the best of authors knowledge, there are no works
focused on integrated identification of the robot kinematic
and dynamic models; therefore, the suggested procedure
has scientific novelty and is technically sound. Consistency
between geometric and inertial parameters estimates can
be important for the case study and in general for model-
based optimal trajectories planning and motion control,
since the latter depend on the former in a nonlinear way, and
erroneous guesses on robot geometry can propagate while
capturing its dynamic behavior [37]. Analysis of dynamic
calibration results’ sensitivity with respect to kinematic
parameters estimates and more complete entire procedure
discussion including a chapter on how calibration results
can be further used for trajectories planning bring value to
this paper with respect to authors’ preceding works [26–28].

Here, we can also highlight authors’ contribution
compared to other state-of-the-art techniques for kinematics
and dynamics calibration separately.

Despite kinematics calibration is a well-established field
of research [10, 14, 15, 18, 21, 22], its further development
is motivated by many practical applications [6–8, 30, 31].

The kinematics calibration part of this work is based
on the general framework introduced in [22], but also
employs recent findings in the calibration configurations
optimization such as meta-heuristic search algorithms [8]
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as well as suggests an alternative approach for preventing
sticking in a local minimum given a non-convex cost
function corresponding to various observability indexes
[15] by introducing a multi-start optimization approach.
Similar to [34], authors consider calibration using vision-
based metrology with target full-pose measurements by
means of a fixed exteroceptive sensor. However, authors
used a photogrammetry setup with three linear charge-
coupled device (CCD) cameras; therefore, a novel target
design was introduced and poses optimization procedure
was modified with Cartesian-space constraints to ensure
target and base frames visibility during the experiment. In
terms of implementation, we proposed a highly automated
procedure specifically adapted for the optical CMM use.

The dynamics calibration part of this paper tries to
address the problem in its full complexity considering
advanced model reduction for complete links and motor
dynamics and ways to provide convergence of parameters
estimates under noisy measurements by means of trajecto-
ries planning, signal processing, and estimation algorithm
adjustments. These issues have been addressed by other
researchers as well, but from different angles and/or often
in fragmented fashion. Since there are many works on robot
dynamics identification in recent years, we mention here
only those mostly devoted to parametric estimation (not
frequency-domain methods) and redundant serial kinemat-
ics manipulators as a case study.

For example, works [2, 37] consider only link dynamics
neglecting motor dynamics. Calibration trajectories are
parametrized by Fourier series, while its desired frequencies
and amplitudes are calculated using d-optimality criterion.
No model reduction approach is considered, instead a full
barycentric parameters set is used. While [37] presents
results for six degrees of freedom (DOF) articulated
robot, similar approach is applied to 7DOF KUKA LWR
manipulator in [2].

Identification of the KUKA LWR dynamics is accom-
plished in [11] using a reverse engineering approach, i.e.,
mapping numerical values of the link inertia matrix and the
gravity vector with the proposed symbolic model at a set of
static configurations. This work considers recursive model
for link dynamics neglecting friction terms. During the cal-
ibration experiment, all robot joints were requested to move
along the same non-optimized periodic single frequency
trajectory, while the position measurements were numeri-
cally differentiated and low-pass filtered. This study reports
that the proposed approach provides poor accuracy in the
computed torque test for the joints that are less loaded.

Work [25] suggests a closed-form solution for identifica-
tion model reduction, which allows selecting a set of base
inertial parameters by converting observation matrix to the
reduced-row echelon form. It allows to find transformation
matrix in a symbolic form, which is different from often

used QR or singular vector decomposition (SVD) numeric
approaches. Future possible identification model reduction
based on confidence of obtained parameters estimates is not
considered here.

Works [12, 36] consider the problem of mapping between
recursive model dynamic coefficients and physical robot
parameters. Both works are considering link dynamics only.
Stürz et al. [36] are introducing additional constraints on
link physical parameters at the step of dynamic coefficients
identification to make its estimates feasible. It is also
referring to model reduction, but up to base parameters
set only, and to excitation trajectories planning, which
is based on a single-criterion optimization. Gaz et. al
[12] focus on recovering values of link masses, inertia
tensors, and center of gravity (CoG) coordinates from
the obtained numerical estimates of dynamic coefficients
using optimization procedures. In contrast, our work shows
that physical parameters values may be not needed for a
trajectories planning algorithm.

Similar to our work, [33] addresses the problem
of handling measurements noise, while organizing the
identification procedure, and in particular at the excitation
trajectories planning step by improving signal-to-noise
ratio. However, this work proposes to apply single-criterion
optimization, when the cost function is defined as the
sum of two scalar functions, where the first summand is
an observation matrix condition number and the second
one is the reciprocal of the sum of the joint torques for
all joints over pre-selected points of the trajectory. This
approach does not allow targeting torques of particular (e.g.,
poorly loaded) joints. B-spline parametrization of excitation
trajectories is suggested, which allows adjusting trajectories
locally without affecting the rest of the path. However,
these trajectories are not periodic and are not explicitly
parametrized with respect to motion frequencies.

Works [5, 16, 17] are the closest to the dynamic cal-
ibration part of this study in terms of the model and
signal processing algorithms used as well as experimental
setup under consideration. However, it suggests to use non-
optimized calibration trajectories with trapezoidal velocity
profile, which can significantly deteriorate estimation qual-
ity. In our study, we enhanced the approach from [17] and
proposed multi-objective optimization settings for searching
robot’s calibration trajectories. As shown, the adjustment
resulted in trajectories with better excitation of dynamics of
the last joints and consequently helped to improve accuracy
of parameters estimates. The similarity with [17] in mod-
eling the dynamics and in description of a set of essential
parameters allowed for the case study organizing the com-
parative analysis of the robot-to-robot variations. Besides
that various hands-on recommendations on selection of
parameters priors, initial guesses on calibration poses and
trajectories, setting active constraints, algorithms tuning,
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and experimental data filtering are provided throughout the
paper.

