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Abstract
In the thermal error compensation technology of CNC machine tools, the core is to establish a mathematical model of thermal
error with high predictive accuracy and strong robustness. The prerequisite for the error model is to select the optimum
temperature-sensitivity points, which can inhibit the multi-collinearity problem among temperature points and improve the
predictive accuracy and robustness of the error model. In this paper, K-harmonic means (KHM) clustering is introduced for
the first time to select the temperature-sensitivity points in the field of error modeling. In statistical numerical experiments, it is
verified that KHM clustering is very stable and requires relatively small number of iterations to converge comparing with the
common clustering methods such as K-means (KM) clustering and fuzzy C-means clustering (FCM). Then, the effect of KHM
clustering on the selection of temperature-sensitivity points is validated in the actual experiments. Multiple linear regression
model combined with KHM clustering (MLR-KHM) is adopted to construct the thermal error model of positioning error. The
experimental results demonstrate that the predictive accuracy and robustness of MLR-KHM error model can conform with the
requirements of the error compensation.
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1 Introduction

With the widespread application and rapid development of
precision and ultra-precision manufacturing technology, the
requirement for processing precision of computer numerical
control (CNC) machine tools is increasing. However, due to
the thermal deformation of the machine tool structure during
operation, relative position between the cutter and the work-
piece changes, which eventually leads to the machining errors.
Thermally induced errors account for approximately 40–70%
of the total errors of a machine tool [1]. Therefore, thermal
errors must be minimized.

The commonmethods to reduce the thermal errors are error
avoidance and error compensation [2, 3]. The error avoidance
method controls thermal errors in the design and construction
phases of machine tools, which is a hardware compensation.
Although this method can improve the accuracy of machine
tools, the costs will dramatically increase. On the contrary, the
error compensation method is a cost-efficient way, which cre-
ates an artificial error to offset the original thermal error. This
is a software compensation, which is combined with hardware
compensation in practice application.

An accurate thermal error model is the prerequisite of error
compensation. At present, theoretical modeling and empirical
modeling are two prevailing modeling methods.

In theoretical modeling, through the calculations of heat
generations and convective heat transfer coefficients of differ-
ent components in a machine tool, the temperature distribution
can be obtained, and the deformation can be also gained [4–7].
While, the formula of heat transfer is a differential equation
which is too complicated to be solved, and the inexact bound-
ary conditions lead to inaccurate results in the actual situation.
Theoretical modeling aids to understand the heat transfer
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mechanism and deformation mechanism deeply, which is its
advantage. Therefore, theoretical modeling is more suitable
for analysis in the construction phase of a machine tool.

Another modeling method is empirical modeling which
maps the relationship between the thermal error and tempera-
ture variables directly and need not consider the complex heat
transfer process. Compared with the theoretical modeling, em-
pirical modeling is simpler in calculation, which is preferred in
the practical application. Empirical modeling generally con-
tains two steps: selection of the temperature-sensitivity points
and choice of the error model. In order to get the data of
temperatures as much as possible, a lot of temperature sensors
are preliminarily installed on the parts of the machine tool.
However, not all the temperatures are necessary for the error
model. If there were too many inputs, the error model might
have low accuracy of prediction and poor robustness due to
the existence of multi-collinearity and weak anti-interference
ability. Therefore, the temperature-sensitivity points as the in-
puts of the error model can alleviate the impact of the above
problems. Selection method of temperature-sensitivity points
contains correlation analysis [8], gray correlation analysis [9],
fuzzy clustering [10, 11], and so on. Recently, a variety of
empirical models have been studied by many scholars. The
conventional methods, such as multiple regression analysis
[12, 13], support vector model [14, 15], and time series model
[16], and the emerging approaches including adaptive neuro-
fuzzy inference system [17], sliced inverse regression (SIR)
model [18], and random forest regression (RFR) modeling
[19], all can construct the error model.

Usually, the temperature-sensitivity points are chosen
through data clustering which is the focus of this paper. The
purpose of this study is to find a more stable and effective
clustering method for selection of temperature-sensitivity
points in thermal error modeling.

Clustering is an important technique in data mining.
Clustering is widespread in the fields of financial analysis,
genomics, sensors, web documents and satellite image, etc.
As for our researches, clustering plays a key role in the selec-
tion of the temperature-sensitivity points. Clustering is a pro-
cess to classify the data into a number of clusters according to
a specified similarity metric. In each cluster, the similarity of
data is as small as possible. While in different clusters, the
similarity of data is as large as possible.

Hierarchical clustering and partitional clustering are two
categories of simple clustering algorithms [20]. Partitional
clustering is the subject of this paper. The most popular class
of partitional clustering is the center-based clustering algo-
rithm, where KHM clustering is a representative [21].

The rest of this paper is arranged as follows: the center-
based clustering algorithms are introduced, and KHM cluster-
ing is presented in Sect. 2. Section 3 introduces the cluster
validity to evaluate the results of clustering, followed by eval-
uating the performance of the clustering algorithms through

statistical experiments in Sect. 4. In Sect. 5, thermal error
experiments are conducted to verify the effectiveness of the
proposed clustering algorithm. Some conclusions are drawn in
Sect. 6.

2 Center-based clustering algorithm

For center-based clustering algorithms [22], the computation
starts with a random initialization of the center positions and
follows by iterative refinement of these positions according to
the memberships and weights until convergence.

2.1 A general model of center-based clustering
algorithm

Define a d-dimensional data set of n points X = {x1, x2,…, x-
n}to be clustered and a d-dimensional data set of k centers
C = {c1, c2,…, ck} to be iteratively updated. A membership
u(cj/xi) signifies proportion of data point xi belonging to center

cj, where u(cj/xi) ≥ 0 and ∑
k

j¼k
u c j=xi
� � ¼ 1. A weight function

w(xi) expresses the influence of data point xi on the
recalculated center in the next iteration, where w(xi) > 0.

