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Abstract
In the real-world situations, uncertain events commonly occur and cause disruption of normal scheduled activities. Consideration of
uncertain events during the scheduling process helps the organizations to make strategies for handling the uncertainties in an effective
manner. Therefore, in the present paper, unexpected machine breakdowns have been considered during scheduling of jobs in a flexible
job-shop environment. The objective is to obtain lowest possible makespan such that robust and stable schedules are produced even if
an unexpected machine breakdown occurs. The robust and stable schedules may help to decrease the costs associated with unexpected
machine failures. The present work uses a two-stage teaching-learning-based optimization (2S-TLBO) method to solve flexible job-
shop scheduling problem (FJSP) under machine breakdown. In the first stage, the primary objective of makespan is optimized without
considering anymachine breakdown. In the second stage, a bi-objective function considering robustness and stability of the schedule is
optimized under uncertainty of machine breakdowns. In order to incorporate the machine breakdown data to basic FJSP, a non-idle
time insertion technique is used. In order to generate effective robust and stable predictive FJSP schedules, a rescheduling technique
called modified affected operations rescheduling (mAOR) is used. The Kacem’s and Brandimarte’s benchmark problems have been
solved and compared with other algorithms available in the literature. Results indicate that TLBO outperforms other algorithms by
generating superior robust and stable predictive schedules. Statistical analysis is carried out to test the significance difference of the
results obtained by TLBO with other algorithms.
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1 Introduction

In the last few decades, job-shop scheduling problem (JSP) has
been studied extensively. The flexible job-shop scheduling prob-
lem (FJSP) is an extension of basic JSP where more than one
processor is available at each facility. In the last decade, FJSP has
drawn good attention from research community. Most of the
studies have addressed the FJSP with makespan as the objective
[1–13]. For a scheduling problem, themakespan is defined as the

completion time of the last job to leave the production system
[14].Many studies have solved FJSPwithmulti-objective criteria
considering makespan, total work load, and critical work load
simultaneously [15–24]. While addressing above objectives,
strict assumption is made that no machine failure occurs during
the processing of the jobs and the processing times of operations
are deterministic and known at priori. Both the assumptions
make it difficult to generate a good schedule for a real-world
FJSP which is subjected to various uncertainties like machine
breakdown and variable processing times. A shop floor may also
experience other uncertainties like sudden job arrivals or job
cancellations [25], operator illness, and due date changes.
However, the probability of execution of a schedule as per plan
in a real-world shop floor is very low due to uncertainties that
arise in a shop floor [26].

It is clear from the past literature that sufficient studies have
not been devoted to tackle uncertainties in FJSP. The uncer-
tainties involved in a job-shop environment can be catego-
rized into two types such as (i) resource related and (ii) job
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related [27]. Shortage or delay in the arrival of materials, op-
erator illness, loading limits, and unavailability of machines or
failure of tools are labelled under resource related uncer-
tainties. Changes in due dates, unexpected arrival of new jobs
or cancellation of existing jobs, uncertainties in processing
times, early arrival of jobs, or delay in arrival of jobs are
treated as job-related uncertainties. All these uncertainties
ought to be taken into account if it is intended to generate a
schedule considering uncertainties [28]. Therefore, the algo-
rithms and procedures that have been applied to solve deter-
ministic scheduling problems cannot be applied to scheduling
problems with uncertainty [29].

In addition to the existing performance measures like
makespan, tardiness, and flow time, twomore performancemea-
sures like robustness and stability come into picture in case of
flexible job-shop scheduling considering machine breakdown
uncertainty. Liu et al. [30] and Liu et al. [31] have defined robust
schedule as a schedule that is insensitive to disruptions, i.e., a
schedule may degrade its performance to a very small degree
under interruptions. Bidot et al. [32] have defined robust schedule
as the quality of executed schedule close to the quality of pre-
dicted schedule. Xiong et al. [33] have expressed robustness as
the difference between the actual makespan and the deterministic
makespan of predicted schedule. Wu et al. [34] have defined
stable schedule as the one which has less deviation in terms of
time or sequence of operations between the realized and predict-
ed schedule. Goren and Sabuncuoglu [35] have defined stable
schedule as a schedulewhich do not deviatemuch from the initial
schedule, and stability is expressed as the difference between the
completion times of realized and initial schedule. Studies have
been made on different robustness and stability measures by
Jensen [36], Al-Hinai and ElMekkawy [37], and He et al. [29]
for FJSP using the measures that were previously applied to JSP.

Scheduling under uncertainty has drawn the interest of
research community in the recent years [38]. JSP itself is an
NP hard (non-deterministic polynomial time) problem, and
FJSP which is an extension of JSP is a much more difficult
problem to solve. In order to address the uncertainties, data
related to uncertainties need to be incorporated into the
existing problem. This makes the FJSP problem much more
difficult to formulate and solve. In order to solve these prob-
lems, heuristic and meta-heuristic techniques have been ex-
tensively used [39]. In case of machine breakdown, FJSP
becomes more complex to solve as compared to its determin-
istic case [29]. Chaari et al. [28] have proposed a classifica-
tion of the FJSP under machine breakdown problem into
three categories such as (i) proactive methods, (ii) reactive
methods, and (iii) hybrid methods. Based on the previous
statistical knowledge of uncertainty in FJSP environment,
proactive or predictive methods (offline techniques) produce
a predictive schedule with an aim to generate a schedule of
good average performance. A schedule that is predetermined
or precomputed is called a predictive schedule or preschedule

which is executed until there is a machine breakdown in the
shop floor. Next, rescheduling methods are applied to tackle
the machine breakdown. In order to absorb the adverse effect
of breakdown in scheduling, two approaches are used (i)
supply of new external resource and (ii) an extension of pro-
cessing time of the operation due to repair time [40]. A sched-
uling approach that produces a predictive schedule to reduce
the adverse effect of machine breakdown is proposed by
Al-Hinai and ElMekkawy [37] using hybrid genetic algo-
rithm (GA). In addition, they have proposed three stability
measures for FJSP. A modified hybrid GA is proposed by
Al-Hinai and ElMekkawy [39] to solve FJSP using uniform
distribution to represent the processing times of operations.
Dalfard and Mohammadi [41] have proposed mathematical
foundation and two meta-heuristics such as hybrid GA and
simulated annealing (SA) to solve FJSP with parallel ma-
chines with an aim to minimize maintenance cost. Out of
all the uncertainties in a FJSP environment, machine break-
down is the most focused uncertainty [29].

In reactive scheduling methods, no previous statistical
knowledge of uncertainty is required. Unlike proactive or
predictive methods, reactive methods do not generate prior
schedules. The schedules are generated on the real-time
basis when a machine breakdown occurs. These are also
known as online methods (Liu et al. [30] and Liu et al.
[31]). With an aim to dispatch jobs on the available ma-
chines dynamically with some preassigned priorities, prior-
ity dispatching rules are frequently implemented in reac-
tive approach. They also present a method that can react
to various disruptions in a dynamic job-shop scheduling
based on a multi-agent framework which combines a pre-
dictive decision-making with real-time decision-making.
Mouelhi-Chibani and Pierreval [42] have proposed a neu-
ral network (NN)-based approach which selects the
dispatching rules that suits best in real time. Without the
use of any prediction, Zbib et al. [43] have used potential
fields to allocate jobs dynamically and proposes a reactive
approach to solve FJSP.

Recently, hybrid methods, a combination of proactive and
reactive methods, are used and known as proactive-reactive
methods or predictive-reactive methods [28]. A predictive-
reactive method produces a predictable schedule that is prepared
reactively for absorbing the disruptions taking uncertain events
into account. It aims at reducing the impact of disturbances on the
original schedule. There are two steps in these methods. In the
first step, an offline deterministic schedule is generated.
Therefore, production begins using the predictive schedule and
it is adapted online in the second step [44]. Gao et al. [45] pro-
pose different heuristics to solve FJSP problem with an aim to
insert a newly arrived job in the schedule. When a new job
arrives, they use the same heuristic techniques during the
rescheduling phase. Based on the real-time manufacturing data,
Wu et al. [46] use a reactive method in the rescheduling stage
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which spontaneously generates a revised schedule when an un-
expected disturbance occurs. However, there is a slight difference
between proactive-reactive and predictive-reactive methods. In
case of proactive-reactive methods, one among many
pregenerated schedules is selected and no online rescheduling
is done. On the other hand, online rescheduling is done in case
of predictive-reactive methods [28].