3 Steps in kinematics calibration

Below we describe and comment on steps necessary
for kinematics calibration giving guidelines on making
choices for (1) a parametric family of robot models, (2)
one or several optimization indexes and algorithms for
searching an optimal set of calibration configurations, and
(3) computational algorithm for estimating robot geometric
parameters. We illustrate study with experiments for the
KUKA LWR4+ robotic arm.

3.1 Kinematics model for calibration

We consider a serial open-chain redundant manipulator
and assume that the robot is rigid and flexibility in
links and transmission are negligible. Thus, no degrees of
freedom, in addition to joint angles, will be introduced for
kinematics modeling. Under these conditions, the posture
y = [x, y, z, φ, θ, ψ]T of a robot end-effector with [x, y, z]
being Cartesian coordinates and with [φ, θ, ψ] being tool
central point (TCP) frame orientation in the world frame can
be obtained from the forward kinematics equations

y = f (Φ, q), (1)

where q = [q1, . . . , qn]T is a vector of joint coordinates
that uniquely determine the robot configuration and Φ is a
vector of unknown geometric parameters.

For a robot consisting of n joints and n + 1 links,
the transformation from the robot base to its terminal
link coordinate frames assigned using modified Denavit-
Hartenberg (MDH) convention [20, 23] can be expressed as

0Tn(q) = 0T1(q1) · 1T2(q2) · . . . · n−1Tn(qn), (2)

where each element in the product is given by

j−1Tj = Rotx(αj )Transx(dj )Rotz(θj )Transz(rj )

and represents a transformation between two consecutive
link frames calculated for quadruples of geometric parame-
ters

(
αj , dj , θj , rj

)
.

For the calibration task, we introduce two additional
coordinate frames representing camera frame indexed as −1
and tool frame indexed as n + 1 (see Fig. 1).

Since these frames can be arbitrarily located in space,
then, in general, up to six parameters (γz, bz, αz, dz, θz, rz)

may be required for defining a transformation ( −1T0)

between the camera and robot base frames and another six
values (γe, be, αe, de, θe, re) for a transformation ( nTn+1)

between the robot terminal link and tool frames. However,
taking into account properties of the robot terminal and
base frames, one can introduce these transformations in the
unified with Eq. 2 manner:

−1T1(q) = −1T0 · 0T1(q1)

= Rotx(α0)Transx(d0)Rotz(θ0)Transz(r0)

×Rotx(α
′
1)Transx(d

′
1)Rotz(θ

′
1)Transz(r

′
1), (3a)

Fig. 1 Camera, robot, and tool
frames assignment
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where α0 = 0, d0 = 0, θ0 = γz, r0 = bz, α′
1 = αz, d ′

1 = dz,
θ ′

1 = θ1 + θz, r ′
1 = r1 + rz, and

n−1Tn+1(q) = n−1Tn(qn) · nTn+1

= Rotx(αn)Transx(dn)Rotz(θ
′
n)Transz(r

′
n)

×Rotx(αn+1)Transx(dn+1)Rotz(θn+1)Transz(rn+1),

(3b)

where θ ′
n = θn + γe, r ′

n = rn + be, αn+1 = αe, dn+1 = de,
θn+1 = θe, rn+1 = re.

Augmenting Eq. 2 with Eqs. 3a and 3b, we obtain
forward kinematics equations

−1Tn+1(q) = −1T0 · 0Tn(q) · nTn+1, (4)

which can be used for computing the posture of the end-
effector as defined by Eq. 1. In this case, a vector of
unknown parameters in the representation (1) becomes

Φ = [
α′

1, . . . αn+1, d
′
1, . . . dn+1, θ0, . . . θn+1, r0, . . . rn+1

]
.

3.2 Goal of kinematics calibration

Given an estimate Φ̂ of the vector Φ and Eq. 1, a pose y of
the robot’s end-effector can be pre-computed by the formula

ŷ = f (Φ̂, q) (5)

simultaneously for all feasible robot configurations q at
once. Therefore, one can justify the closeness of Φ̂ to Φ

implicitly by comparing values of the pre-computed ŷ and
measured y end-effector’s poses for different configurations
q. It is common to assume that an estimate Φ̂ of MDH
parameters reproduces the true one, if the corresponding
pre-computed pose ŷ and its “ground-truth” value y are
indistinguishable for any choice of q. The statement admits
the reformulation as a solution of an optimization task

Φ̂opt := arg min∀ q
‖y − ŷ‖2. (6)

The problem can have many local minima; therefore, the
vector Φ̂opt in Eq. 6 denotes a global optimizer. For the most
of robot designs, it is sufficient to use a finite number M of
configurations q in searching of Φ̂opt provided that a set of
these configurations {q1, . . . , qM} is chosen properly and
the constrained optimization task

Φ̂opt (q
1, . . . , qM) := arg min

q∈{q1,...,qM }
‖y − ŷ‖2 (7)

returns the global optimizer Φ̂opt ≡ Φ̂opt (q
1, . . . , qM).

If the vector Φ possesses parameters that are not
identifiable from the output y, then the parametrization
is excessive and a set of redundant characteristics should

be found. In practice, such parameters can be singled out
analyzing the so-called parametric Jacobian

J (q) = ∂f (Φ, q)

∂Φ
. (8)

Indeed, if J (·) is insensitive to some parameters in Φ

for any configuration q, then these parameters would be
challenging to identify. Typically, they are either eliminated
from the model or regrouped with others. The remaining set
of identifiable parameters and the corresponding parametric
Jacobian are called base parameters ΦB and base Jacobian
JB(q) respectively (see [14, 20, 22]).