Then, the center-based clustering algorithm can be de-
scribed as a general model of iteration. The steps are shown
as follows:

1. Initialize the algorithm with random centers C.
2. Classify the data according to the distances between the

data and the center.
3. Calculate the value of the objective function.
4. For each data points xi, compute its membership u(cj/xi)

and weight w(xi).
5. For each center cj, recalculate its location according to

memberships and weights of all the data points.

c j ¼
∑
n

i¼1
u c j=xi
� �

w xið Þxi

∑
n

i¼1
u cj=xi
� �

w xið Þ
ð1Þ

6. Repeat steps 2–5 until convergence or reaching the max-
imum number of iterations

2.2 K-means clustering and fuzzy C-means clustering

These two clustering algorithms are the most favorite in the
researches related to our domain. They all can be rewritten
into the general form and obtain the clustering results accord-
ing to the above iterative process.
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K-means clustering (KM) classifies the data into k groups.
For the membership function, each data point only belongs to
its closest center. The objective function of KM clustering is:

KM X ;Cð Þ ¼ ∑
n

i
min

j∈ 1;2;L;kf g
xi−c j
�� ��2 ð2Þ

The objective function minimizes the within-cluster vari-
ance. The membership function and weight function for KM
are:

u c j=xi
� � ¼ 1 if l ¼ arg min j xi−c j

�� ��2
0 otherwise

w xið Þ ¼ 1

�
ð3Þ

KM clustering has a hard membership function and a con-
stant weight function, which is easy to understand and
implement.

Fuzzy C-means clustering (FCM) has a soft membership
function, which allows a data point to belong partly to all the
centers. The objective function of FCM clustering is:

FCM X ;Cð Þ ¼ ∑
n

i¼1
∑
k

j¼1
umij xi−c j
�� ��2 ð4Þ

where m ≥ 1 and usually m = 2.
The membership function and weight function of FCM are:

u c j=xi
� � ¼ xi−c j

�� ��−2= m−1ð Þ

∑
k

j¼1
xi−c j
�� ��−2= m−1ð Þ

w xið Þ ¼ 1

ð5Þ

2.3 K-harmonic means clustering

K-harmonic means clustering (KHM) is also a center-
based clustering algorithm which uses the harmonic aver-
age of the distances from each data point to all the centers
as its performance function. The harmonic average is de-
fined as:

HA a1;L; akf gð Þ ¼ K

∑
K

k¼1

1

ak

ð6Þ

The objective function of KHM clustering is:

KHM X ;Cð Þ ¼ ∑
n

i¼1

k

∑
k

j¼1

1

xi−c j
�� ��p

ð7Þ

where p is an input parameter, and typically p ≥ 2. The mem-
bership function and weight function for KHM are:

u c j=xi
� � ¼ xi−c j

�� ��−p−2
∑
k

j¼1
xi−c j
�� ��−p−2 ð8Þ

w xið Þ ¼
∑
k

j¼1
xi−c j
�� ��−p−2

∑
k

j¼1
xi−c j
�� ��−p !2 ð9Þ

KHM has a soft membership which makes it have a fuzzy
nature. It should be noted that the weight function of KHM is
varying, which is different from the above two clustering
algorithms.

If there are two or more centers close to a data point, the
algorithm will naturally shift one or more of these centers
away to areas where the data points far away from all the
centers. This will make the objective function have a lower
value. On the other hand, KHM clustering assigns dynamic
weight to each data point in the next iteration. This algorithm
will assign a large weight to a data point which is not close to
any center and a small weight to that close to one or more
centers. Through dynamic weight, dense area of multiple cen-
ters can be avoided. This is the reasonwhyKHM is insensitive
to initialization.

3 Validity of clustering analysis

Clustering analysis is a kind of unsupervised calculationmeth-
od, which classifies the data directly according to the charac-
teristics of the data without prior knowledge. Almost each
clustering algorithm depends on the characteristics of the
dataset and its own input parameters. Inappropriate input pa-
rameters may lead to irrational results of clustering. Therefore,
in order to determine the results of a clustering algorithm that
fits a given dataset best, the reliable guidelines to evaluate the
clustering are needed. Clustering validity indexes have been
employed, which are generally defined by the combination of
compactness and separability. Although there are a number of
clustering validity indexes, the essence is the same, where data
in each cluster is dense, and the relationships between differ-
ent clusters are sparse.

There are three approaches of cluster validity: external
criteria, internal criteria, and relative criteria. External criteria
evaluate the results of a clustering algorithm based on a stan-
dard dataset with the known information. Internal criteria
evaluate the results of a clustering algorithm using informa-
tion involved in the datasets themselves. The third clustering
validity, relative criteria, evaluates the results by comparing
them with other clustering schemes. Internal and external va-
lidity indexes are often used in our related study.
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3.1 External validity indexes

For the external criteria, the grouping results of the standard
dataset are known in advance. Standard dataset is classified by
the proposed clustering algorithm, and the obtained clustering
results are compared with the known grouping results. Some
common external indexes are shown as follows:

3.1.1 F-measure

F-measure of cluster j and class i is

F i; jð Þ ¼ 2Recall i; jð Þ⋅Precision i; jð Þ
Recall i; jð Þ þ Precision i; jð Þ ð10Þ

where Recall(i, j) and Precision(i, j) are two metrics from
information retrieval, which means the recall and precision,
respectively.

Recall i; jð Þ ¼ nij
ni

ð11Þ

Precision i; jð Þ ¼ nij
n j

ð12Þ

where nij is the number of data in class i that belongs to cluster
j, nj is the number of data in cluster j, and ni is the number of
data in class i.