Machine breakdown is one of the important uncertainties en-
countered in real practice. It means that a machine is unavailable
for processing due to some failure. The same machine can be-
come available for processing only when the required repair
work is done. If a schedule is generated assuming that there is
no machine breakdown, the planned schedule may get delayed
for duration equal to machine repair time. This can cause pro-
duction delay and the organizations may not deliver the products
within the promised due dates affecting the good will of the
company. Therefore, firms require schedules which are robust
as well as stable. To address these issues, in the present work, a
two-stage teaching-learning-based optimization (2S-TLBO) al-
gorithm is proposed. In the first stage, the algorithm optimizes
the first objective (makespan) to generate a schedule based on
deterministic approach without considering any machine break-
downs. In the second stage, a bi-objective function considering
robustness and stability under machine breakdown situation is
solved. In order to solve FJSP under machine breakdown condi-
tion, there is a need to incorporate machine breakdown data into
the basic FJSP problem. For this purpose, a non-idle time inser-
tion technique is used. The inserted non-idle time acts as a buff-
ering time during a machine breakdown without affecting the
actual schedule. When a machine breakdown occurs, a
rescheduling technique is required in order to generate effective
robust and stable predictive FJSP schedules. Without a proper
rescheduling technique, the makespan of a disruptive schedule
increases leading to poor stability of the schedule. In the present
work, a technique called modified affected operations
rescheduling (mAOR) proposed by Subramaniam and Raheja
[25] is used. A detailed discussion on 2S-TLBO, non-idle time
insertion technique, and mAOR rescheduling technique is given
in later sections of the paper.

2 Literature review

Li and Cao [47] have studied machine breakdown on sched-
uling problems like single machine, flow shop, and open shop
problems. Kasap et al. [48] have applied priority rule like least
processing time (LPT) rule to a single machine scheduling
problem to calculate expected makespan with an unreliable
machine. Two-stage production scheduling for a flow shop
scheduling problem with stochastic machine breakdowns
and setup times is studied by Allahverdi [49]. Flow shop
scheduling problems with an aim to minimize maximum late-
ness are studied by Allahverdi [50]. Allahverdi andMittenthal

[51] and Allahverdi [52] have studied two machine flow shop
scheduling problems under machine breakdown using heuris-
tic approaches. Alcaide et al. [53] have proposed a new pro-
cedure to solve the flow shop scheduling problems under ma-
chine breakdown by converting the problem into an equiva-
lent deterministic problem without any breakdown. Alcaide
et al. [54] have proposed a heuristic approach to solve open
shops under machine breakdown with an aim to minimize
makespan. Luh et al. [55] have solved job-shop scheduling
problem considering different uncertainties like machine
breakdown, variable processing times and due dates. Lei
[56] has proposed a GA with random key representation to
solve job-shop scheduling problem under random machine
breakdown. Ahmadi et al. [57] have proposed evolutionary
algorithms to solve multi-objective FJSP under machine
breakdown. Park et al. [58] have proposed a genetic program-
ming based hyper-heuristic approach to solve dynamic job-
shop scheduling under machine breakdown. Zandieh et al.
[59] have proposed an improved imperialist competitive algo-
rithm for condition-based maintenance of FJSP. El Khoukhi
et al. [60] have proposed a dual-ants colony approach to solve
FJSP with preventive maintenance.

With an inspiration from the studies on different scheduling
problems like single machine scheduling problems, open shop
scheduling problems, flow shop scheduling problems, and
job-shop scheduling problems under the machine breakdown
conditions, research has been focused to solve complex FJSP
under machine breakdown. Chaari et al. [28] have proposed a
classification of the FJSP under machine breakdown problem
into three categories namely proactive methods, reactive
methods, and hybrid methods. From Chiang and Fox [40], it
is clear that a new external source is required in case of a
machine disruption; otherwise, there is high possibility of ex-
tension of the schedule completion time. Jensen [61] has pro-
posed a robustness measure and used genetic algorithm to find
a robust and flexible schedule. Al-Hinai and ElMekkawy [37]
have proposed a two-stage hybrid genetic algorithm (2S-
HGA) to solve FJSP under machine breakdown to generate
robust and stable schedules. Xiong et al. [33] have used two
surrogate measures to solve FJSP under random machine
breakdown, and their performance is measured using a
multi-objective evolutionary algorithm (MOEA). He et al.
[29] have proposed a novel clone immune algorithm (NCIA)
to solve FJSP under machine breakdown. Singh et al. [62]
have proposed a quantum particle swarm optimization
(QPSO) to solve FJSP under machine breakdown using a bi-
objective function of makespan and robustness. Nouiri et al.
[63] have proposed a two-stage particle swarm optimization
(2S-PSO) to generate robust and stable schedules for predic-
tive FJSP under machine breakdown uncertainty.

The present work proposes a 2S-TLBO to solve FJSP un-
der machine breakdown. TLBO is proposed by Rao et al. [64].
TLBO has been applied to different kinds of optimization
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problems in the past and is known to be one of the efficient
algorithms to produce quality solutions in a short computation
time [65]. TLBO is applied to different scheduling problems like
permutation flow-shop scheduling problem (PFSP) by Xie et al.
[66], JSP by Keesari and Rao [67], JSP and FSP by Baykasoglu
et al. [68], FJSPwith fuzzy processing times byXu et al. [65], re-
entrant flexible FSP by Shen et al. [69], and FJSP by Buddala
and Mahapatra [2] and Buddala and Mahapatra [70]. It is found
that TLBO is one of the efficient meta-heuristic techniques that
can be applied to different scheduling problems. Al-Hinai and
ElMekkawy [37] have proposed a two-stage hybrid genetic al-
gorithm (2S-HGA), and Nouiri et al. [63] have proposed a two-
stage particle swarm optimization (2S-PSO) to generate robust
and stable schedules for predictive FJSP under machine break-
down uncertainty. With an inspiration from the above works, a
2S-TLBO is proposed to solve FJSP under machine breakdown
and study its scheduling performance.

3 Proposed two-stage
teaching-learning-based optimization
approach

3.1 Teaching-learning-based optimization

TLBO, proposed by Rao et al. [64], derives its inspiration
from the general teaching-learning process. Student and teach-
er are the two essential components of a class. A teacher
teaches in a class and tries to increase the knowledge of stu-
dents. Students try to learn from their teacher based on their
understanding capability. The students may also discuss with
his/her co-student and learn. This is the general process of
learning. This is explained in TLBO algorithm as the two
modes of learning via teacher (teacher phase) and interaction
among the students (student phase). The entire students of the
class constitute the population of TLBO. In any iteration, the
best student of the class becomes the teacher. Execution of the
TLBO is explained in two phases such as teacher phase and
student phase.

3.1.1 Teacher phase

A teacher strives his/her best to enhance the knowledge of his/
her students to his/her level. But practically, it is impossible as
gaining knowledge by a student depends on his/her capacity
to learn. In this process, knowledge of each student improves
and in turn the average knowledge of the class increases. At
any iteration, let Ymean denote the mean knowledge of the class
and teacher of the class is denoted as Yteacher. Then, increased
knowledge of a student is given by the Eq. 1

Y new i ¼ Y old i þ r � Y teacher– T f � Ymean

� �� � ð1Þ

where i represents student number, r is a random number
between the range [0 1], and Tf is called teaching factor whose
value is chosen randomly as one or two. There is no tuning of
this teaching factor even though Tf is an algorithm specific
parameter of TLBO. This is the main advantage of TLBO.
There are no tuning parameters in TLBO. Ynew i is the new
knowledge of the student i after gaining knowledge from the
teacher, and Yold i is the previous knowledge of the student i.
Accept Ynew i if it gives a better functional value.

3.1.2 Student phase

Students discuss among themselves after a class is taught. In
this process, the knowledge of students may increase. At any
iteration, let Ya and Yb be two students who discuss after the
class, a ≠ b. Then, increased knowledge of the student is given
by the Eqs. 2 and 3.

Ynew a ¼ Y old a þ r � Ya−Ybð Þ if F Yað Þ <¼ F Ybð Þ ð2Þ

Y new a ¼ Y old a þ r � Yb–Yað Þ if F Ybð Þ < F Yað Þ ð3Þ
where Ynew a is the new knowledge of the student a after
learning from the co-student b. Yold a is the previous knowl-
edge of the student a. Accept Ynew a if it gives a better function
value.

Likemanymeta-heuristics, TLBO also gets trapped at local
optimum and loses its diversity after certain number of itera-
tions. To eliminate this drawback and to further enhance the
quality of solutions generated by TLBO, a local search tech-
nique proposed by Buddala and Mahapatra [71] is used. The
proposed local search also maintains diversity in the popula-
tion. For this purpose, mutation strategy from GA is incorpo-
rated to the basic TLBO. For more details on local search and
mutation strategy, one can refer Buddala and Mahapatra [71].