3.3 Algorithms and heuristics for searching optimal
calibration configurations

The process of selecting a set of robot configurations
Q = {q1, . . . , qM} for the optimization task (7) and steps in
selecting the base parameters ΦB of the forward kinematics
(4) of the robot become interconnected if one considers and
explores the so-called base observation matrix

WB(Q) := [
JB(q1)T , JB(q2)T , . . . , JB(qM)T

]T
(9)

Its maximal rank indicates a number of identifiable (base)
parameters, while the corresponding set Q describes config-
urations, which the robot should visit in experiment. Frankly
speaking, one can choose arbitrarily many configurations
qi in Q. However, in the design of experiments, it is rea-
sonable to limit a number of configurations and choose
them wisely. As quantitative measures of the configurations
optimality, several observability indexes O(Q) and asso-
ciated optimization assignments were discussed in [8, 14,
15]. Essentially, they explore and rely on the SVD decom-
position of the base Jacobian JB(q) and the results can
be interpreted as searching for a set of configurations, for
which end-effector poses are sensitive to small perturbations
of the base parameters. Thus, optimizing a set of configura-
tions Q can be formulated as a maximization of a selected
observability index subject to nonlinear constraints

max
Q={q1, q2, ... qM}O(Q) such that

{
ql ∈ (qmin, qmax),

yl ∈ (ymin, ymax),

l = 1, 2, . . . , M . (10)

Here, sub-indexes max and min denote maximum and
minimum allowed values respectively. The constraints
listed in the optimization problem (10) are given both
in the joint and in the Cartesian spaces. The latter
can be present, if there are obstacles inside the robot’s
workspace or there are specifications imposed due to
basic principles of measurement instruments. For instance,
if the photogrammetry technology is applied, then the
problem formulation should include end-effector visibility
constraints.
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A common practice in calibration poses’ optimization
is to use the conjugate-type deterministic algorithm [20,
22]. It is aimed at adjusting the entire set of configurations
on every iteration. However, such algorithm has a number
of deficiencies including its strong dependence on initial
conditions and a possibility to converge to one of local
minima. To avoid the issues, we tested two modifications:
The first one performs a multi-start procedure assuming that
the algorithm is run several times from randomly chosen
and uniformly distributed set of initial conditions. In the
second modification, we tested an Iterative Meta-Heuristic
Algorithm with the Tabu Rule (IMHATR) [8], which runs as
a two-stage procedure illustrated by Fig. 2. Here, the Tabu
list T is a set of already verified configurations introduced
to prevent convergence to one of known local minima. This
scheme is similar to a genetic algorithm, where a stochastic
behavior is introduced at the randomized candidate-
configurations selection step. The results and discussions of
the comparative analysis of different observability indexes
and poses optimization algorithms can be found in [26, 28].

3.4 Geometric parameters estimation

When a set of robot configurations for minimizing the index
(7) is successfully determined, a numerical procedure for

computing its global optimizer Φopt can be initiated and
implemented in various ways. In this work we realized the
classical iterative linear least squares algorithm

ΔYk = Ym − F(Φ̂k−1, Q), (11a)

ΔΦB,k = W+
B ΔYk, (11b)

Φ̂B,k = Φ̂B,k−1 + ΔΦB,k . (11c)

Here, W+
B is the pseudo-inverse of the base observation

matrix WB defined in (9); Ym = [
y1

m; y2
m; . . . yM

m

]T ∈R
6M

and F(Φ̂k, Q)=
[
f (Φ̂k, q

1); f (Φ̂k, q
2); . . . f (Φ̂k, q

M)
]
∈

R
6M denote respectively vectors of measured (1) and cal-

culated (5) tool frame positions and orientations aggregated
for a set of M configurations of the set Q; an index k cor-
responds to kth iteration. Elements of Φ̂k corresponding to
the base parameters are updated from ΦB,k , while others are
kept equal to its initial values.

In addition, the Levenberg-Marquardt or damped least-
squares algorithm was also implemented to improve a
convergence if the second-order terms of the Taylor series
expansion of Eq. 11a were significant

ΔΦB,k =
[
WT

B WB + λkdiag
(
WT

B WB

) ]−1
WT

B ΔYk . (12)

Fig. 2 Diagram for IMHATR
algorithm
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Fig. 3 LED fixture design

Here, ΔYk is calculated as in Eq. 11a and the non-negative
damping factor λk is adjusted at each iteration following the
heuristics:

– if ‖ΔYk+1‖ < ‖ΔYk‖ ⇒ λk+1 = λk/10
– else λk+1 = 10 · λk

3.5 Experiment organization

For kinematics calibration, we used Nikon K610 optical
CMM that provides position and orientation measurements
for dynamically moving frames.

In order to organize measurements, two frames were
marked for the CMM with two sets of LEDs—the robot
base frame and the tool frame. The former was assigned to
compensate for possible camera relocation between series
of experiments and allowed us to directly measure relative
full pose between two aforementioned frames.

To ensure better visibility and localization accuracy for
the tool frame, we designed a special LED fixture that was
attached to the robot flange (see Fig. 3). Reasoning behind
the fixture geometry is explained in [28].

Table 1 contains the list of active constraints imposed on
joint angles and tool pose in Cartesian space with respect to
the camera frame to guarantee the LED visibility and avoid
collisions.

For optimizing calibration configurations, Matlab Opti-
mization Toolbox was used. The selection of base parame-
ters and the calculation of their estimates were implemented
in the software package GECARO+ [24]. FRI was used to
control the robot motion during experiments. In order to
operate the K610 CMM, to assign dynamic frames, and
to acquire measurements via the DMM-Modular protocol,
Nikon Metrology’s K-CMM, DMM, and Geoloc software
were used.

The process of the kinematics calibration is illustrated in
the supplementary multimedia file.

4 Steps in dynamics calibration

In this section, we provide background, describe step-
by-step procedure, and point out adjustments essential
for accurate open-chain manipulator dynamics recovering.
Results presented in this section are recalling approaches
described in authors’ previous work [27], while its extension
in terms of comprehensive analysis on how preliminary
kinematic calibration and calibration trajectories planning
influence dynamic model identification are presented in
Section 6.2.