To the class i, the largest value of F(i, j) represents F(i)
value of this class, and the total F value of clustering results is

F ¼
∑
c

i¼1
jij � F ið Þ½ �

∑
c

i¼1
jij

ð13Þ

where ∣i∣ is the number of data in class i, and c is the number
of clusters. The larger value of F-measure indicates the higher
clustering quality.

3.1.2 Purity and entropy

For a cluster i, pij is firstly calculated.

pij ¼
nij
ni

ð14Þ

where nij is the number of objects in cluster iwith class label j,
ni is the number of objects in cluster i, and the purity of cluster
i is

Pi ¼ max pij
� �

ð15Þ

The overall purity of the clustering results is a weighted
sum of the individual cluster purity:

P ¼ ∑
c

i¼1

ni

∑
c

i¼1
ni
Pi ð16Þ

Entropy is very similar to purity. Entropy of cluster i is
expressed as

Ei ¼ − ∑
c

j¼1
pijlog2 pij

� �
ð17Þ

The total entropy is calculated as the weighted sum of the
entropies of all clusters:

E ¼ ∑
c

i¼1

ni

∑
c

i¼1
ni
Ei ð18Þ

Table 1 Descriptions of three datasets

Dataset Breast-W Iris Wine

Samples 683 150 178

Clusters 2 3 3

Samples of each
Cluster

1 2 1 2 3 1 2 3

444 239 50 50 50 59 71 48

Attributes 9 4 13

Table 2 Clustering results of Breast-W dataset

Clustering method KM FCM KHM

Cluster 1 2 1 2 1 2

1 435 18 436 22 437 26

2 9 221 8 217 7 213

Table 3 Clustering results of Iris dataset

Clustering method KM FCM KHM

Cluster 1 2 3 1 2 3 1 2 3

1 50 0 0 50 0 0 50 0 0

2 0 47 14 0 47 13 0 48 14

3 0 3 36 0 3 37 0 2 36

Table 4 Clustering results of Wine dataset

Clustering method KM FCM KHM

Cluster 1 2 3 1 2 3 1 2 3

1 46 1 0 45 1 0 43 0 0

2 0 50 19 0 50 21 0 51 22

3 13 20 29 14 20 27 16 20 26
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The clustering result with lower value of entropy and
higher value of purity means a better clustering.

3.2 Internal validity indexes

For some experimental data without any pre-knowledge, ex-
ternal criteria is no longer applicable. Under this circumstance,
internal criteria are an option, which evaluates the results of a
clustering algorithm based on the information intrinsic to the
data alone.

3.2.1 Dunn index

Dunn index is the most popular internal validity index. Dunn
index is defined as:

Dunn ¼ min1≤ i≤ c min
1≤ j≠i≤ c

d Ci;C j
� �

max1≤ k ≤ c d Ckð Þð Þ
� �� �

ð19Þ

where d(Ci, Cj) defines the intercluster distance between clus-
ter i and cluster j; d(Ck) represents the intracluster distance of
cluster k. The larger value of Dunn index is, the better the
clustering result is.

Relevant codes of above three clustering algorithms and
validity indexes are programmed by the MATLAB.

4 Statistical numerical experiment

In statistical numerical experiments, through standard
datasets, the performances of clustering algorithms are tested.
In this section, three famous standard datasets, Breast-W, Iris,
and Wine dataset, are implemented to verify three clustering
algorithms.

The first dataset is Breast-W, which is breast cancer data-
bases obtained from the University of Wisconsin Hospitals.

This dataset has two clusters (benign and malignant) and 683
samples (samples with missing values are removed). Each
sample has nine attributes about cell information. The second
dataset is Iris, which is perhaps the best known database to be
found in the related literatures. This dataset contains three
classes of 50 instances each, where each class refers to a type
of iris plant. There are four attributes, sepal length, sepal
width, petal length, and petal width in a sample. The last
dataset is Wine which is a chemical analysis of wines grown
in the same region in Italy and derived from three different
cultivars. The analysis determines the quantities of 13 constit-
uents in each of 178 samples. Three datasets are detailed in
Table 1.

Three clustering algorithms, KM, FCM, and KHM, are all
employed to classify the above three datasets. The results of
clustering are shown in Tables 2–4, and the validity indexes of
three clustering algorithms for three datasets are calculated in
Tables 5–7. A larger F-measure value, higher value of purity,
lower value of entropy, and larger value of Dunn index mean a
better clustering result.

For the Breast-W dataset, there are only two clusters, and
the difference among the clustering results of three clustering
methods is little. It can be seen in Table 2 that KM clustering is
better than FCM and KHM, which requires the minimum
number of iterations. The clustering result of the KHM is as

Table 5 Index values of clustering results for Breast-W dataset

Clustering method F-
measure

Purity Entropy Dunn Iteration

KM 0.9606 0.9605 0.2401 1.7595 6

FCM 0.9654 0.9561 0.2594 1.7745 16

KHM 0.9522 0.9517 0.2770 1.7930 9

Table 6 Index values of clustering results for Iris dataset

Clustering method F-
measure

Purity Entropy Dunn Iteration

KM 0.8881 0.8867 0.4178 2.4437 15

FCM 0.8944 0.8933 0.3939 2.4347 43

KHM 0.8949 0.8933 0.4041 2.3999 13

Table 7 Index values of clustering results for Wine dataset

Clustering method F-
measure

Purity Entropy Dunn Iteration

KM 0.6897 0.7022 0.8949 1.9032 11

FCM 0.6722 0.6854 0.9146 1.9503 57

KHM 0.6588 0.6742 0.9043 2.0981 42

Y

X

Z

 Ultrasonic polishing system

Fig. 1 Structure of the 3-axis ultrasonic polishing bench
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good as that of the FCM. However, the number of iterations in
KHM clustering is less.