3.2 Two-stage teaching-learning-based optimization

In the present problem, FJSP under machine breakdown, the
objective is to obtain robust as well as stable schedules. In
order to produce the robust and stable schedules, TLBO pro-
duces schedules in such a way that makespan of FJSP is min-
imized in a reasonable number of iterations. This is considered
as first stage. Later, TLBO produces schedules in such a way
that robust and stable schedules are generated. This is consid-
ered as second stage. As the same TLBO is used to minimize
two different objectives (one after another) in a single prob-
lem, it is termed as two-stage teaching-learning-based optimi-
zation (2S-TLBO). A brief description of 2S-TLBO is given
as follows.
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3.2.1 First stage

There are two stages in the proposed predictive scheduling
approach. In the first stage, the task is to minimize the
makespan (primary objective function) using TLBO under
deterministic conditions with an assumption that there are no
uncertainties like machine breakdown. The first stage con-
tinues up to prescribed number iterations (say 100 iterations).
A switch criterion is introduced in this stage. If the number of
iterations reaches the prescribed number of iterations, the cri-
terion helps the algorithm switches into second stage. TLBO
is a combination of teacher phase and student phase.
Therefore, the combination of teacher phase and student phase
constitutes one iteration in both first stage and second stages.
This is shown in Fig. 1. The final population generated at the
end of first stage is taken as input for the second stage.

3.2.2 Second stage

In the second stage, the objective function is shifted to the bi-
objective function (given in Eq. 9). In this stage, machine
breakdown condition is taken into account. Here, TLBO min-
imizes the bi-objective function to generate the required ro-
bust and stable schedules. The second stage continues up to
prescribed number of iterations (for example 1000 iterations).
When the prescribed number of iterations is reached, the ter-
mination or stop criterion is met in stage 2. The generalized
flowchart of the proposed two-stage TLBO is shown in Fig. 1.

In order to solve the FJSP under machine breakdown con-
dition, first of all, machine breakdown data is to be incorpo-
rated into the basic FJSP problem. For this purpose, a non-idle
time insertion technique is used. When a machine breakdown
occurs in FJSP, rescheduling or re-optimizing the schedule is
necessary. For this purpose, a rescheduling technique called
modified affected operations research (mAOR) proposed by
Subramaniam and Raheja [25] is used. A brief description of

(i) FJSP with machine breakdown and how robust and stable
schedules are generated using the bi-objective function, (ii)
non idle time insertion, and (iii) rescheduling procedure re-
spectively is given in the next section.

4 Flexible job-shop scheduling with machine
breakdown

FJSP is an extension of classical JSP. Similar to JSP, FJSP also
assigns each operation to an available machine. The additional
challenge in FJSP compared to JSP is the sequencing the
assigned operations on the machines. A deterministic FJSP
is defined as follows.

There are n (i = 1, 2, 3,…., n) independent jobs which are
to be processed on M (k = 1, 2, 3, ….M) independent
machines. All jobs are available to process at time zero.
Each job i has Oi sequence of operations (j = 1, 2, 3, ….,
Oi). For any operation Oij, there exists a machine Mijk such
thatMijk ɛM. The processing time pijk of any operation Oij on
a given machine k is predefined. Setup times are negligible. In
case of setup times if any, they are already included in the
processing times. Any operation that is once started cannot
be interrupted in between (non-preemption condition). A ma-
chine can process not more than one operation at a time (re-
source constraint). Jobs are different from each other.
Machines are different from each other. Jobs transportation
time between the operations is negligible. The objective is to
find a schedule with minimum makespan value.

Machine breakdown is one of the important uncertainties in
production scheduling. This causes a machine unavailable for
some duration. Considering all the possible machine break-
downs simultaneously to generate predictive schedule is very
difficult task and may consume enormous amount of time due
to extensive simulations. Therefore, Nouiri et al. [63] and
Al-Hinai and ElMekkawy [37] propose to aggregate all

Stop 
Criteria

Minimize bi-
objective function 
(Teacher phase) 

Minimize bi-
objective function 
(Student phase) 

Minimize 
makespan 

(Teacher phase) 

Switch 
Criteria

Minimize 
makespan 

(Student phase) 

Final knowledge of 
students from phase 1 

Yes No 

Initial knowledge 
of students 

No 

Report final 
predictive 
schedule 

Yes 

Fig. 1 Flowchart of proposed
two-stage TLBO
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machine breakdowns into a single breakdown and stability of
the schedule can be evaluated accordingly. However, it is an
assumed that the data of machine breakdown uncertainty is
known in advance. Simulation of a machine breakdown com-
prises of selection of affected machine, how long that machine
is unavailable, and at what time that machine would fail. In
this work, the procedure adopted by Al-Hinai and
ElMekkawy [37] and Nouiri et al. [63] is used to simulate
the machine breakdown generation for FJSP.

The workload of a machine is nothing but maximum dura-
tion that a machine is busy. The probability that a machine
may fail is directly proportional to the machine workload.
Hence, a machine with maximum busy duration is most likely
prone to breakdown. The empirical relation for a machine Mk

to undergo a breakdown is given in Eq. 4.

ρk ¼ BTMk=BTM tot ð4Þ
where BTMk is the busy duration of machine k and BTMtot is
the busy duration of total machine in the shop floor; ρk is the
probability of a machineMk to undergo a breakdown (k = 1, 2,
…, M).

To generate the breakdown time and breakdown duration
of a machine, following uniform distributions (eqs. 5 and 6)
are used

τk ¼ α1BTMk ;α2BTMk½ � ð5Þ

ð5Þ

τk duration ¼ β1BTMk ;β2BTMk½ � ð6Þ

ð6Þ
where τk is the breakdown time, τk duration is the breakdown
duration, BTMk is the busy duration of machine k, and α and β
are the parameters that determine the type of breakdown. For
an effective experimentation on FJSP under machine break-
down, we assume two levels of breakdown duration, i.e., low-
level breakdown duration and high level breakdown duration
as well as two intervals of breakdown time, i.e., early break-
down and late breakdown. If a breakdown occurs during the
first half of the machine busy duration, it is called an early
breakdown. Otherwise, it is a late breakdown. This leads to
four different combinations of breakdown types as presented
in the Table 1 [37, 63]. In order to incorporate the machine
breakdown data into basic FJSP, a non-idle time insertion
technique is used without affecting the sequence of

operations. A brief description of non-idle time insertion is
given in the Section 4.1.

In general, any optimization problem has an objective func-
tion which is to be minimized or maximized.Most of the FJSP
research reported till date concentrates either single objective
like makespan, tardiness, mean flow time or multi-objective
optimization of makespan, total work load, and critical work
load combined together. In case of a machine breakdown un-
certainty, two more measures are encountered. These are ro-
bustness and stability, i.e., a schedule should be generated in
such a way that lowest possible makespan is obtained along
with a capacity to absorb machine breakdowns such that less
number of operations are affected due to breakdown. In the
present work, a bi-objective function is used to optimize ro-
bustness and stability together.

In the proposed two-stage TLBO, makespan minimization
is the important objective during the first stage. Therefore, a
schedule is generated in such a way that all the operations take
minimum time to complete. Till date, many stability measures
have been proposed for FJSP problem. After several compu-
tational experiments on different stability measures, Al-Hinai
and ElMekkawy [37] have concluded that the following sta-
bility measure gives the best results. The stability of an orig-
inal schedule or a predictive schedule is calculated as the sum
of the absolute deviations of operations completion times of
the realized schedule and the initial predictive schedule before
breakdown. It is given by the Eq. 7 as follows

S ¼ min∑n
i¼1∑

Ji
j¼1 PCOij−RCOij

�� �� ð7Þ

where S is the stability, n is the number of jobs, Ji is the
number of operations of job i, PCOij is the predicted comple-
tion time of jth operation of job i, and RCOij is the realized
completion time of jth operation of job i. P denotes predicted
schedule or original schedule before breakdown. R denotes
realized schedule or final schedule after breakdown.

