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Abstract
The paradigm for robot usage has changed in the last few years, from a scenario in which robots work isolated to a
scenario where robots collaborate with human beings, exploiting and combining the best abilities of robots and humans. The
development and acceptance of collaborative robots is highly dependent on reliable and intuitive human-robot interaction
(HRI) in the factory floor. This paper proposes a gesture-based HRI framework in which a robot assists a human co-worker
delivering tools and parts, and holding objects to/for an assembly operation. Wearable sensors, inertial measurement units
(IMUs), are used to capture the human upper body gestures. Captured data are segmented in static and dynamic blocks
recurring to an unsupervised sliding window approach. Static and dynamic data blocks feed an artificial neural network
(ANN) for static, dynamic, and composed gesture classification. For the HRI interface, we propose a parameterization
robotic task manager (PRTM), in which according to the system speech and visual feedback, the co-worker selects/validates
robot options using gestures. Experiments in an assembly operation demonstrated the efficiency of the proposed solution.

Keywords Human-robot interaction · Collaborative robotics · Gesture recognition · Intuitive interfaces

1 Introduction

Collaborative robots are increasingly present in manufactur-
ing domain, sharing the same workspace and collaborating
with human co-workers. This collaborative scenario allows
to exploit the best abilities of robots (accuracy, repetitive
work, etc.) and humans (cognition, management, etc.) [1,
2]. The development and acceptance of collaborative robots
in industry is highly dependent on reliable and intuitive
human-robot interaction (HRI) interfaces [3], i.e., making
robots accessible to human beings without major skills in
robotics. Collaborative robots and humans have to under-
stand each other and interact in an intuitive way, creating
a co-working partnership. This will allow a greater pres-
ence of collaborative robots in industrial companies which
are struggling to have ever more flexible production due to
consumer demand for customized products [4]. For exam-
ple, a human-robot collaborative platform for constructing
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panels from preimpregnated carbon fiber fabrics in which
the human and robot share the workspace promoting sit-
uation awareness, danger perception and enrichment of
communication [5].

Instructing and programming an industrial robot by the
traditional teaching method (text and teach pendant based
methods) is a tedious and time-consuming task that requi-
res technical expertise [6]. In addition, these modes of robot
interfacing are hard to justify for flexible production where
the need for robot re-configuration is constant. Recently,
human-robot interfaces based in robot hand-guiding (kines-
thetic teaching) and haptic interfaces demonstrated to be in-
tuitive to use by humans without deep skills in robotics [7].
Advanced and natural HRI interfaces such as human ges-
tures and speech still lack in reliability in industrial/unstruc-
tured environment [8]. An interesting study reports the im-
pact of human-robot interfaces to intuitively teach a robot
to recognize objects [9]. The study demonstrated that the
smartphone interface allows non-expert users to intuitively
interact with the robot, with a good usability and user’s
experience when compared to a gesture-based interface.
The efficiency of a conventional keyboard and a gesture-
based interface in controlling the display/camera of a robot
is presented in [10]. The gesture-based interface allowed
smoother and more continuous control of the platform,
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Fig. 1 Overview of the proposed gesture-based HRI framework

while the keyboard provided superior performance in terms
of task completion time, ease of use, and workload.

Making an analogy with the way humans interact and
teach each other, allows us to understand the importance of
gesture-based HRI. Static gestures are human postures in
which the human is static (small motion like body shaking
can occur) and dynamic gestures are represented by a
dynamic behaviour of part of the human body (normally the
arms). Gestures can be used as an interface to teleoperate a
robot, allowing to setup robot configurations and combine
with other interfaces such as kinesthetic interface and
speech. For instance, a human co-worker can point to
indicate a grasping position to the robot, use a dynamic
gesture to move the robot to a given position and use a static
gesture to stop the robot [11, 12]. This scenario allows the
human co-worker to focus on the process task and not in the
robot programming [13].