In the Iris dataset and Wine dataset, the number of clus-
ters becomes three and the data is crossed. As shown in
Tables 3 and 4, the clustering results of three methods are
almost of no difference. However, the KM cannot get the
proper results every time in these two datasets. KM is sen-
sitive to initialization.With increased number of the clusters
and complexity of the data, this shortcoming is exposed.
Therefore, KM may get the unreasonable results sometimes
with the randomly initial cluster center, while the other two
do not have such problems. Analyzing different indexes of
FCM and KHM in Tables 6 and 7, KHM is better than FCM
under some indexes and is worse under the other indexes.
On the whole, the clustering result of two algorithms is
almost the same. However, the number of iterations in
KHM is less than that in FCM, which means that KHM
needs less number of iterations to converge. Compared with
FCM, this is the advantage of KHM.

Although the performance of KM clustering is very good
with the least number of iterations, its disadvantage is obvi-
ous, which is sensitive to initialization and may lead to the
improper clustering results. Ability of FCM clustering is the
same as that of KHM clustering. However, with respect to
number of iterations, KHM is more advantageous.

Next, the actual experiments are carried out to test the per-
formance of KHM clustering.

5 Thermal error experiment

For the thermal error model of the machine tool, predictive
accuracy and robustness were significantly affected if the
multi-collinearity problem could not be solved properly.
Frequently used methods give priority to reduce the
multi-collinearity by grouping the temperature measure-
ment points and selecting the temperature-sensitivity
points.

The total thermal errors in a machine tool include the spin-
dle thermal error and the feed-driving axes thermal errors. In
this section, the thermal positioning error of the feed-driving
axes was investigated. The temperature-sensitivity points
were selected by KHM clustering. The curves of positioning
error were fitted and predicted by the selected temperature-
sensitivity points, and the performance of KHM clustering in
the actual experiments was tested.

5.1 Experimental equipments

The experiments were conducted on a 3-axis ultrasonic
polishing bench developed by our team, whose structure
is exhibited in Fig. 1 and schematic diagram is shown in
Fig. 2. Positioning error of Y-axis was taken as an exam-
ple to verify the effect of KHM clustering on the actual
experiments. Positioning error was measured by the laser
interferometer (Renishaw XL-80), and the distribution of
temperatures was detected by the temperature sensors
(PT100). A total of 11 temperature sensors were prelimi-
narily installed on the machine tool. Arrangement of the
sensors is illustrated in Fig. 2. Here, T6 and T11 are not
included. Installation locations of the sensors are detailed
in Table 8.

T4 

T3

T2 

5T1T

T9

T8

T10

T7

Fig. 2 Schematic diagram of the 3-axis bench and installation locations
of sensors

Table 8 Installation
locations of temperature
sensors

Sensor Location

1 Y-axis motor

2 Column

3 Front end of Y-axis guideway

4 Bed

5 Back end of Y-axis guideway

6 Environment around the
machine tool

7 Front bearing of Y-axis

8 Worktable

9 Rear bearing of Y-axis

10 Leading screw nut

11 Environment of the room

Laser interferometer

Temperature display device

Fig. 3 Measurements of positioning error and temperatures
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5.2 Measurement of experimental data

The scene ofmeasuring the positioning error and temperatures
can be seen in Fig. 3, where the ultrasonic polishing system is
removed to measure the positioning error conveniently. The
positioning error was bi-directionally measured every 10 mm
in the stroke range of 280 mm. The geometric component of
positioning error (stationary error profile) was measured when
the machine tool was initially switched on (cold state). Then,
the machine tool was warmed up by moving the Y-axis slide
along its all stroke with a feed rate of 20 mm/s and an accel-
eration of 10 mm/s2 until the thermal equilibrium state was
reached. Positioning error was measured after the machine
tool had been warmed up for 20, 50, 110, 190, 240, 340,
and 390 min, respectively. Meanwhile, temperatures were
synchronously measured at an interval of 10 min. The curves
of positioning error and the relevant distribution of tempera-
tures are shown in Fig. 4 (Appendix Tables 18 and 19).

5.3 Modeling of the positioning error

5.3.1 Fitting the geometric positioning error

Due to the polynomial with explicit expression and simple
calculation, polynomial fitting is the most common modeling
method for the geometric error terms of machine tools. For the
geometric error of each axis, the value is zero at its zero posi-
tion [23]. As a result, the constant term of the polynomial
should be neglected, and one nth-order polynomial without
the constant term is described as:

δpp Pð Þ ¼ ∑
n

i¼1
αipi ð20Þ

where p is the nominal coordinate of P-axis. By expanding
and transforming Eq. (20), the following equation can be ob-
tained.

Xβ ¼ y ð21Þ

where X ¼
p1 p21 ⋯ pn1
p2 p22 ⋯ pn2
⋮ ⋮ ⋯ ⋮
pm p2m ⋯ pnm

2
664

3
775; n is the order of the poly-

nomial; m is the number of the measurement points; β are the
coefficients, and β = [α1,α2,⋯,αn]

T; y are geometric errors
(positioning errors in this paper), and y = [δpp(p1), δpp(p2),
⋯, δpp(pm)]

T.
Equation (21) can be solved through least square (LS) to

obtain the coefficients, which can be written as follows:

β ¼ XTX
� �−1

XTy ð22Þ

Then, there is need to seek the appropriate order of the
polynomial. According to the reference [24], the polynomial
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Fig. 4 Experimental data in fitting test: a positioning error, b temperatures

Table 9 F values of different
order polynomials Order 1 2 3 4 5 6 7 8

F value 166.59 778.50 728.74 1714.37 3488.38 3054.03 2849.25 2378.23

Table 10 Clustering results of KHM clustering

C Results

2 {1 9 10},{2 3 4 5 6 7 8 11}

3 {1},{5 9 10},{2 3 4 6 7 8 11}

4 {1},{9 10},{5 6 8},{2 3 4 7 11}

5 {1},{11},{5 8},{9,10},{2 3 4 6 7}

6 {1},{9},{10},{11},{5 8},{2 3 4 6 7}

7 {1},{5},{9},{10},{11},{6 8},{2 3 4 7}

8 {1},{5},{8},{9},{10},{11},{2 6},{3 4 7}

9 {1},{2},{5},{6},{8},{9},{10},{11},{3 4 7}

10 {1},{2},{3},{5},{6},{8},{9},{10},{11},{4 7}
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models are evaluated by F test to choose the best order of the
polynomial. F value of the nth-order polynomial is:

F nð Þ ¼
1

n
∑
m

i¼1
yn pið Þ−y
� �2

1

m−n−1
∑
m

i¼1
yi−yn pið Þð Þ2

ð23Þ

where, yi is the measured value; y represents the mean value of
measured data; yn(pi) means the output value of nth-order
polynomial.