4.1 Dynamics model for calibration

The dynamics of an open-chain manipulator with n-
degrees of freedom and physically collocated actuators
having substantial gear-ratios in transmission1 can be well
approximated by the Inverse Dynamics Model (IDM)

τl = M(q)q̈ + C(q, q̇)q̇ + G(q) + τf l, (13)

τ = Iaq̈ + τl + τf m. (14)

Here, q, q̇, and q̈ ∈ R
n are vectors of joint positions,

velocities, and accelerations; τ and τl ∈ R
n are vectors

of motor and joint torques; M(q) is n × n link inertia
matrix; C(q, q̇)q̇ and G(q) ∈ R

n are vectors representing
Coriolis/centrifugal generalized forces and forces due to
gravity or compliance; Ia is the diagonal drive inertia matrix
(motor and gearbox); and τf m and τf l ∈ R

n are vectors of
motor and joint friction torques.

1According to DLR Light-Weight Robot III specifications http://www.
dlr.de/rmc/rm/en/desktopdefault.aspx/tabid-3803/6175 read-8963/ (the
predecessor of the KUKA LWR4+), all seven harmonic drives have
high gear ratios. In particular, they are 1:100 for axes 1, 2, 3, 4, 6, and
7 and 1:160 for axis 5.
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Table 1 Constraints for
configurations optimization Joint angles, [rad] |q1,3,5,7| ≤ 17π

18 ; |q2,4| ≤ 2π
3 ; |q6| ≤ π

2

LED fixture orientation in camera frame, [rad] Roll φ ∈
[
− 4π

9 , 7π
18

]
; pitch θ ∈ [− π

4 , π
4

]

LED fixture position in robot base frame, [rad] Distance in XY plane dxy ≥ 0.2;

Vertical coordinate z ≥ −0.1

The identification task requires also a parametrization
of dissipative generalized forces represented in Eqs. 13
and 14 in the lump format as torques τf l and τf m. The
simplest parametric model of a friction includes symmetric
and decoupled Coulomb and linear viscous parts solely
dependent on links’ angular velocities

τf l = Fvlq̇ + Fclsign(q̇) + off l, (15)

τf m = Fvmq̇ + Fcmsign(q̇) + off m. (16)

Here, Fvm, Fcm, Fvl , and Fcl are n × n diagonal constant
matrices of viscous and Coulomb friction coefficients for
motors and joints respectively; off m and off l ∈ R

n are
motor and joint torque offsets.

As known from [10, 14, 20], nonlinear Eqs. 13–16 of the
robot dynamics can be transformed into a recursive dynamic
model, which is linear in unknown barycentric parameters

τ(t) = ω
(
q(t), q̇(t), q̈(t)

)
χ, ∀ t . (17)

The [n × Ns] matrix function ω (·) represents the IDM
Jacobian with respect to a vector of parameters χ =
[χ1; . . . ; χn] ∈ R

Ns , where each column has seventeen ele-
ments χj = [XXj , XYj , XZj , YYj , YZj , ZZj , MXj ,

MYj , MZj , Mj , Iaj , Fvl,j , Fcl,j , off lj , Fvm,j , Fcm,j ,

off mj ]T with XXj , XYj , XZj , YYj , YZj , and ZZj being
the inertia tensors, MXj , MYj , and MZj being the first
moments, Mj being the mass all listed for the j th link,
j = 1, . . . , n, and with Ns = 17 · n being the total number
of barycentric parameters.

The representation (17) is often redundant and some
of parameters might not be identifiable. Therefore, similar
to Section 3, one searches for a subset of nb base IDM
parameters χB with nb ≤ Ns , which are sufficient for
reconstructing the motors’ torques in the left-hand-side of
Eq. 17

τ(t) = ωB

(
q(t), q̇(t), q̈(t)

)
χB, ∀ t . (18)

Here, ωB (·) known as the base IDM Jacobian [n × nb]
matrix is composed from nb columns of ω (·) originally
defined by the dynamics in Eq. 17. Sets of base parameters
can be determined using closed-form rules of [22] or QR-
decomposition of the IDM Jacobian (see [21]). In turn, some
of the base IDM parameters might not have a significant
contribution to the system dynamics and can be post-
eliminated reducing a set of the base parameters to a smaller
set of essential IDM parameters. Systematically, it can
be done using statistical hypothesis tests [16]. However,
if identification steps for both motor and joint dynamics

are performed concurrently, then one needs to keep among
essential parameters those which can be only estimated in
hard-to-excite modes. In this case, a manually supervised
iterative elimination procedure can be implemented as an
alternative [20].

4.2 Signal processing and additional model
transformations

Motivated by practical use, several additional assumptions
and transformations of the model (18) are necessary.

The first one is related to representation of a noise
that appears in measurements of q(·), τ(·) and enters into
coefficients of the regressor ωB(·). The common approach
is to neglect the measurement’s noise in computing ωB(·)
and assume that the following model reproduces the
measurements accurately

τ(t) = ωB

(
q(t), q̇(t), q̈(t)

)
χB + ε(t), (19)

i.e., the noise ε(t) is additive. If such assumption is
accepted, then collecting measurements, while the robot is
moving along a certain trajectory, and augmenting the data
results into the over-determined set of linear equations

Υ = ΩBχB + E, (20)

where Υ and E are the vectors of “stacked” actual
motor torques and model errors respectively, all of a size
[r × 1] with r = n · ne and ne being the number of
measurement samples; ΩB is the IDM observations matrix
vertically stacked from ωB

(
q(tk), q̇(tk), q̈(tk)

)
blocks for

k = 1, . . . , ne, [16].
The second assumption characterizes results of pre-

processing of raw measurements of τ(·) and q(·) for reduc-
ing noise and for estimating velocities and accelerations
required in computing the regressor. It is commonly done by
band-pass filtering of all signals resulting into the Inverse
Dynamic Identification Model (IDIM)

Υf = ΩBf χB + Ef , (21)

where the index f denotes filtered data

Υf =
[
τf (t1); τf (t2); . . . τ f (tne )

]
,

ΩBf =

⎡

⎢⎢⎢
⎣

ωB

(
q̂f (t1), ˆ̇qf (t1), ˆ̈qf (t1)

)

...