Figure 1 illustrates the proposed framework. Static and
dynamic gesture data are acquired from upper body IMUs,
segmented by motion, and different ANNs are employed
to classify static and dynamic gestures. Recognized gesture
patterns are used to teleoperate/instruct a collaborative robot
in a process conducted by a parameterization robotic task
manager (PRTM) algorithm. The system provides visual
and speech feedback to the human co-worker, indicating to
the user what gesture was recognized, or if no gesture was
recognized.

Depending on the industrial domain and the company
itself, the shop floor presents restrictions to the technologies
used in the manufacturing processes. The implementation
of human-robot collaborative manufacturing processes
is today a main challenge for industry. Beyond the
related human factors, the advanced human-robot interfaces
(gestures, speech, hybrid, etc.) are constrained by the
shop floor conditions. In noisy environments the human-
human verbal communication is difficult to achieve or
prohibitive in some cases, especially when the workers are

using earplugs. In this scenario speech interfaces are not
efficient and gesture interfaces are a valid alternative. On
the other hand, confined spaces hamper the use of arm
gestures. In these conditions, the design of the collaborative
robotic system has to be adapted according to the specific
manufacturing conditions.

In this study, we assume that the shop floor environment
is noisy and not confined in space, so that gestures are
used to interface with the robot. Our proposed approach
brings benefits and it is practically relevant in the context of
flexible production in small lot sizes [8, 14], namely:

1. The human co-worker and robot work in parallel, while
the robot is ready to assist the human when required;

2. The use of the robot reduces the exposition of the
human co-worker to poor ergonomic conditions and
possible injuries (through hand-guiding the robot can be
adjusted online to the human body dimensions);

3. The use of the robot reduces error in production since
the work plan is strictly followed and managed by the
PRTM;

4. The robot assists the human in complex tasks that
cannot be fully automated, reducing the cycle time;

5. The introduction of the collaborative robot improves
the quality of some tasks when compared with human
labor;

6. The collaborative robot allows to reduce drastically the
setup time for a new product or variant of a product.
This is critical in small lot production.

This work was developed according to the needs of the
project ColRobot,1 which intends the development of a
collaborative robot for assembly operations in automotive
and spacecraft industry. The robot should be able to assist
workers, acting as a third hand, by delivering parts and tools
for the assembly process.

1https://www.colrobot.eu/

https://www.colrobot.eu/
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Section 2 presents the segmentation by motion process,
the proposed classifiers, and feature dimensionality reduc-
tion and regularization. Section 3 details the proposed clas-
sifiers and the feature dimensionality reduction and regular-
ization. The robot task manager is presented in Section 3,
while experiments and results are shown in Section 4.
Finally, the conclusion and directions for future work are in
Section 5.

1.1 Challenges, proposed approach
and contributions

The problems and challenges to address in collaborative
HRI are multiple. Special attention has to be devoted to
the reliability of the existing interfaces, the accuracy of
gesture classification in continuous and real-time, and the
interface with the robot. This is especially important in a
situation where a wrong classification of a gesture may lead
to accidents/collisions. The HRI interface has to be prepared
to manage this situation, having validation procedures and
hardware capable to ensure safety in all circumstances. In
presence of an unstructured/industrial environment, several
challenges can be pointed out:

1. Achieve high gesture recognition rates (close to 100%)
and assure the generalization capability in respect to
untrained samples and new users (user independent).
The appearance of false positives and false negatives
should be reduced to a minimum;

2. Combine and fuse sensor data to better describe the hu-
man behavior (hand, arms and body in general)
with accuracy, no occlusions and independently from
environment conditions (light, magnetic fields, etc.).
Selection of proper gesture features according to each
specific sensor;

3. Intuitive and modular interfacing with robot, ensuring
the management and coordination of human and robot
actions. The human co-worker has to receive feedback
in anticipation related with future robot actions.

In this paper, we propose a gesture-based HRI framework
in which a collaborative robot acts as a “third hand” by
delivering to the human shared workplace tools, parts, and
holding work pieces while the human co-worker performs
assembly working operations on it. This framework was
tested in an standard manufacturing assembly operation.