Although less work is reported on FJSP under machine
breakdown, most of the researchers propose approaches that
generate predictive schedules based either on robustness or
stability. Very few attempts have been made to optimize both
the measures simultaneously. Liu et al. [30] and Liu et al. [31]
have tried to optimize robustness and stability measures si-
multaneously for a single machine problem, with an

Table 1 Different combinations of breakdown

Name Combination α1 α2 β1 β2

BD1 Early, low 0 0.5 0.1 0.15

BD2 Late, low 0.5 1 0.1 0.15

BD3 Early, high 0 0.5 0.35 0.4

BD4 Late, high 0.5 1 0.35 0.4
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inspiration from them; Al-Hinai and ElMekkawy [37] have
generated optimized schedules for FJSP under machine break-
down by simultaneously considering robustness and stability.
A schedule whose makespan deviation is small is called a
robust schedule. Such a schedule with minimum operations
completion time deviation from the original schedule is called
a stable schedule. Using a bi-objective approach, the robust-
ness and stability of a schedule are found using the following
bi-objective function (Eq. 8)

f ¼ min γ � RCmax þ 1−γð Þ � Sð Þ ð8Þ

where RCmax is the realized makespan after machine break-
down, S is the stability measure (Eq. 7), and γ is parameter
between the range [0 1]. This is used to assign the relative
importance between robustness and stability. The first stage
continues up to prescribed number of iterations. Next, the
algorithm switches to the second stage. In the second stage,
the objective function is shifted to the bi-objective function
given in Eq. 8. In Eq. 8, it is observed that RCmax and S are in
different scales, i.e., the value of RCmax is comparatively larg-
er than the value of S. Therefore, it is essential to normalize the
values of RCmax and S so that predominance effect of either
term can be minimized. The normalized bi-objective function
of Eq. 8 is given in the Eq. 9 as follows.

f ¼ min γ � RCmax−LB
UB−LB

� �
þ 1−γð Þ � ∑n

i¼1∑
Ji
j¼1 PCOij−RCOij

�� ��
RCmax

( )

ð9Þ

where RCmax is the realizedmakespan after machine breakdown,
UB is the upper bound or maximum makespan and LB is the
lower bound orminimummakespan, n is the number of jobs, Ji is
the number of operations of job i, PCOij is the predicted com-
pletion time of jth operation of job i, and RCOij is the realized
completion time of jth operation of job i. P denotes predicted
schedule or original schedule before breakdown. R denotes real-
ized schedule or final schedule after breakdown. The values of
UB and LB are taken from Ho and Tay [72] and Palacios et al.
[73] respectively. Previous researchers like Nouiri et al. [63] and
Al-Hinai and ElMekkawy [37] have not taken the normalization
of bi-objective function into account. In the present work, for the
better evaluation of the generated schedules, normalized form of
bi-objective function is considered (Eq. 9). Also, a sample calcu-
lation of f is given in Section 5. Breakdown duration is added to
'UB'.

In order to achieve the objective of generating a robust and
stable schedule, a rescheduling approach is necessary to re-
optimize the schedule when a machine breakdown occurs. A
brief explanation rescheduling strategy is given in the
Section 4.2.

4.1 Non-idle time insertion

In idle time insertion, insertion of approximate idle time for
each operation in advance is a general strategy for a predictive
schedule under possible machine breakdown condition. An
initial schedule is generated with an assumption that no ma-
chine breakdowns occur. Then, the expected idle time is
inserted before the operations. In this process, even though
the start and completion times of the operations may vary
but the sequence of operations remains the same. The inserted
idle times act as buffering times to absorb the adverse effects
of machine breakdown. Of course this process increases the
makespan of predictive schedule. Generally, two challenges
are encountered in insertion of non-idle time. Firstly, it is
important to find out the amount of idle times to be inserted
and, secondly, to know the correct locations where these idle
times are to be inserted.

To overcome the drawback of idle time insertion, a non-
idle time insertion method for the FJSP under uncertain ma-
chine breakdown is proposed to find out an effective predic-
tive schedule using teaching-learning-based optimization. The
main idea is to integrate the available flexible routing of ma-
chines with the probability distribution of machine break-
down. Usually, the historical records of the concerned shop
floor are used to obtain approximate distribution function for
the machine disruptions. Since the historical records of ma-
chine breakdown are not available, machine breakdown prob-
abilities are generated using Eq. 4. In order to evaluate the
effect of disruptions, robustness and stability measures are
evaluated. This process helps us to get solutions that are more
robust and stable. This approach is first applied to FJSP under
machine breakdown by Al-Hinai and ElMekkawy [37] using
hybrid GA (HGA). The same approach is later used by Nouiri
et al. [63] using particle swarm optimization (PSO).
Application of the non-idle time insertion method produces
predictive schedule which is able to assign and sequence the
operations on machines in such a way that there is less impact
on the overall performance of the schedule.

4.2 Rescheduling procedure

A rescheduling procedure is essential to tackle the machine
breakdowns that occur in FJSP environment. When an unex-
pected machine breakdown occur in a shop floor, the produc-
tion plan gets affected. Rescheduling is a repair mechanism
that is used to repair the production plan. Due to rescheduling,
a new executable schedule can be generated in case of any
unexpected breakdown events. Especially in the environments
like dynamic shop floors, the system should be able to react
spontaneously to tackle uncertainties and good quality sched-
ules are to be generated. Hence, a rescheduling procedure is
essential to reduce the adverse effects of disruptions. A sched-
ule that is obtained after the implementation of an appropriate
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rescheduling technique is called a realized schedule. We can
find many rescheduling techniques in the literature. Some of
them are right shifting rescheduling (RSR), affected operations
rescheduling (AOR) by Abumaizar and Svestka [74], a complete
regeneration schedule, or modified AOR (mAOR) by
Subramaniam and Raheja [25]. For more information about
rescheduling, one may go through Subramaniam and Raheja
[25] and Dong and Jang [79].

The value of the bi-objective function, realizedmakespan, and
stability measure depends on the rescheduling technique used.
Therefore, in order to compare the performance of 2S-TLBO
with other algorithms from the literature, we use the same
rescheduling technique that is used by Al-Hinai and
ElMekkawy [37] for 2S-HGA and Nouiri et al. [63] for 2S-
PSO. The rescheduling technique used is mAOR proposed by
Subramaniam and Raheja [25]. The main difference between
mAOR and AOR is that, mAOR consider not only machine
breakdown but also other uncertainties like unexpected arrival
of jobs and uncertain processing times. The idea of thismethod is
to maintain the sequence of jobs that are to be processed on each
machine same as that of the original schedule which are affected
directly or indirectly due tomachine breakdown [74]. The reason
to maintain the same sequence of operations in mAOR is to
avoid setup costs that arise due to changes in sequence.
Therefore, operations are affected only in terms of starting and
completion times whenever there is a machine breakdown. Thus,
after breakdowns, the realized operations completion times are
calculated as follows (Eq. 10)

Cijk ¼ Sijk þ Pijk for unaffected operations
Sijk þ Pijk þ τk duration for afftected operations

�
ð10Þ

where Pijk is the processing time on machine k for ith job’s jth
operation.Cijk and Sijk are the completion and starting times of
ith job’s jth operation onmachine k. τk duration is the duration of
machine unavailability due to breakdown.

5 Results and discussion

In order to test the performance and effectiveness of the proposed
two-stage TLBO, experiments have been conducted on the stan-
dard benchmark problems of Kacem’s [75, 76] and
Brandimarte’s [77, 78] data sets. The problems contain both
partial FJSP’s and total FJSP’s. Out of the total 14 problems,
Kacem’s 10 × 10, 10 × 7, and 15 × 10 come under total flexibil-
ity. Remaining 11 problems that consist of Kacem’s 8 × 8 and
Brandimarte’s MK01 to MK10 come under partial flexibility. In
all these problems, the job count varies from 8 to 20, machine
count varies from 6 to 15, and operation count varies from 27 to
232. Experiments have been conducted on MATLAB platform
on a 4-GB ram i7 processor running at 3.40 GHz on windows 7
platform.

To study the performance of proposed two-stage TLBO in
generating the predictive schedules, experiments have been
conducted on the standard benchmark problems and the re-
sults are compared with the results of previous algorithms 2S-
HGA (proposed by [37]) and 2S-PSO (proposed by [63]). In
this process, each benchmark problem per instance is subject-
ed to five replications of four different breakdowns as illus-
trated in Table 1. Next, each predictive schedule generated is
subjected to 400 randommachine breakdowns. This results in
5 × 4 × 400 = 8000 test problems per instance.

In the proposed TLBO algorithm, the parameter values are
chosen as follows: population size = 100 and maximum itera-
tions = 100. Soon after 100 generations in the first stage, the
algorithm switches to the second stage to optimize the bi-
objective function. The value of parameter γ can be any value
in the range [0 1]. The value of γ depends on the decision
maker’s view point. γ acts as trade-off value between robust-
ness and stability. If the decision maker assigns a value γ = 1,
it implies that decision maker wants to minimize only
makespan with stability having zero importance. If the deci-
sion maker assigns a value γ = 0, it implies that decision mak-
er wants a stable schedule which means that there are no
deviations between the realized and predicted schedules oper-
ations’ starting and completion times. As discussed earlier, in
order to compare with previous algorithms, we use the same
value of γ = 0.6 for TLBO, which is used by previous re-
searchers (for HGA and PSO).