ωB

(
q̂f (tne ),

ˆ̇qf (tne ),
ˆ̈qf (tne )

)

⎤

⎥⎥⎥
⎦

.
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Then, the second assumption postulates that the filtered
error signal Ef in Eq. 21 has zero mean, serially
uncorrelated and heteroskedastic [16]. It implies that Ef has
a block-diagonal covariance matrix

R = diag
(
σ 2

1 Ine, · · · , σ 2
j Ine, · · · , σ 2

n Ine

)
, (22)

where Ine is the [ne × ne] identity matrix and σ 2
j is the error

variance calculated from j th subsystem of Eq. 21.

4.3 Searching for optimal calibration trajectories

Successful identification of robot’s dynamics relies on avail-
ability of a family of rich-in-modes robot’s nominal trajecto-
ries q∗

i (·). Performing them in experiments generates input
data for computing estimates of model parameters based on
the linear regression (18) or its filtered version (21). For var-
ious reasons, it is convenient to consider a parametric family
of nominal trajectories, where behaviors of joint coordinates
are trigonometric polynomials of time, i.e., when the motion
of ith joint (i = 1, . . . , n) is written as

q�
i (t) = qi,0 +

nf∑

k=1

[
ai,k sin (k · w0t) + bi,k cos (k · w0t)

]
.

(23)

Here, qi,0 is the initial bias, w0 is the base frequency, ai,k

and bi,k are constant coefficients, and nf is the number of
frequencies.

Searching coefficients
{
ai,k, bi,k

}
of trigonometric poly-

nomials (23) is commonly done through solving appropri-
ately posted constrained optimization task. Meanwhile, the
order nf of polynomials, their base frequency w0 are often
selected in advance: They should respond to requirements
for inducing high-frequency modes (w0 ↑, nf ↑) and for
covering a larger part of the robot workspace (w0 ↓). How-
ever, they cannot be any and, in particular, to avoid an
excitation of a hidden dynamics in transmission, the param-
eters should be consistent with the inequality nf · w0 < wr ,
where wr is the smallest resonance frequency among the
joints.

Some of constraints for optimization can be taken
directly from the list of robot specifications representing
limits imposed on joints’ variables and their velocities. Oth-
ers, such as geometrical constraints representing conditions
for obstacle avoidance, self-occlusion and imposed in the
workspace of the robot, require volumetric characteristics
of a robot structure combined with the forward kinematics
of the robot discussed on the previous step of the calibra-
tion process. Another important constraints, such as torques
limits, require an iterative use of the model (13)–(16) with
the current update of parameters available to the moment.

Additional constraints can be enforced due to implementa-
tion conditions, e.g., zero joints’ velocities and accelerations
at the beginning and the end of a searched motion.

In order to achieve a coherent distribution of behaviors
among joints, one can follow the common strategy and
consider the optimization index defined as the condition
number of the IDM observation matrix ΩB(·), i.e.,
cond (ΩB) → min. However, such choice might lead to
trajectories with lack of sufficient excitation of weakly
loaded wrist joints and bad signal-to-noise ratios of recorded
data and potentially result in inaccurate estimates for
their dynamic parameters. This is the case for the KUKA
LWR4+ and we have tested the applicability of multi-
objective optimization as one of alternatives for exciting the
dynamics of the last two joints. The formal settings of such
optimization assignment have been the following:2

min
qi,0

ai,k,bi,k

γ s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
(
qi,0, ai,k, bi,k, t

) − γ · Ψ ≤ Λ,
[
q̇�
i (0), q̈�

i (0)
] = [0, 0],

q�
i (t) ∈ (qi,min, qi,max),

q̇�
i (t) ∈ (q̇i,min, q̇i,max),

τ �
i (t) ∈ (τi,min, τi,max),

i = 1 . . . n, k = 1 . . . nf

dxy(t) ≥ 0.3, z(t) ≥ −0.2.

(24)

Here, Λ=[
gΩb

; kτ6 · τ6,max; kτ7 · τ7,max

]
is the goal matrix,

γ is the attainment coefficient, Ψ = |Λ| is the weight
matrix, and

F (·)=
[
cond (ΩB) ; (

τ6,max −|τ �
6 (t)|); (

τ7,max −|τ �
7 (t)|)

]

can be interpreted as the vector objective function, where
(·) denotes a mean value3 of an argument over time-
interval it is defined. The goal matrix parameters gΩb

,
kτ6 , and kτ7 can largely affect the optimization results and
should be carefully selected. A way to find their initial
approximates is to perform a single criterion optimization
(such as cond (ΩB) → min) in advance.

4.4 Parameters estimation and quality of estimates

In these settings, the optimal-in-variance estimates for
elements of the vector χB are provided by the Weighted
Least Squares (WLS) algorithm [14, 16, 17]

χ̂B =
(
ΩT

Bf R−1ΩBf

)−1
ΩT

Bf R−1Υf . (25)

2The problem is specified in a form adapted for implementation with
the Matlab “fgoalattain” function.
3Values for limits of joint angles, velocities, and torques can be found
in the KUKA LWR4+ data-sheet.
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The covariance matrix of such estimate given by

Σ =
(
ΩT

Bf R−1ΩBf

)−1
quantitatively describes the para-

metric uncertainty in χ̂B as a whole, while the relative
standard deviation (RSD) of the ith element in χ̂B

%σ̄χ̂ i
B

=
100 · σ̄χ̂ i

B∣∣χ̂ i
B

∣∣ , (26)

can be used as a certificate for each individual characteristic,
where σ̄ 2

χ̂ i
B

is the i-th diagonal coefficient of Σ .

Additional metrics for quality estimation results are

– physical feasibility of obtained parameters estimates;
– discrepancies between measured and recovered joint

torques obtained as a result of computed-torque test.