The proposed gesture-based HRI, Fig. 1, relies on IMUs
to capture human upper body gestures and a ultra wideband
(UWB) positioning system to have an indication of the rela-
tive position between human and robot. Static and dynamic
segments are obtained automatically with a sliding-window
motion detection method. Static segments will input the
classification of static gestures (SGs) and dynamic segments
will input the classification of dynamic gestures (DGs)

after up- or down-sampling of gesture frames using bicubic
interpolation. To avoid false positives/negatives, we imple-
mented what we call composed gestures, which combine
SGs and DGs in a given sequence. We proved that ANNs
are reliable to classify both SGs, DGs and consequently
the composed gestures. A PRTM correlates the classified
gestures with actual commands to be sent to a robot and
automatic speech and visual feedback for the co-worker.

Inspired by the way humans interact with a phone auto
attendant (digital receptionist) in which computer speech
feedback indicates to the human the phone number to select
according to the desired service (navigate in the menus),
our proposed gesture-based HRI interface works in a similar
way. The PRTM uses computer speech and visual feedback
to indicate the options available to the human co-worker
(for example bring a tool, a part or holding a part by
setup a kinesthetic teaching mode) and the human uses
gestures to select and validate the existing options. This
is a modular solution (other functionalities can be added),
intuitive (the co-workers does not have to remember a
large number of gestures), and flexible (adapted to different
scenarios, users and robots). The PRTM can be customized
to run with speech recognition commands or robot touch
commands instead gestures. Owing to the advances in
speech recognition in the last two decades, it is expected
that such a solution will work with a high level of reliability
in silent environments. Nevertheless, the use of automatic
speech feedback (using headphones) combined with visual
feedback (using a monitor installed in the robotic cell)
to the human demonstrated to be effective. The feedback
information is redundant so that when the level of noise is
too high the human co-worker can follow the information in
the monitor screen. Both audio and visual feedback provide
information about robot state, the next task of the sequence
and if the task ended.

The human co-worker is free to move in the workspace,
which may conduct to the appearance/classification of
gesture false positives (human behaviors are unexpectedly
classified as gestures). To avoid this scenario, since the
UWB provides human positional data, gesture classification
is only activated when the human is in a specific place in
front of the robot (other places may be defined). In addition,
the classifiers only act when the PRTM is expecting a
given gesture during a parameterization phase. The human
co-worker selects from the available library what gestures
associate to the robot actions managed by the PRTM,
customizing the human-robot interface.

The experiments performed in an assembly operation
demonstrated the following contributions:

1. The proposed unsupervised segmentation allows to
detect all static and dynamic motion blocks, i.e., when
a given static or dynamic gesture starts and ends;



122 Int J Adv Manuf Technol (2019) 101:119–135

2. Gesture recognition accuracy is relatively high (90% -
100%) for a library of 8 SGs and 4 DGs. These results
were obtained in continuous, real-time and with seven
different subjects (user independent);

3. A good generalization can be achieved with respect to
untrained samples and new subjects using the system;

4. The PRTM demonstrated efficiency, reliability, and
easy to use behaviour. Several users indicated in
questionnaires that it is easy to understand the speech
and visual instructions to select robot tasks and use the
robot as a “tool,” without skills in robot programming.

1.2 Related work

Collaborative robotics is an emerging and multidisciplinary
research field, in which gesture-based HRI is an active
research topic. Gestures are a meaningful part of human
communication, sometimes providing information that is
hard to convey in speech [15]. Gestures can be categorized
according to their functionality [16]. Communicative
gestures provide information that is hard to convey in
speech, for example command gestures [17], pointing [18],
gestures to represent meaningful, objects or actions, and
mimicking gestures [17, 19]. Gestures have been proven
to be one of the most effective and natural mechanisms
for reliable HRI, promoting a natural interaction process.
In the context of HRI, they have been used for robot
teleoperation, and to coordinate the interaction process and
cooperation activities between human and robot. As stated
in [7], a gesture-based robotic task generally consists of
individual actions, operations, and gestures that are arranged
in a hierarchical order. Also, there is not necessarily a
one-on-one relationship between gestures and actions, one
gesture can encode several actions. Therefore, a hierarchical
chain of gestures is required to perform a certain task. For
example, the user can point to an object in order to select
it, but the action to be taken in respect to that object is
unknown to the system. The actions can be picking up
the object, painting it, welding it or inspecting it, among
others.