In order to evaluate the performance of any algorithm that
generates a predictive schedule, using robustness and stability
measures, Al-Hinai and ElMekkawy [37] proposed two impor-
tant measures called average realized makespan improvement
percentage (denoted by AMSRI) and average stability improve-
ment percentage (denoted by ASTBI) respectively. The equa-
tions to find AMSRI and ASTBI are given in Eqs. 11 and 12
respectively.

AMSRI ¼ ∑5
q¼1∑

400
p¼1RMSR qð Þp−∑5

q¼1∑
400
p¼1DMSR qð Þp

∑5
q¼1∑

400
p¼1DMSR qð Þp

� 100

ð11Þ

ASTBI ¼ ∑5
q¼1∑

400
p¼1RSTB qð Þp−∑5

q¼1∑
400
p¼1DSTB qð Þp

∑5
q¼1∑

400
p¼1DSTB qð Þp

� 100

ð12Þ
where q is the replication number of predictive schedule and p
is the breakdown number. RMSR is the realized makespan
after a breakdown using robust method for the obtained sched-
ule. DMSR is the realized makespan after breakdown using
deterministic method for the obtained schedule. RSTB is the
stability of the schedule obtained with robust method.DSTB is
the stability of the schedule obtained with deterministic meth-
od. Here, the deterministic method is nothing but the TLBO
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algorithm which minimizes makespan in the first stage.
In Table 4, the average of obtained realized makespan im-

provement percentage (AMSRI) results of TLBO are compared
with the results of PSO by Nouiri et al. [63] and HGA by
Al-Hinai and ElMekkawy [37]. In Table 5, the average stability
improvement percentage (ASTBI) results of TLBO are com-
pared with the results of PSO and HGA. In Tables 4 and 5, there
are 14 columns. First column denotes the name of the instance.
Second column gives the size of the problem. Columns three to
five gives the results comparison for the breakdown type 1
(BD1). Columns six to eight gives the results comparison for
the breakdown type 2 (BD2). Columns nine to 11 give the results
comparison for the breakdown type 3 (BD3). Columns 12 to 14
give the results comparison for the breakdown type 4 (BD4).
And numbers in italics indicate the best values. The negative
values in the tables indicate that these algorithms are able to
generate improvised results. On the other hand, positive values
indicate that degraded results are generated.

A close look at Table 4 clearly shows that TLBO outper-
forms PSO and HGA. In BD1, TLBO gives best results to four
problems (MK02, MK05, MK06, and MK10) compared to
PSO and HGA. In terms of degraded results, all the three algo-
rithms give degraded results in two problems each: TLBO in
MK03 and MK07, PSO in MK01 and MK10. and HGA in
MK04 and MK10. In terms of average AMSRI value, TLBO
(− 3.7411) outperforms PSO (− 3.38) and HGA (− 2.31) in
BD1. In BD2, TLBO gives best results to four problems
(MK01, MK05, MK08, and MK10). In terms of degraded re-
sults, TLBO gives degraded results for six problems (KCM3,
MK03, MK04, MK06, MK07, and MK08) which is less in
number than seven problems of PSO (MK01, MK03, MK04,
MK05, MK07, MK08, and MK10). But HGA also generates
equal number of degraded results to that of TLBO (KCM3,
MK01,MK04,MK06,MK08, andMK10). In terms of average
AMSRI value, TLBO (− 1.4573) outperforms PSO (− 1.41)
and HGA (− 1.22) in BD2. In BD3, TLBO gives best results
to six problems (KCM2, KCM3, MK01, MK02, MK05, and
MK06). In terms of degraded results, TLBO gives degraded
results to two problems (MK04 and MK07) which are much
less than PSO (KCM3,MK01,MK02,MK03, andMK04). But
HGA generates zero degraded results. Hence, HGA outper-
forms TLBO and PSO in terms of degraded solutions in BD3.
But, in terms of average AMSRI value, TLBO (− 7.0245) out-
performs PSO (− 2.11) and HGA (− 6.48) in BD3. In BD4,
TLBO gives best results only to two problems. Both in terms
of degraded results and in terms of AMSRI values, PSO (−
7.45) shows a better performance than TLBO (− 5.4195) and
HGA (− 6.71). Therefore, in BD4, PSO outperformed the other
two algorithms. Finally, as TLBO gives best AMSRI values in
three (BD1, BD2, and BD3) out of four breakdowns, we can
conclude that TLBO is superior to PSO and HGA.

A close look at Table 5 clearly shows that TLBO outperforms
PSO and HGA. In BD1, TLBO gives best stability values to ten

problems. The average stability value of TLBO (− 84.5534)
clearly outperforms PSO (− 51.96) and HGA (− 78.84). In
BD2, TLBO gives best stability values to 12 problems. The
average stability value of TLBO (− 79.6198) clearly outperforms
PSO (− 27.50) and HGA (− 45.54). In BD3, TLBO gives best
stability values to 11 problems. The average stability value of
TLBO (− 92.345) clearly outperforms PSO (− 21.95) and HGA
(− 62.48). In BD4, TLBO gives best stability values to 11 prob-
lems. The average stability value of TLBO (− 88.3676) clearly
outperforms PSO (− 21.96) and HGA (− 44.14). In all the four
breakdown types, TLBO outperforms PSO and HGA. Thus, we
can conclude that TLBO is superior to PSO andHGA in terms of
ASTBI values.

Based on the computational results from Table 4 (average
AMSRI values) and Table 5 (average ASTBI values), Figs. 2
and 3 show the graphical representation of efficiency of proposed
TLBO versus PSO and HGA. In Figs. 2 and 3, X-axis denotes
the BD type and Y-axis denotes AMSRI and ASTBI values re-
spectively. From graphs, it is clear that in the algorithm whose
performance is superior, algorithm’s curve will be more close to
the X-axis. Even though Nouiri et al. [63] claims that PSO is
superior to HGA in terms of AMSRI values (Fig. 2), the perfor-
mance of PSO in terms of ASTBI is poor. This is clearly shown
in Fig. 3. The curve of PSO (red colour) is above the HGA (blue
colour). The curve of TLBO (black colour) which is below the
other two curves (PSO and HGA) and much closer to X-axis in
both the figures shows the superiority of TLBO.

To confirm whether the obtained results of TLBO are statisti-
cally significant or not, we further examine the results of TLBO
with analysis of variance (one-way ANOVA) test. Tables 6 and 7
show theP values andF ratios of the obtained one-wayANOVA
results, which gives the details of effects and interactions between
the factors of robustness and stability measures, breakdown type,
and considered test cases on the predictive schedules relative
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Fig. 2 Algorithm performance for each BD type on AMSRI
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quality. If the P value is less than 0.05, the effects are considered
significant in our study. Therefore, values less than 0.05 are best
and are indicated in italic numbers.

Tables 6 and 7 convey that there is a significant effect on
both P value and F ratio by the BD type because BD1, BD2,
BD3, and BD4 have P value less than 0.05. Therefore, the 2S-
TLBO is clearly different from PSO and HGA statistically.
Hence, compared to other approaches, the 2S-TLBO gives a
better performance.
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Fig. 3 Algorithm performance for each BD type on ASTBI

Table 2 Processing times of the
mechanical workshop Jobs Operations Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6

1 O11 12 18 18 16

O12 8 6 20 20

O13 8 18 10

O14 14 16 16

O15 8 8 10 10 6 12

O16 20 16 18

2 O21 18 8 20 14

O22 18 12 9 15

O23 7 20 12 18

3 O31 18 20 8 7 6

O32 7 8 20

O33 7 10 14 20

O34 8 20 16 15

O35 20 18 10 10 15

4 O41 22 19 16 20

O42 13 10 18 10 18

O43 6 10 20

O44 12 8 8

O45 20 12 20 15

5 O51 8 10 15 10

O52 12 15 20 8

O53 16 15 20 10

O54 6 8 8 15

O55 15 10 12

O56 13 5 13 15 20 7

6 O61 14 9 10

O62 12 15 9

O63 13 7 16 9

O64 20 13 17

Empty box indicate that the machine cannot process that operation

Table 3 AMSRI and
ASTBI values of case
study problem

BD type AMSRI ASTBI

BD1 − 3.87363 − 82.4706
BD2 − 2.18218 − 44.1253
BD3 − 8.87935 − 96.2372
BD4 − 9.56933 − 65.3791
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Table 4 AMSRI computational results for all types of breakdown