Remark 1 The approach allows an efficient software
realization of the identification procedure; however, the
justification of the validity of the assumptions that support
the method should be clearly performed in each case study.
In general, they are met provided that measurements q(·)
and τ(·) are acquired at high sampling rate and the data
filtering is well tuned.

4.5 Experiment organization

All the generic arguments for modeling and identification
discussed above were applied for reconstructing dynamic
models of the KUKA LWR4+ installed at the Industrial
Robotics Lab, NTNU. For consistency of identification
results, experiments were prepared and run on the original
KUKA LWR4+ and on the robot equipped with additional
payload firmly attached to the last joint. The payload was
≈ 3.28[kg] with an off-set of the center of mass away from
the axis of rotation of joint 7 (see Fig. 4). In modeling and
identification processes, it was treated as the link 8 fixed to
the link 7 of the robot.

Fig. 4 Load for dynamics identification

The Symoro+ package [19] was used both for dynamic
model symbolic representations and for the automatic selec-
tion of its base parameters. The developed symbolic repre-
sentations were exported to Matlab using the ’Optimizer’
function of Symoro+ and further used in planning of exci-
tation trajectories and in computing estimates for essential
parameters.

The set of kinematic and dynamic constraints used at the
calibration trajectories planning step is listed in Table 1.

Pre-computed trajectories were used for conducting
a series of identification experiments. In doing so,
we commanded reference trajectories by activating the
LWR4+’s joint position control mode. Reflexxes On-Line
Motion Library available via Stanford FRI Library4 was
used to generate smooth trajectories from an arbitrary pose
to a start pose of the excitation trajectory.

“Recorder” function provided by KUKA was utilized
to acquire motor and joint positions, motor currents and
joint torques sampled at 1 kHz and to save logs with up
to 60 s of records for each experiment. In order to prepare
the acquired data for computing estimates of essential
parameters, measured signals were pre-processed by the
fourth-order band-pass Butterworth and the decimate filters
with cutting-off frequencies of 10 Hz and 2 Hz respectively.

A reader can observe some of recorded experiments from
the supplementary multimedia file.

5 IDIM for VHC-based trajectories planning
and tracking

Most of modern feed-forward and feedback control methods
utilized in robotics (such as PD+ with gravity compensation,
inverse dynamics control, passivity based control etc.) rely
on nominal representations of robot dynamics. Hence,
reconstructing essential parameters of the IDM of a robot
provides an analytic tool for developing model based
motion and trajectory planning algorithms as well as control
architectures.

In order to illustrate another application and another use
of a reconstructed dynamics for a robot-manipulator, let us
re-consider the classical approach of [4, 13] for planning
time optimal behaviors of the system subject to velocity
constraints.

The method assumes that a temporal behavior of all n-
degrees of freedom of the robot (13) is parametrized through
kinematic relations

q1(t) = φ1(θ(t)), . . . , qn(t) = φn(θ(t)), (27)

where Φ(·) = [φ1(·), . . . , φn(·)]T are smooth functions,
while the temporal behavior of the scalar variable θ(·) is

4http://cs.stanford.edu/people/tkr/fri/html/index.html
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defined to accommodate some specifications. Geometri-
cally functions φi(·) help to represent a path in a configura-
tion space of the robot for searching a time-optimal behavior
written in terms of an auxiliary variable θ(·) introduced
instead of time. It is common to assume that functions φi(·)
depend on a finite set of parameters that can be tuned in
optimization. Such cascaded representation is convenient in
re-writing any velocity limit imposed on a rate of change of
a coordinate as a constraint on dynamics of θ(·). Indeed, the
implication

|q̇i (t)| = |φ′
i (θ(t))θ̇ (t)| ≤ Ci ⇒ |θ̇ (t)| ≤ Ci

|φ′
i (θ(t))|

gives the background for converting a generic velocity
constraint in the system into the corresponding property
imposed only on θ(·), θ̇ (·) variables and parameters of φi(·)
functions. As known [4, 13], dynamics of the variable θ(·)
for the fully actuated case is determined by the equation

α(θ)θ̈ + β(θ)θ̇2 + γ (θ) = u, (28)

where the scalar functions α(·), β(·), and γ (·) are computed
from the dynamics of the robot and the choice of functions
φi(·); u(·) is a scalar control input, which might also
depend on dissipative forces present in the dynamics of
the robot. In examples, this equation is derived from (13)
for given analytic expressions of the inertia matrix M(·),
the Coriolis/centrifugal C(·)q̇, and the potential generalized
forces G(·).

Indeed, the representation of the robot dynamics (13) for
a motion, for which the relations (27) are invariant, takes the
vector format

τg = A(θ)θ̈ + B(θ)θ̇2 + Γ (θ), (29)

with τg = τ − τf m − τf l , A(θ) = [α1(θ) . . . αn(θ)]T ,
B(θ) = [β1(θ) . . . βn(θ)]T and Γ (θ) = [γ1(θ) . . . γn(θ)]T .

Then, any linear combination of rows in Eq. 29 will result
in Eq. 28.

The proposed dynamics calibration procedure suggests
an alternative direct method for computing all the terms
in Eq. 29 as functions of the IDM base Jacobian ω̂B(·)
and IDM base parameters estimates χ̂B , which avoids
reconstructing the matrix functions M̂(·), Ĉ(·), and Ĝ(·).

Proposition 1 Any motion of a system described by Euler-
Lagrange equations (13) consistent with the kinematic
relations (27) can be represented by (29) with coefficients
that can be calculated as follows

Γ (θ) = ω̂B (θ, 0, 0) χ̂B, (30)

B(θ) = ω̂B (θ, 1, 0) χ̂B − Γ (θ), (31)

A(θ) = ω̂B (θ, 1, 1) χ̂B − B(θ) − Γ (θ). (32)

Here, ω̂B(·) and χ̂B correspond to the IDM base Jacobian
and the IDM base parameters vector excluding terms
related to friction.