A series of polynomials from first-order to eighth-order are
obtained using the Eq. (22), where y(i) represents the ith-order
polynomial, and x is the nominal coordinate. The F values of
these eight polynomials are calculated in Table 9.

y 1ð Þ ¼ −0:5237x
y 2ð Þ ¼ −0:9334xþ 0:0019x2

y 3ð Þ ¼ −1:0881xþ 0:0037x2−4:7713� 10−6x3

y 4ð Þ ¼ −0:7700x−0:0030x2 þ 3:6498� 10−5x3−7:7347� 10−8x4

y 5ð Þ ¼ −0:4812x−0:0125x2 þ 1:3657� 10−4x3−4:9980� 10−7x4 þ 6:1912� 10−10x5

y 6ð Þ ¼ −0:5878x−0:0075x2 þ 5:7231� 10−5x3 þ 5:9050� 10−8x4−1:1848� 10−9x5

þ 2:1778� 10−12x6

y 7ð Þ ¼ −0:7582xþ 0:0033x2−1:8081� 10−4x3 þ 2:5208� 10−6x4−1:4204� 10−8x5

þ 3:6275� 10−11x6−3:5061� 10−14x7

y 8ð Þ ¼ −0:7350xþ 0:0014x2−1:2548� 10−4x3 þ 1:7399� 10−6x4−8:2322� 10−9x5

þ 1:0980� 10−11x6 þ 2:0747� 10−14x7−5:0033� 10−17x8

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð24Þ

The larger the F value is, the better the polynomial is. The
maximum F value is 3488.38, which means that fifth-order
polynomial is chosen as the model of geometric positioning
error, and it is rewritten the following formation:

δyy Yð Þ ¼ −0:4812y−0:0125y2 þ 1:3657

� 10−4y3−4:9980� 10−7y4 þ 6:1912

� 10−10y5 ð25Þ

5.3.2 Selection of the temperature-sensitivity points

KHM clustering is applied to classify the temperature vari-
ables, and each group selects one representative variable.
Then, these representative variables establish the thermal error
model.

There are totally 11 temperature sensors in the experiments,
which could obtain 11 different classification results. While,

Table 12 Thermal-
variant slopes No. Curve slope

0 − 0.39521

1 − 0.37671

2 − 0.35904

3 − 0.33037

4 − 0.30924

5 − 0.30191

6 − 0.29493

7 − 0.28767

Table 11 Index value of each
clustering result C 2 3 4 5 6 7 8 9 10

Dunn 2.8840 3.5749 2.9663 2.7264 2.2553 3.4227 2.3010 4.2408 2.4433

Table 13 Values and
sorting of correlation
coefficients

Temperature
variable

Value Sorting

T1 0.9725 2

T2 0.9660 5

T3 0.9538 6

T4 0.9160 9

T5 0.9814 1

T6 0.9673 3

T7 0.8536 11

T8 0.9382 8

T9 0.9667 4

T10 0.9440 7

T11 0.8889 10
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all in one group and each one in a group are meaningless,
which are not considered. Clustering results by KHM cluster-
ing are shown in Table 10, where C is number of clusters.

There is not any pre-knowledge about the temperature data.
Therefore, internal validity index, Dunn index, evaluates the
clustering results. The index value of each clustering result is
computed in Table 11. Through analysis of the Dunn validity
index, the best clustering result corresponds to the maximum
value of the validity index. Themaximumvalue is 4.2408, which
divides the temperature data into nine groups. While, the second
largest value is 3.5749, which classifies the temperature data into
three clusters. The number of clusters indicates the number of
variables in the final error model. The less variables the model
contains, the simpler it is. Therefore, the model containing three
variables is simpler than that of nine variables, which is more
effective in practical application. Actually, nine variables in the
error model are too much, which is not appropriate for error
modeling. If the difference between the precision of two models
is little, the model of three variables will be selected.

Each group selects one representative variable which has
the highest correlation coefficient with respect to the thermal-
variant slopes of the thermal positioning error. The thermal-
variant slopes are got by fitting the curves of thermal position-
ing error with first-order polynomial in Fig. 4a, which is
shown in Table 12. Correlation coefficient between xi and xj
is calculated as follows:

rij ¼
∑
m

k¼1
xik−xi
� �

xjk−x j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

k¼1
xik−xi
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
m

k¼1
xjk−x j
� �2s ð26Þ

Then, the correlation coefficients between the temperature
variables and the thermal-variant coefficients are shown in
Table 13.

According to correlation coefficients and clustering results,
T1, T2, T3, T5, T6, T8, T9, T10, and T11 are selected as the
representative temperature variables of the error model with
nine variables, and the representative temperature variables
T1, T5, and T6 are regarded as the inputs of the error model
of three variables.

The simpler the error model is, the more effective it is
applied. The purpose of this study is to validate the effective-
ness of KHM clustering on selection of temperature-
sensitivity points in the thermal error modeling. Due to mul-
tiple linear regression having a simple structure and low com-
putational complexity, multiple linear regression combined
with KHM clustering is adopted to construct the thermal error
model, which is called MLR-KHM model.