AMSRI

Instance Size BD1 BD2 BD3 BD4

TLBO PSO HGA TLBO PSO HGA TLBO PSO HGA TLBO PSO HGA

KCM1 8 × 8 − 3.5691 − 7.98 − 1.35 − 0.3335 − 6.95 − 4.37 − 7.4787 − 19.86 − 13.33 − 8.772 − 27.58 2.47

KCM2 10 × 10 − 5.618 − 6.97 − 5.41 − 5.618 − 6.44 − 5.41 − 15.062 − 3.72 − 6.98 − 6.8329 − 13.54 − 9.52
KCM3 15 × 10 0 − 7.98 − 1.64 0.0714 − 10.41 3.28 − 5.8157 10.61 − 2.86 − 10.224 − 11.39 − 1.76
KCM4 10 × 7 − 3.7852 NA NA − 10.238 NA NA − 13.341 NA NA − 19.191 NA NA

MK01 10 × 6 − 3.1871 0.77 − 4.7 − 2.2499 4.8 0.91 − 10.497 0.93 − 9.39 − 9.4793 − 6.27 − 8.8
MK02 10 × 6 − 8.3636 − 1.64 0 − 8.4715 − 9.79 0 − 10.65 1.58 0 − 7.5061 − 0.83 − 7.73

MK03 15 × 8 4.8092 − 2.24 − 4.45 4.2458 6.92 − 7.27 − 1.5543 6.16 − 5.24 − 1.4187 − 14.96 − 13.18
MK04 15 × 8 − 3.053 − 6.46 0.29 6.07655 3.72 0.3 5.2718 12.73 − 8.74 2.0666 − 14.49 − 13.83
MK05 15 × 4 − 13.481 − 3.56 − 1.33 − 7.7019 0.54 − 1.05 − 17.002 − 9.35 − 7.32 − 9.8583 − 6.54 − 13.87

MK06 10 × 15 − 11.979 − 2.45 − 1.31 2.43705 − 2.65 0.25 − 15.56 − 8.21 − 7.28 − 7.9347 − 6.18 − 4.23
MK07 20 × 5 5.54577 − 0.43 − 1.87 3.71215 1.32 − 2.5 5.24253 − 2.76 − 0.31 2.70705 − 5.76 − 6.28

MK08 20 × 10 − 3.9603 − 2.31 − 4.05 1.50863 2.32 1.72 − 0.9214 − 4.2 − 8.4 2.30295 − 0.54 − 1.93

MK09 20 × 10 − 4.0348 − 3.38 − 4.23 − 3.3256 − 3.42 − 2.51 − 5.2921 − 6.2 − 5.4 − 1.3088 − 1.98 − 5.58

MK10 20 × 15 − 1.6992 1.23 2.87 − 0.5152 1.65 0.74 − 6.1359 − 5.23 − 9 − 0.423 − 1.76 − 3.11

Average − 3.7411 − 3.38 − 2.31 − 1.4573 − 1.41 − 1.22 − 7.0245 − 2.11 − 6.48 − 5.4195 − 7.45 − 6.71

Numbers in italics indicate the best values

NA not applicable

Table 5 ASTBI computational results for all types of breakdown

ASTBI

Instance Size BD1 BD2 BD3 BD4

TLBO PSO HGA TLBO PSO HGA TLBO PSO HGA TLBO PSO HGA

KCM1 8 × 8 − 91.8025 − 39.03 − 73.33 − 46.2396 − 37.105 − 37.12 − 99.8775 − 8.74 − 83.96 − 99.7937 − 24.82 − 86.96
KCM2 10 × 10 − 100 − 90.45 − 100 − 100 − 82.5 − 90.91 − 100 − 17.22 − 46.15 − 95.5 − 8.7 − 60
KCM3 15 × 10 − 42.8572 − 98.16 − 96.97 − 1.9704 − 13.46 − 58.26 − 99.5217 12.62 − 82.73 − 95.5438 − 42.94 − 37.34
KCM4 10 × 7 − 91.0313 NA NA − 100 NA NA − 100 NA NA − 98.4532 NA NA

MK01 10 × 6 − 93.4033 − 13.26 − 62.64 − 90.6 − 16.65 − 81.74 − 96.501 8.92 − 69.71 − 92.8107 − 19.26 − 44.67
MK02 10 × 6 − 94.2074 − 17.23 − 55.61 − 80.5091 − 16.21 − 5.89 − 98.3346 − 21.74 − 20.94 − 88.6361 − 34.63 − 11.3
MK03 15 × 8 − 57.0089 − 26.95 − 85.85 − 98.5251 8.49 − 66.79 − 97.9715 − 33.96 − 70.51 − 97.2607 − 50.83 − 49.82
MK04 15 × 8 − 32.5381 − 15.58 − 49.09 − 89.6951 10.85 − 32.63 − 72.922 − 10.4 − 96.38 − 73.4595 − 99.15 − 92.11
MK05 15 × 4 − 96.4029 − 65.76 − 61.02 − 77.8158 − 4.23 − 9.01 − 77.4773 − 89.34 − 70.19 − 67.1832 − 78.26 − 60.6
MK06 10 × 15 − 99.0561 − 60.65 − 58.78 − 98.0898 − 78.34 − 42.61 − 76.7447 − 42.56 − 66.23 − 91.2268 − 43.28 − 36.99
MK07 20 × 5 − 96.5511 − 64.21 − 83.42 − 74.141 − 23.35 − 40.26 − 89.2773 − 26.23 − 31.18 − 79.8806 − 22.87 − 32.28
MK08 20 × 10 − 98.2086 − 90.23 − 86.57 − 64.2346 − 50.45 − 31.54 − 94.6847 − 43.23 − 61.78 − 86.5854 − 43.65 − 33.38
MK09 20 × 10 − 93.7733 − 70.32 − 66.6 − 96.072 − 23.65 − 46.96 − 98.1707 − 50.23 − 36.99 − 88.1663 − 11.65 − 26.34
MK10 20 × 15 − 96.9065 − 50.21 − 58.23 − 96.7853 − 30.87 − 48.32 − 98.88 − 49.76 − 75.88 − 82.6462 − 3.76 − 2.04
AVERAGE − 84.5534 − 51.96 − 78.84 − 79.6198 − 27.5 − 45.54 − 92.345 − 21.95 − 62.48 − 88.3676 − 21.96 − 44.14

Numbers in italics indicate the best values

NA not applicable
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5.1 Case study

In order to demonstrate the practical application of the present
work in a real life flexible job-shop scheduling problem, a case
study of a mechanical workshop has been carried out using the
data from Jiang et al. [79]. The shop floor consists of six ma-
chines on which six jobs have to be processed with a total num-
ber of 29 operations. Minimum operations of a job are three
while the maximum operations of a job are six. The processing
times of these operations are given in the Table 2, and the results
are given in Table 3.

5.2 Sample calculation to evaluate f

In order to demonstrate the calculation of f, readings for a single
machine breakdown of case study problem under BD1 condition
for a randompopulation are provided. Deterministic makespan at
the end of first stage is 64. The second stage was run for 100
iterations after introducing uncertainties in machine breakdown.
During the optimization of bi-objective function in the second
stage, the value of realized makespan (RCmax) is 67 at 100th
iteration and the value of stability measure |PCOij−RCOij| is
4. Lower bound (LB) on makespan = 58, and upper bound (UB)
for makespan = 124. Substituting the values in Eq. 10, we get

f ¼ γ � RCmax−LB
UB−LB

� �
þ 1−γð Þ � ∑n

i¼1∑
Ji
j¼1 PCOij−RCOij

�� ��
RCmax

( )

f ¼ 0:6� 67−58
124−58

� �
þ 1−0:6ð Þ � 4

67

� �

f ¼ 0:081þ 0:024½ �
f ¼ 0:105

AMSRI and ASTBI are calculated over 100 iterations and
the results are shown in Table 3. From Table 3, it is found that
all the AMSRI and ASTBI values are negative. It indicates
that the proposed two-stage teaching-learning-based optimi-
zation algorithm gives improvised realized makespan and sta-
bility to FJSP of the above mechanical workshop under ma-
chine breakdown condition.

6 Conclusions

In this work, FJSP under machine breakdown uncertainty is
chosen for the study. For this work, we propose a two-stage
teaching-learning-based optimization to tackle this problem.
The main objective is to generate a predictive schedule with
minimum makespan which is simultaneously both robust and
stable when an unexpected machine failure disruption occurs.
The robust and stable schedule acts as an alternative schedule
to an existing schedule that reduces the adverse effect of ma-
chine breakdown. Therefore, in order to generate robust and
stable schedule, an initial schedule is required. The initial
schedule is generated in the first stage. Using this initial sched-
ule from first stage, a robust and stable schedule is generated
in the second stage. Thus, the problem is solved in two stages
in the proposed solution methodology. Computational exper-
iments have been conducted on Kacem’s and Brandimarte’s
data instances. Analysis of obtained 2S-TLBO results is car-
ried out using one-way ANOVA to test the significance of
obtained TLBO results. The results of computational experi-
ments clearly show that proposed 2S-TLBO generates supe-
rior predictive schedules when compared to 2S-PSO proposed
by Nouiri et al. [63] and 2S-HGA proposed by Al-Hinai and
ElMekkawy [37]. The one-way ANOVA test shows that the
obtained TLBO results are statistically significant from other
algorithms.