Remark 2 Friction coefficients off m, off l, Fcm, Fcl,
Fvm, and Fvl can always be identified separately from
other base IDM parameters. Therefore, we can always find
relations for ω̂B(·) and χ̂B by excluding corresponding rows
and components of ωB(·) and χB respectively.

Proof After path variable θ was introduced, we can define
relations for reference trajectories of Eq. 13 in terms of joint
coordinates, velocities, and accelerations

q� = Φ(θ), q̇� = Φ ′(θ)θ̇ , q̈� = Φ ′′θ̇2 + Φ ′θ̈ , (33)

where Φ(θ) is the vector function in Eq. 27. Substituting
relations from Eqs. 18 to 33, we derive

τ� = ωB

(
θ, θ̇ , θ̈

)
χB . (34)

Thus, at each time instance, we can calculate system
dynamics along any reference trajectory (q�, q̇�, q̈�) based
on Eqs. 30–32 and given parameters estimates χ̂B .

6 Discussion

6.1 Kinematics calibration results

The analysis of the robot parametric Jacobian showed that
parameters α0, d0, θ7, and r7 should be eliminated as non-
identifiable and the set of base parameters ΦB consists
of 32 elements. For optimizing a set of configurations,
the observability index O(Q) in Eq. 10 was chosen equal
to the condition number of the base observation matrix
O(Q) := cond (WB(Q)). Numerical optimization resulted
in 17 optimal configurations, for which O(Q) achieves its
minimal value equal to min O(Q) = 11.1878.

For more details on calibration poses optimization using
different observation indexes and algorithms, a reader can
refer to authors’ previous papers [26, 28].

Both the linear least-squares and Levenberg-Marquardt
parameter estimation algorithms gave very similar results.
The fact supports an applicability of the linear model, see
also Eq. 11a,

ΔY = WB(Q)ΔΦB, (35)

in the identification of the KUKA LWR4+ redundant
kinematics.

Values for nominal versus calibrated MDH parameters
of the system are collected in Table 2. The data collected
in Table 3 emphasize the positive effect of calibration by
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Table 2 Nominal vs. calibrated MDH parameters

Frame αi [rad] di [m] θi [rad] ri [m]

nom. calibr. nom. calibr. nom. calibr. nom. calibr.

0 0 0 0 0 1.55 1.5493 −4.3 −4.4066

1 1.5 1.5273 0.1 0.0698 q1 − 0.79 q1 − 0.7994 −0.14 −0.1375

2 π/2 π/2 + 1.2 · 10−4 0 −0.0003 q2 q2 − 0.0042 0 3.9·10−5

3 −π/2 −π/2 + 6.1 · 10−4 0 −0.0003 q3 q3 − 0.0098 0.4 0.3999

4 −π/2 −π/2 + 1.4 · 10−4 0 0.0011 q4 q4 − 0.0065 0 2.6·10−4

5 π/2 π/2 − 1.1 · 10−4 0 −0.0009 q5 q5 + 0.0011 0.39 0.3908

6 π/2 π/2 + 6.4 · 10−4 0 0.0004 q6 q6 − 0.0016 0 1.6·10−4

7 −π/2 −π/2 − 3.6 · 10−4 0 −0.0006 q7 q7 0 0

8 0 5.30 · 10−4 0.0015 −0.0002 0.79 0.7859 0.093 0.0911

comparing some of recorded end-point localization errors
for nominal and calibrated MDH parameters.

6.2 Dynamics calibration results

Similar to [17], we considered three models for
identification:

– Model 1 captures primarily the robot dynamics
neglecting the dynamics of motors, i.e. Eq. 14 is
replaced by the identity τ = τl and corresponds to
Model B in [17]. The approach is appropriate when
measurements of joints’ torques are only available
and when motors’ parameters are out of interest in
application.

– Model 2 captures both links and motors dynamics, i.e.,
the IDM is calculated for the complete set of Eqs. 13–16,
which correspond to Model C in [17]. The model
assumes that motors and joints torques’ measurements
are both available.

– Model 3 captures the motors’ parameters appeared in
Eqs. 14 and 16 and corresponds to Model D in [17].

Identifying such model requires both motor and joint
torque measurements, but, in contrast to Model 2, it
relies on difference between these signals. Such approach
allows estimating parameters of the motors dynamics gained
independently of properties of the robot dynamics.

Table 3 End-point positioning volumetric deviations

Parameters set Position [mm] Orientation [deg]

max Average max Average

Nominal 9.6806 5.9019 0.8058 0.5636

Calibrated 1.7592 0.7965 0.2268 0.1042

Remark 3 Structurally, the model (13)–(14) for the KUKA
LWR4+ is not new and has been used in [17], but it
differs from the parametric representation of the KUKA
LWR4+ dynamics considered in [11], where the coupling of
the robot and motor dynamics were described through the
deflection model and Hooke’s law.

For example, for the most complete Model 2 written
originally with 136(= 8 · 17) IDM parameters (for 7
joints and a payload) the Symoro+ package [19] found
eighteen non-identifiable parameters and suggested other
sixteen to be regrouped resulting altogether in the set of base
parameters with 102 elements. Forty four of them were later
singled out by the manually supervised iterative procedure
as essential [5]. Regrouping relations for base parameters
were similar to ones reported in [17, Table III].

Planning of excitation trajectories for the derived
symbolic representations of Models 1–3 was approached
and reformulated as constrained optimization problems for
searching coefficients of polynomials (23) in two different
settings:

– Trajectory A is calculated as a result of the single-
objective optimization cond (ΩB) → min;

– Trajectory B is calculated as a result of the multi-
objective optimization (24) with gΩb

= 35, kτ6 = kτ7 =
0.9.