Through analyzing the results of two multiple linear regres-
sion models, the model which is more suitable for error
modeling is selected. The thermal error model of three vari-
ables is:

ki ¼ −0:00182T1 þ 0:07734T5−0:05795T6−0:68157 ð27Þ

However, when the number of variables is 9, the tolerance
is exceeded, and three variables have to be excluded. The
thermal error model is:

k
0
i ¼ 0:01507T 1 þ 0:09951T2−0:03639T 3

þ 0:02568T6−0:03965T8 þ 0:02082T 11−1:93720 ð28Þ

The analysis results of two error models are given in
Table 14 and Table 15, where Model I represents the model
with three variables, and Model II is the other model. It can be
seen that there is little difference between the sample determi-
nation coefficients of two models, and the regression equation
of Model I is more significant than that of Model II. Precision
of Model I is almost not reduced comparing with Model II,

Table 14 Model summary of two models

Model R R square Adjusted R square Std. error of the estimate

I 0.994 0.987 0.978 0.006031386

II 1.000 1.000 1.000 0.000262071

Table 15 Variance analysis of two models

Model Sum of squares df Mean square F Sig.

I Regression 0.011 3 0.004 103.960 0.000

Residual 0.000 4 0.000

Total 0.011 7

II Regression 0.011 6 0.002 27,884.625 0.005

Residual 0.000 1 0.000

Total 0.011 7

Fig. 5 Fitting results of MLR-KHM model

Table 16 Evaluation criteria of fitting test

Criterion RSME R2 η

Fitting test 0.7005 0.9995 99.25%
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and it only has three variables. Therefore, Model I is better.
Finally, T1, T5, and T6 are regarded as the inputs of the error
model.

5.3.3 Modeling of the comprehensive positioning error

Error model is as simple as possible. The relationship between
the thermal-variant slopes and three representative tempera-
ture variables is mapped by MLR-KHM model, which is
shown as Eq. (27) .

The geometric component and thermal component are put
together to form the comprehensive positioning error [25–27],
which can be expressed as:

δyy Y ; Tð Þ ¼ δyy Yð Þ þ δyy Tð Þ ð29Þ
δyy Tð Þ ¼ k i−k0ð Þy ð30Þ

where δyy(Y,T) is comprehensive positioning error; δyy(Y) is the
geometric component of positioning error; δyy(T) is the ther-
mal term of positioning error; k0 is the slope of the geometric
positioning error curve; ki is the slope of ith thermal position-
ing error curve.

Equation (25) and Eq. (27) are substituted into Eq. (29)
and Eq. (30), and the comprehensive positioning error is
obtained.

δyy Y ; Tð Þ ¼ −0:4812y−0:0125y2 þ 1:3657� 10−4y3−4:9980� 10−7y4 þ 6:1912� 10−10y5

þ −0:00182T1 þ 0:07734T5−0:05795T6−0:68157þ 0:39521ð Þy
¼ −0:00182T 1 þ 0:07734T5−0:05795T6−0:76756ð Þy−0:0125y2 þ 1:3657� 10−4y3

−4:9980� 10−7y4 þ 6:1912� 10−10y5

ð31Þ

Fitting results with Eq. (31) are exhibited in Fig. 5, where
the curves from 0 to 7 represent the positioning errors from
0 min to 390 min successively, and the measured data is
marked with dots.

Then, the proposed error models’ goodness of fitting is
quantitatively evaluated. Three evaluation criteria, RMSE
(root mean squared error), R2 (coefficient of determination),
and η (predicting accuracy) are presented.

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
xi−x̂̂ið Þ2

s
ð32Þ

R2 ¼ 1−
∑
n

i¼1
xi−x̂̂ið Þ2

∑
n

i¼1
xi−x
� �2 ð33Þ

η ¼ 1−
∑
n

i¼1
jxi−x̂̂ij

∑
n

i¼1
jxij

� 100% ð34Þ
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Fig. 6 Experimental data in verification test: a positioning error, b temperatures

Fig. 7 Prediction results of MLR-KHM model
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where xi is the measured value, x̂i is the output value of
error model, and x ¼ ∑

n

i¼1
xi is the mean of the measured

values. The values of three evaluation criteria are calcu-
lated in Table 16.

5.3.4 Predictive performance of the error model

To verify the predictive ability and robustness of MLR-KHM
model, another experiment was conducted. The machine tool
was warmed up by moving the Y-axis slide with a feed rate of
15 mm/s and an acceleration of 8 mm/s2.

The positioning errors, after machine tool had been warmed
up for 50, 120, 140, and 220 min, were measured. At the same
time, temperature data was recorded. The curves of positioning
error are shown in Fig. 6a, which are represented by the number
0, 1, 2, and 3, respectively. The corresponding temperature
curves are depicted in Fig. 6b (Appendix Tables 20 and 21).

The above positioning errors were predicted by the
MLR-KHM model. The prediction results are shown in
Fig. 7 (the measured data marked with dots). In order to
depict more clearly, each predicted and measured curves
of positioning error are described in Fig. 8. Model eval-
uations are calculated in Table 17.

In general, thermal error models could achieve an
excellent fitting accuracy. However, predictive devia-
tions will enlarge usually under other operating condi-
tions. This is due to changes of machine tool thermal

state under different operating states. An excellent error
model does not only have high fitting precision but also
strong robustness, which can maintain high accuracy of
prediction even under different operating conditions.

In Fig. 5 and Fig. 7, it can be found that the differ-
ences between the measured values and predictive
values of the verification test become larger comparing
with the differences between the measured values and
fitting values of fitting test. Through comparing the
values of the three evaluation criteria in Tables 16 and
17, performance of MLR-KHM model in fitting is better
than that in prediction. Although the predictive accuracy
of the proposed error model decreases somewhat, it is
good enough for the error compensation. It is proved
that MLR-KHM model has strong robustness, which
can meet the requirements of error compensation.
Therefore, KHM clustering is a reliable method to select
temperature-sensitivity points, and MLR-KHM model is
an alternative method to construct the thermal error.