In future, attempt may be made on proposing a hybrid
approaches (i.e., predictive-reactive technique) based TLBO
to solve FJSP under machine breakdown. The work can also
be extended to solve the problem in one stage rather than
using a two-stage approach. The work can also be extended
to generate robust and stable schedules by aiming not only
machine breakdown but multiple uncertainties together as a
multi-objective optimization problem.
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Table 6 Comparison of one-way ANOVA (TLBO with PSO)

BD type AMSRI ASTBI

P value F ratio P value F ratio

BD1 0.000228 3.816948 0.003451 2.844463

BD2 1.76E−09 8.974538 0.002106 3.018287

BD3 8.39E−07 6.037565 0.983167 0.334229

BD4 0.000254 3.777871 0.974955 0.366282

Table 7 Comparison of one-way ANOVA (TLBO with HGA)

BD type
AMSRI ASTBI

P value F ratio P value F ratio

BD1 0.000663 3.429669 0.001168 3.227152

BD2 1.59E−07 6.770441 6.04E−05 4.312768

BD3 1.8E−06 5.713247 0.843895 0.599601

BD4 0.000494 3.535345 0.757785 0.697017

1430 Int J Adv Manuf Technol (2019) 100:1419–1432



References

1. Bagheri A, Zandieh M, Mahdavi I, Yazdani M (2010) An artificial
immune algorithm for the flexible job-shop scheduling problem.
Future Gener Comput Syst 26:533–541

2. Buddala R, Mahapatra SS (2016) An effective teaching learning
based optimization for flexible job shop scheduling. In Electr
Electron Optim Tech (ICEEOT), Int Conf 3087–3092 IEEE

3. Gao J, Sun L, Gen M (2008) A hybrid genetic and variable neigh-
borhood descent algorithm for flexible job shop scheduling prob-
lems. Comput Oper Res 35:2892–2907

4. Gao KZ, Suganthan PN, Pan QK, Chua TJ, Cai TX, Chong CS
(2016) Discrete harmony search algorithm for flexible job shop
scheduling problem with multiple objectives. J Intell Manuf 27:
363–374

5. Li X, Gao L (2016) An effective hybrid genetic algorithm and tabu
search for flexible job shop scheduling problem. Int J Prod Econ
174:93–110

6. LiouaneN, Saad I, Hammad S, Borne P (2007) Ant systems& local
search optimization for flexible job shop scheduling production. Int
J Comput Commun Control 2:174–184

7. Rahmati SHA, Zandieh M (2012) A new biogeography-based op-
timization (BBO) algorithm for the flexible job shop scheduling
problem. Int J Adv Manuf Tech 58:1115–1129

8. Singh MR, Mahapatra SS (2016) A quantum behaved particle
swarm optimization for flexible job shop scheduling. Comput Ind
Eng 93:36–44

9. Wang L, Zhou G, Xu Y, Wang S, Liu M (2012) An effective arti-
ficial bee colony algorithm for the flexible job-shop scheduling
problem. Int J Adv Manuf Tech 60:303–315

10. Wu X, Wu S (2017) An elitist quantum-inspired evolutionary algo-
rithm for the flexible job-shop scheduling problem. J Intell Manuf
28:1441–1457

11. Xing LN, Chen YW, Wang P Zhao QS, Xiong J (2010) A
knowledge-based ant colony optimization for flexible job shop
scheduling problems. Appl Soft Comput 10:888–896

12. Yuan Y, Xu H, Yang J (2013) A hybrid harmony search algorithm
for the flexible job shop scheduling problem. Appl Soft Comput 13:
3259–3272

13. Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for
the flexible job-shop scheduling problem. Expert Syst Appl 38:
3563–3573

14. Pinedo, M. (2008) Scheduling: theory, algorithms and systems
15. Deng Q, Gong G, Gong X, Zhang L, Liu W, Ren Q (2017) A bee

evolutionary guiding nondominated sorting genetic algorithm II for
multiobjective flexible job-shop scheduling. Comput Intell
Neurosci 2017:1–20. https://doi.org/10.1155/2017/5232518

16. Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid
discrete firefly algorithm for solving multi-objective flexible job
shop scheduling problems. Int J Bio-Inspired Comput 7:386–401

17. Kemmoe-Tchomte S, Lamy D, Tchernev N (2017) An effective
multi-start multi-level evolutionary local search for the flexible
job-shop problem. Eng Appl Artif Intell 62:80–95

18. Li JQ, Pan QK, Liang YC (2010) An effective hybrid tabu search
algorithm for multi-objective flexible job-shop scheduling prob-
lems. Comput Ind Eng 59:647–662

19. Li JQ, Pan QK, Tasgetiren MF (2014) A discrete artificial bee
colony algorithm for the multi-objective flexible job-shop schedul-
ing problem with maintenance activities. Appl Math Model 38:
1111–1132

20. Perez MA, Raupp FM (2016) A Newton-based heuristic algorithm
for multi-objective flexible job-shop scheduling problem. J Intell
Manuf 27:409–416

21. Singh MR, Singh M, Mahapatra SS, Jagadev N (2016) Particle
swarm optimization algorithm embedded with maximum deviation

theory for solving multi-objective flexible job shop scheduling
problem. Int J Adv Manuf Tech 85:2353–2366

22. Xia W, Wu Z (2005) An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems. Comput Ind
Eng 48:409–425

23. Xing LN, ChenYW, YangKW (2009a)Multi-objective flexible job
shop schedule: design and evaluation by simulationmodeling. Appl
Soft Comput 9:362–376

24. Xing LN, Chen YW, Yang KW (2009b) An efficient search method
for multi-objective flexible job shop scheduling problems. J Intell
Manuf 20:283–293

25. Subramaniam V, Raheja AS (2003) mAOR: a heuristic-based reac-
tive repair mechanism for job shop schedules. Int J Adv Manuf
Techn 22:669–680

26. Ourari S, Berrandjia L, Boulakhras R, Boukciat A, Hentous H
(2015) Robust approach for centralized job shop scheduling: se-
quential flexibility. IFAC-PapersOnLine 48:1960–1965

27. Vieira GE, Herrmann JW, Lin E (2003) Rescheduling manufactur-
ing systems: a framework of strategies, policies, and methods. J
Scheduling 6:39–62

28. Chaari T, Chaabane S, Aissani N, Trentesaux D (2014) Scheduling
under uncertainty: survey and research directions. In Adv Logist
Transport (ICALT), 2014 Int Conf 229–234 IEEE

29. He W, Sun D, Liao X (2013) Applying novel clone immune algo-
rithm to solve flexible job shop problem with machine breakdown.
J Inf Comput Sci 10:2783–2797

30. Liu N, Abdelrahman MA, Ramaswamy S (2007a) A complete
multiagent framework for robust and adaptable dynamic job shop
scheduling. IEEE Trans SystManCybern Part C Appl Rev 37:904–
916

31. Liu H, Abraham A, Grosan C (2007b) A novel variable neighbor-
hood particle swarm optimization for multi-objective flexible job-
shop scheduling problems. In Digital Inf Manage 2007 ICDIM'07.
2nd Int Conf 1:138–145 IEEE

32. Bidot J, Vidal T, Laborie P, Beck JC (2009) A theoretic and prac-
tical framework for scheduling in a stochastic environment. J
Scheduling 12(3):315–344

33. Xiong J, Xing LN, Chen YW (2013) Robust scheduling for multi-
objective flexible job-shop problems with random machine break-
downs. Int J Prod Econ 141:112–126

34. Wu SD, Storer RH, Pei-Chann C (1993) One-machine rescheduling
heuristics with efficiency and stability as criteria. Comput Oper Res
20:1–14

35. Goren S, Sabuncuoglu I (2009) Optimization of schedule robust-
ness and stability under random machine breakdowns and process-
ing time variability. IIE Trans 42:203–220

36. JensenMT (2001) Improving robustness and flexibility of tardiness
and total flow-time job shops using robustness measures. Appl Soft
Comput 1:35–52

37. Al-Hinai N, ElMekkawy TY (2011) Robust and stable flexible job
shop scheduling with random machine breakdowns using a hybrid
genetic algorithm. Int J Prod Econ 132:279–291

38. Wang K, Choi SH (2012) A decomposition-based approach to flex-
ible flow shop scheduling under machine breakdown. Int J Prod
Res 50:215–234

39. Al-Hinai N, ElMekkawy TY (2012) Solving the flexible job shop
scheduling problem with uniform processing time uncertainty.
World Acad Sci, Eng Tech 64:996–1001