Trajectory planning procedures were re-iterated for
different choices of the base period T0 in Eq. 23 ranging
between 10 and 30 sec and, what is more important, for
different sets of kinematic parameters of the KUKA LWR4+
either provided by the robot manufacturer for a generic
set-up or obtained as a result of kinematics calibration
discussed above. Examples of the 3-D path corresponding
to excitation trajectories planned for Model 2 found for
the set of calibrated kinematic parameters from Table 2 are
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Fig. 5 Examples of excitation trajectories for dynamics calibration

shown in Fig. 5a, b. As seen, found trajectory candidates
are “aggressive” and cover most of the robot workspace, but
quite different from each other. More details on calibration
trajectories planning, including trajectories characteristics
obtained for different optimization strategies, can be found
in authors’ preceding work [27].

Dynamic parameters estimates were computed by Eq. 25.
The outcomes of the implemented IDM identification

procedure for different sets of kinematic parameters and
types of calibration trajectories are presented on Fig. 6.
Figure 7 illustrates how kinematic parameters influence
the IDM identification results by showing the relative
difference between essential dynamic parameters estimates
obtained for CAD-based and calibrated MDH parameters
values. Table 4 is matching numbers pointed in Figs. 6 and
7 with the names of corresponding essential parameters (see

Fig. 6 Essential base parameters
estimates for Model 2: CAD
means CAD-based nominal
estimates for kinematic (MDH)
parameters, ID means calibrated
kinematic parameters, RP stands
for non-optimized calibration
trajectory with 20 random way-
points, OT stands for optimized
Trajectory B with T0 = 25 s
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Fig. 7 Relative difference
between essential parameters
estimates obtained for Model 2
for CAD-based nominal (CAD)
and calibrated (ID) kinematic
parameters values

χj in Eq. 17), while R in index denotes that the parameter
was obtained after regrouping.

Figure 8 shows results of the computed torque test per-
formed to verify overall calibration accuracy that we can
reach with multi-criterion calibration trajectory optimiza-
tion and using advantageous of calibrated kinematic model.
As one can see, even for a poorly loaded joint 6, absolute
torque recovery error does not exceed 0.5 N m along most
of the validation trajectory which is approximately 1% of
the maximum torque value for the smallest joint.

6.3 General remarks

The most important outcomes and observations from the
study are briefly commented next:

1. We proposed and verified several adjustments of a
generic optimization based methods for robot cali-
bration. This includes the argument to incorporate
robot’s kinematics parameters estimation as a pre-
requisite for calibration of dynamics and the argu-
ment on applicability and advantages of multi-objective

constrained optimization in searching of excitation
trajectories.

To point out apparent advantages of the adjustments
for organizing the identification, one can observe
that we gained five to seven times improvement in
positioning accuracy, while the difference between
estimated and nominal MDH parameters is up to 1 mm
in translation and more than 5◦ in rotational measures.
Furthermore, with the proposed multi-objective
optimization-based approach, we found feasible excita-
tion trajectories with more uniform distribution of input
signals for different joints specifically for the last three
degrees of freedom q5, q6, and q7. It resulted in shrink-
ing the RSD of the IDM parameters’ estimates twice if
compared with corresponding values derived in [17].

2. As a separate contribution and for illustration purposes,
such IDM identification procedure was applied for
recovering the IDM of the KUKA LWR4+, where both
of newly suggested points were realized in software and
tested experimentally. Extended summary of qualitative
results on estimating essential parameters for Models
1, 2, and 3 as well as its comparative analysis for

Table 4 Model 2 essential parameters

Num. 1 2 3 4 5 6 7 8 9 10 11

Param. Ia1 Fvm,1 Fcm,1 Ia2 Fvm,2 Fcm,2 Ia3 Fvm,3 Fcm,3 Fvm,4 Ia5

Num. 12 13 14 15 16 17 18 19 20 21 22

Param. Fvm,5 Fcm,5 Ia6 Fvm,6 Fcm,6 Ia7 Fvm,7 Fcm,7 off m7 Fcl,1 Fcl,2

Num. 23 24 25 26 27 28 29 30 31 32 33

Param. off l2 Fcl,3 Fcl,4 off l4 Fcl,5 off l5 Fcl,7 off l7 XX2R ZZ2R MY2R

Num. 34 35 36 37 38 39 40 41 42 43 44

Param. XX4R ZZ4R MY4R MY5R MY6R XX8 YY8 YZ8 MY8 MZ8 M8
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Fig. 8 IDM test: measured
(solid blue) and computed
(dotted red) joint torques, and its
relative error (solid black)

different excitation trajectories and different choices
of kinematic parameters can be found in the technical
report attached as a supplementary material.

3. Another comparison of the results with [17] shows that
KUKA LWR4+ robot-to-robot parameters variations
can reach 20%. The biggest differences are related to
friction coefficients and drive parameters, which can
be explained by the influence from the internal and
external wiring, manufacturing tolerances, and wear-
and-tear. It can be also caused by the fact that in [17]
non-calibrated kinematic parameters were used. The
observation emphasizes importance of the sequential
kinematic and dynamic calibration and proves that
CAD-based parameters’ values can only serve as rough
estimates.

7 Conclusions and future work

The paper provides the comprehensive discussion of an
integrated identification procedure, where the calibration of
a robot dynamics becomes consistent with the calibration of
its kinematic parameters. The work primarily illustrates the
complexity of the problem and elucidates important details
of use of measurement equipment, advanced symbolic and
computational software tools, analytic formulations, and
steps in integration work all required for developing a
solution in the study.

However, there are a number of open problems.
New identification approaches that can provide faster
convergence under relaxed excitation conditions and handle
measurements noise in a robust manner are required. In
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this sense, the approach described in [1] looks a good
alternative to the existing techniques. On the other hand,
model accuracy verification methods should be advanced
to derive a criterion reflecting minimum deviations in
trajectories tracking tasks. Computed-torque tests do not
give a direct answer to this question.

In any cases, found trajectories require syntheses of
control systems. Successful examples and novel methods of
feedback designs for orbital stabilization that complement
the discussed model-based trajectory planning algorithms
for underactuated as well as for fully actuated mechanical
systems are recently reported in [32, 35].

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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