Fig. 8 Prediction result of each curve: a prediction result of curve 0, b prediction result of curve 1, c prediction result of curve 2, d prediction result of
curve 3

Table 17 Evaluation criteria of verification test

Criterion RSME R2 η

Verification test 6.9690 0.9356 90.86%
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6 Conclusions

The key of this paper is to propose a clustering method, KHM
clustering, which is used for the first time in the field of ther-
mal error modeling. The following conclusions can be drawn:

1. Through statistical numerical experiments, KHM cluster-
ing is more stable and insensitive to initialization compar-
ing with the KM clustering. KM clustering sometimes
gets the unreasonable results, while the KHM clustering
does not. Although the results obtained by the KHM clus-
tering and FCM clustering are almost the same, the num-
ber of iterations in the convergence of KHM clustering is
less than that of FCM clustering. These are the advantages
of KHM clustering.

2. In the actual experiments, the temperature-sensitivity
points are selected by the KHM clustering. KHM cluster-

ing with the help of Dunn validity index selects three
temperature-sensitivity points from 11 temperature points
to build the thermal error model. Effectiveness of MLR
model combined with KHM clustering is verified.
Therefore, MLR-KHMmodel can be a candidate method
of thermal error modeling.

3. The effect of MLR-KHM thermal error model proposed
in this article is only verified when the machine tool is in
an idle state. For the actual cutting state, the thermal error
model still needs further research.
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Appendix

Table 18 Positioning error of fitting test

No. 0 1 2 3 4 5 6 7
Position

0 0 0 0 0 0 0 0 0

10 − 9.2 − 9.1 − 8.9 − 8.6 − 8.3 − 8.3 − 8.2 − 8.1
20 − 13.9 − 13.6 − 13.2 − 12.7 − 12.3 − 12 − 11.9 − 11.8
30 − 22.8 − 22.4 − 21.8 − 21.1 − 20.4 − 20.1 − 19.9 − 19.7
40 − 30.7 − 30 − 29.3 − 28.1 − 27.3 − 27.1 − 26.6 − 26.3
50 − 40.3 − 39.6 − 38.6 − 37.2 − 36.1 − 35.8 − 35.4 − 35
60 − 49.5 − 48.4 − 47.4 − 45.6 − 44.4 − 43.9 − 43.5 − 43.1
70 − 57.9 − 56.7 − 55.4 − 53.4 − 51.9 − 51.4 − 50.9 − 50.4
80 − 68.2 − 67.1 − 65.5 − 63.3 − 61.3 − 60.6 − 60.4 − 59.8
90 − 73.4 − 71.8 − 70.2 − 67.6 − 65.7 − 65 − 64.4 − 63.8
100 − 79.5 − 77.5 − 75.9 − 73.1 − 70.9 − 70 − 69.5 − 68.7
110 − 87.1 − 85.1 − 83.2 − 80 − 77.7 − 76.9 − 76.1 − 75.3
120 − 89.6 − 87.5 − 85.2 − 81.8 − 79.2 − 78.5 − 77.5 − 76.7
130 − 91.2 − 88.9 − 86.6 − 82.8 − 80.1 − 79.1 − 78.2 − 77.3
140 − 94.4 − 91.6 − 89.4 − 85.5 − 82.2 − 81.4 − 80.3 − 79.3
150 − 99.7 − 97 − 94.3 − 90.1 − 86.8 − 85.8 − 84.7 − 83.6
160 − 101.1 − 98.3 − 95.4 − 90.9 − 87.4 − 86.3 − 85.1 − 84.1
170 − 101.5 − 98.5 − 95.4 − 90.6 − 86.9 − 85.7 − 84.5 − 83.3
180 − 100.9 − 97.7 − 94.6 − 89.3 − 85.6 − 84.2 − 82.8 − 81.7
190 − 101.1 − 97.5 − 94.1 − 88.9 − 84.8 − 83.3 − 82 − 80.6
200 − 102.2 − 98.5 − 94.8 − 89 − 84.8 − 83.3 − 82 − 80.6
210 − 103.5 − 100.2 − 96.2 − 90.2 − 85.7 − 84.3 − 82.6 − 81.1
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Table 18 (continued)

No. 0 1 2 3 4 5 6 7
Position

220 − 106.8 − 102.9 − 98.9 − 92.7 − 87.9 − 86.4 − 84.8 − 83.2
230 − 109.7 − 105.6 − 101.5 − 94.9 − 90 − 88.3 − 86.7 − 85.1
240 − 112.8 − 108.5 − 104.2 − 97.4 − 92.2 − 90.5 − 88.8 − 87.1
250 − 113.1 − 108.5 − 104 − 96.8 − 91.5 − 89.8 − 88.1 − 86
260 − 114.6 − 109.6 − 105.2 − 97.8 − 92 − 90.2 − 88.4 − 86.5
270 − 117.4 − 112.7 − 107.6 − 100 − 94.6 − 92.2 − 90.3 − 88.5
280 − 120.6 − 115.3 − 110.7 − 102.5 − 96.6 − 94.5 − 92.7 − 90.6