40. Chiang, W Y, Fox MS (1990) Protection against uncertainty in a
deterministic schedule. In Fourth Int Conf Expert Syst Prod Oper
Manage South California, USA 17:

41. Dalfard VM,Mohammadi G (2012) Two meta-heuristic algorithms
for solving multi-objective flexible job-shop scheduling with paral-
lel machine and maintenance constraints. Comput Math Appl 64:
2111–2117

Int J Adv Manuf Technol (2019) 100:1419–1432 1431

https://doi.org/10.1155/2017/5232518


42. Mouelhi-Chibani W, Pierreval H (2010) Training a neural network
to select dispatching rules in real time. Comput Ind Eng 58:249–
256

43. Zbib N, Pach C, Sallez Y, Trentesaux D (2012) Heterarchical pro-
duction control in manufacturing systems using the potential fields
concept. J Intell Manuf 23:1649–1670

44. Cowling PI, Ouelhadj D, Petrovic S (2004) Dynamic scheduling of
steel casting and milling using multi-agents. Prod Plann Control 15:
178–188

45. Gao KZ, Suganthan PN, Tasgetiren MF, Pan QK, Sun QQ (2015)
Effective ensembles of heuristics for scheduling flexible job shop
problem with new job insertion. Comput Ind Eng 90:107–117

46. Wu LH, Chen X, Chen XD, Chen QX (2009) The research on
proactive-reactive scheduling framework based on real-time
manufacturing information. In Mater Sci Forum 626:789–794
Trans Tech Publ

47. Li W, Cao J (1995) Stochastic scheduling on a single machine
subject to multiple breakdowns according to different probabilities.
Oper Res Lett 18:81–91

48. Kasap N, Aytug H, Paul A (2006) Minimizing makespan on a
single machine subject to random breakdowns. Oper Res Lett 34:
29–36

49. Allahverdi A (1995) Two-stage production scheduling with sepa-
rated set-up times and stochastic breakdowns. J Oper Res Soc 46:
896–904

50. Allahverdi A (1996) Two-machine proportionate flowshop sched-
ulingwith breakdowns tominimizemaximum lateness. CompOper
Res 23:909–916

51. Allahverdi A, Mittenthal J (1994) Two-machine ordered flowshop
scheduling under random breakdowns. Math Comput Modell 20:9–17

52. Allahverdi A,Mittenthal J (1998) Dual criteria scheduling on a two-
machine flowshop subject to random breakdowns. Int Trans Oper
Res 5:317–324

53. Alcaide D, Rodriguez-Gonzalez A, Sicilia J (2002) An approach to
solve the minimum expected makespan flow-shop problem subject
to breakdowns. Eur J Oper Res 140:384–398

54. Alcaide D, Rodriguez-Gonzalez A, Sicilia J (2005) A heuristic
approach to minimize expected makespan in open shops subject
to stochastic processing times and failures. Int J Flex Manuf Syst
17:201–226

55. Luh PB, Chen D, Thakur LS (1999) An effective approach for job-
shop scheduling with uncertain processing requirements. IEEE
Trans Rob Autom 15:328–339

56. Lei D (2011) Scheduling stochastic job shop subject to random
breakdown to minimize makespan. Int J Adv Manuf Tech 55:
1183–1192

57. Ahmadi E, Zandieh M, Farrokh M, Emami SM (2016) A multi
objective optimization approach for flexible job shop scheduling
problem under random machine breakdown by evolutionary algo-
rithms. Comput Oper Res 73:56–66

58. Park J, Mei Y, Nguyen S, Chen G, Zhang M (2017). Investigating
the generality of genetic programming based hyper-heuristic ap-
proach to dynamic job shop scheduling with machine breakdown.
In Australasian Conf Artif Life Comput Intell 301–313 Springer

59. Zandieh M, Khatami AR, Rahmati SH (2017) Flexible job shop
scheduling under condition-based maintenance: improved version
of imperialist competitive algorithm. Appl Soft Comput 58:449–
464

60. El Khoukhi F, Boukachour J, Alaoui AE (2017) The “dual-ants
colony”: a novel hybrid approach for the flexible job shop

scheduling problem with preventive maintenance. Comput Ind
Eng 106:236–255

61. Jensen MT (2003) Generating robust and flexible job shop sched-
ules using genetic algorithms. IEEE Trans Evol Comput 7:275–288

62. Singh MR, Mahapatra SS, Mishra R (2014) Robust scheduling for
flexible job shop problems with randommachine breakdowns using
a quantum behaved particle swarm optimisation. Int J Serv Oper
Manage 20:1–20

63. Nouiri M, Bekrar A, Jemai A, Trentesaux D, Ammari AC, Niar S
(2017) Two stage particle swarm optimization to solve the flexible
job shop predictive scheduling problem considering possible ma-
chine breakdowns. Comput Ind Eng 112:595–606

64. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based
optimization: a novel method for constrained mechanical design
optimization problems. Comput Aided Des 43:303–315

65. Xu Y, Wang L, Wang SY, Liu M (2015) An effective teaching–
learning-based optimization algorithm for the flexible job-shop
scheduling problem with fuzzy processing time. Neurocomputing
148:260–268

66. Xie Z, Zhang C, Shao X, Lin W, Zhu H (2014) An effective hybrid
teaching–learning-based optimization algorithm for permutation
flow shop scheduling problem. Adv Eng Softw 77:35–47

67. Keesari HS, Rao RV (2014) Optimization of job shop scheduling
problems using teaching-learning-based optimization algorithm.
Opsearch 51:545–561

68. Baykasoglu A, Hamzadayi A, Köse SY (2014) Testing the perfor-
mance of teaching–learning based optimization (TLBO) algorithm
on combinatorial problems: flow shop and job shop scheduling
cases. Inf Sci 276:204–218

69. Shen JN, Wang L, Zheng HY (2016) A modified teaching–learn-
ing-based optimisation algorithm for bi-objective re-entrant hybrid
flowshop scheduling. Int J Prod Res 54:3622–3639

70. Buddala R,Mahapatra SS (2018) An integrated approach for sched-
uling flexible job-shop using teaching–learning-based optimization
method. J Ind Eng Int 1–12. https://doi.org/10.1007/s40092-018-
0280-8

71. Buddala R, Mahapatra SS (2017) Improved teaching–learning-
based and JAYA optimization algorithms for solving flexible flow
shop scheduling problems. J Ind Eng Int 14:555–570. https://doi.
org/10.1007/s40092-017-0244-4

72. Ho NB, Tay JC (2004) GENACE: an efficient cultural algorithm for
solving the flexible job-shop problem. In Evolutionary computation,
2004. CEC2004. Congress on 2004 (Vol. 2, pp. 1759–1766). IEEE

73. Palacios JJ, González MA, Vela CR, González-Rodríguez I, Puente
J (2015) Genetic tabu search for the fuzzy flexible job shop prob-
lem. Comput Oper Res 54:74–89

74. Abumaizar RJ, Svestka JA (1997) Rescheduling job shops under
random disruptions. Int J Prod Res 35:2065–2082

75. Kacem I, Hammadi S, Borne P (2002a) Approach by localization and
multiobjective evolutionary optimization for flexible job-shop schedul-
ing problems. IEEE Trans Syst Man Cybern Part C Appl Rev 32:1–13

76. Kacem I, Hammadi S, Borne P (2002b) Pareto-optimality approach for
flexible job-shop scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic. Math Comput Simul 60:245–276

77. Dong YH, Jang J (2012) Production rescheduling for machine
breakdown at a job shop. Int J Prod Res 50:2681–2691

78. Brandimarte P (1993) Routing and scheduling in a flexible job shop
by tabu search. Ann Oper Res 41:157–183

79. Jiang Z, Zuo L, Mingcheng E (2014) Study on multi-objective
flexible job-shop scheduling problem considering energy consump-
tion. J Ind Eng Manage 7:589–604

1432 Int J Adv Manuf Technol (2019) 100:1419–1432

https://doi.org/10.1007/s40092-018-0280-8
https://doi.org/10.1007/s40092-018-0280-8
https://doi.org/10.1007/s40092-017-0244-4
https://doi.org/10.1007/s40092-017-0244-4

	Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown
	Abstract
	Introduction
	Literature review
	Proposed two-stage teaching-learning-based optimization approach
	Teaching-learning-based optimization
	Teacher phase
	Student phase

	Two-stage teaching-learning-based optimization
	First stage
	Second stage


	Flexible job-shop scheduling with machine breakdown
	Non-idle time insertion
	Rescheduling procedure

	Results and discussion
	Case study
	Sample calculation to evaluate f

	Conclusions
	References