Table 19 Temperature of fitting test

Point T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Time

0 18.8 18.1 18.1 18.1 17.8 18.2 18.2 18.2 18.3 18.4 17.8

10 19.6 18.1 18.2 18.1 18 18.3 18.2 18.2 18.6 18.8 17.8

20 20.1 18.1 18.2 18.1 18.1 18.3 18.2 18.2 18.8 19 17.8

30 20.4 18.1 18.2 18.1 18.3 18.4 18.2 18.3 19 19.3 17.8

40 20.7 18.2 18.2 18.2 18.5 18.5 18.2 18.3 19.2 19.4 17.8

50 20.8 18.2 18.2 18.2 18.6 18.5 18.2 18.4 19.2 19.4 17.8

60 20.7 18.2 18.2 18.2 18.7 18.6 18.2 18.4 19.1 19.3 17.9

70 20.8 18.3 18.3 18.2 18.8 18.7 18.2 18.5 19.2 19.4 17.9

80 20.9 18.3 18.3 18.2 18.9 18.7 18.2 18.5 19.3 19.5 17.9

90 20.9 18.4 18.4 18.3 19 18.7 18.2 18.6 19.3 19.5 17.9

100 21 18.4 18.4 18.3 19 18.7 18.3 18.7 19.4 19.6 17.9

110 21.2 18.5 18.4 18.3 19.1 18.8 18.3 18.7 19.5 19.7 18

120 21.1 18.6 18.5 18.4 19.1 18.9 18.3 18.8 19.5 19.7 18

130 21.6 18.6 18.5 18.4 19.2 18.8 18.3 18.8 19.8 20.1 18

140 21.7 18.7 18.5 18.4 19.3 18.9 18.4 18.8 19.9 20.2 18

150 21.4 18.7 18.5 18.5 19.3 19 18.4 18.9 19.7 20 18

160 21.7 18.7 18.6 18.5 19.3 18.9 18.4 18.9 20 20.2 18

170 21.5 18.7 18.6 18.5 19.3 18.9 18.4 18.9 19.8 20.1 18

180 21.8 18.7 18.6 18.5 19.4 18.9 18.4 19 20 20.4 18

190 21.6 18.8 18.6 18.5 19.4 18.9 18.5 19 19.9 20.2 18.1

200 21.9 18.8 18.6 18.6 19.5 18.9 18.5 19 20.1 20.5 18.1

210 21.6 18.8 18.6 18.6 19.5 18.9 18.5 19.1 19.9 20.3 18.1

220 21.9 18.8 18.6 18.6 19.5 19 18.5 19.1 20.2 20.6 18.1

230 21.7 18.8 18.7 18.6 19.5 18.9 18.6 19.1 20 20.4 18.1

240 22 18.9 18.7 18.6 19.6 19 18.6 19.2 20.2 20.7 18.1

250 21.85 18.9 18.7 18.65 19.6 19 18.6 19.2 20.1 20.55 18.1

260 21.7 18.9 18.7 18.7 19.6 19 18.6 19.2 20 20.4 18.1

270 21.9 18.9 18.7 18.7 19.65 19.1 18.65 19.25 20.2 20.65 18.15

280 22.1 18.9 18.7 18.7 19.7 19.2 18.7 19.3 20.4 20.9 18.2

290 21.95 18.9 18.7 18.7 19.65 19.1 18.7 19.3 20.25 20.7 18.2

300 21.8 18.9 18.7 18.7 19.6 19 18.7 19.3 20.1 20.5 18.2

310 22.3 19 18.8 18.8 19.7 19.1 18.7 19.4 20.5 21.2 18.2

320 22 19 18.8 18.8 19.8 19.1 18.8 19.4 20.3 20.8 18.3
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Table 19 (continued)

Point T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Time

330 22.2 19 18.8 18.8 19.85 19.1 18.8 19.45 20.45 21.05 18.3

340 22.4 19 18.8 18.8 19.9 19.1 18.8 19.5 20.6 21.3 18.3

350 22.2 19 18.8 18.8 19.85 19.1 18.8 19.5 20.5 21.1 18.25

360 22 19 18.8 18.8 19.8 19.1 18.8 19.5 20.4 20.9 18.2

370 22.5 19.1 18.9 18.9 20 19.2 18.9 19.6 20.8 21.4 18.2

380 22.1 19.1 18.9 18.9 19.9 19.2 18.9 19.6 20.5 21 18.2

390 22.6 19.2 19 19 20.2 19.4 19 19.8 20.9 21.7 18.1

Table 20 Positioning error of verification test

No. 0 1 2 3
Position

0 0 0 0 0

10 − 8.4 − 8.2 − 8.1 − 8
20 − 12.3 − 11.8 − 11.6 − 11.4
30 − 20.4 − 19.7 − 19.4 − 19.1
40 − 27.5 − 26.5 − 26.1 − 25.8
50 − 36.3 − 35.1 − 34.6 − 34.1
60 − 44.7 − 43.3 − 42.6 − 42.1
70 − 52.3 − 50.6 − 49.9 − 49.2
80 − 61.8 − 59.9 − 59 − 58.3
90 − 66.2 − 64 − 63.1 − 62.3
100 − 71.4 − 69.1 − 68 − 67.1
110 − 78.2 − 75.7 − 74.5 − 73.5
120 − 79.9 − 77.1 − 75.8 − 74.8
130 − 80.7 − 77.7 − 76.3 − 75.1
140 − 83.1 − 79.9 − 78.4 − 77.1
150 − 87.6 − 84.1 − 82.5 − 81.2
160 − 88.2 − 84.5 − 82.8 − 81.3
170 − 87.8 − 83.8 − 82 − 80.5
180 − 86.4 − 82.2 − 80.3 − 78.7
190 − 85.8 − 81.4 − 79.3 − 77.6
200 − 86.1 − 81.4 − 79.3 − 77.5
210 − 86.6 − 81.7 − 79.4 − 77.5
220 − 89.1 − 83.9 − 81.6 − 79.6

230 − 91.2 − 85.8 − 83.3 − 81.3
240 − 93.5 − 87.9 − 85.3 − 83.1
250 − 93 − 87.1 − 84.5 − 82.2
260 − 93.7 − 87.6 − 84.8 − 82.5
270 − 95.7 − 89.3 − 86.5 − 84
280 − 98.1 − 91.5 − 88.5 − 86
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