Recognized human gestures and actions can be applied
to define robot motion directions [20] and to coordinate the
interaction process and cooperation activities [21]. Some
authors discuss what gestures are the most effective in
improving human robot interaction processes [22, 23].

Some gestures, although not all, can be defined by their
spatial trajectory. This is particularly true for pantomimic
gestures [19], which are often used to demonstrate a certain
motion to be done, e.g., a circle. Burke and Lasenby focused
with success on using Principal Component Analysis (PCA)
and Bayesian filtering to classify these time series. In [24],
Shao and Li propose the use of an estimation of integral
invariants – line integrals of a class of kernel functions along

a motion trajectory – to measure the similarity between
trajectories. They also propose boosting the classification
using machine learning methods such as Hidden Markov
Models (HMM) and Support Vector Machine (SVM).

Gesture spotting, either static or dynamic, is an active
area of research with many possible applications. The
problem becomes more challenging when gestures are rec-
ognized in real-time [13]. The difficulty is that gestures
typically appear within a continuous stream of motion. Tem-
poral gesture segmentation is the problem of determining
when a gesture starts and ends in a continuous stream of
data. Segmentation should also decrease the number of
classifications performed, reducing the processing load and
enhancing the real-time characteristic of a system.When the
segmentation is incorrect the recognition is more likely to
fail [25]. Analyzing continuous image streams is a challenge
to solve spatial and temporal segmentation [26].

The input features for gesture recognition are normally
the hand/arm/body position, orientation and motion [27],
often captured from vision sensors. However, it is difficult
to construct reliable features from only vision sensing due
to occlusions, varying light conditions and free movement
of the user in the scene [17, 28]. With this in mind, several
approaches to gesture recognition rely on wearable sensors
such as data gloves, magnetic tracking sensors, inertial
measurement units (IMUs), and electromyography (EMGs).
In fact, these interaction technologies have been proven
to provide reliable features in unstructured environments.
Nevertheless, they also place an added burden on the user
since they are wearable. Data from commercial off-the-
shelf devices like a smartwatch can be used to recognize
gestures and for defining velocity commands for a robot in
an intuitive way [29].

Researchers have used various methods such as HMM,
ANN, SVM, Dynamic Time Warping (DTW), deep learn-
ing, among other techniques to recognize gesture patterns.
HMMs can be used to find time dependencies in skeletal
features extracted from image and depth data (RGB-D) with
a combination of Deep Belief Networks (DBNs) and 3D
Convolutional Neural Networks (CNNs) [30]. Deep learn-
ing combined with recurrent networks demonstrated state of
the art performance in the classification of human activities
from wearable sensing [31]. ANNs demonstrated superior
performance in the classification of high number of ges-
ture patterns, for example an accuracy of 99% for a library
of 10 dynamic gestures and 96% for 30 static gestures
[13]. Field et al. used a Gaussian Mixture Model (GMM)
to classify human’s body postures (gestures) with previous
unsupervised temporal clustering [32]. A Gaussian tempo-
ral smoothing kernel is incorporated into a Hidden-State
Conditional Random Fields (HCRF) formulation to capture
long-range dependencies and make the system less sensitive
to input noise data [33].
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Hand detection is critical for reliable gesture classifi-
cation. This problem has been approached using wearable
and vision sensing. Recent studies report interesting results
in hand detection and gesture classification from RGB-D
video using deep learning [34]. Boosting methods, based on
ensembles of weak classifiers, allow multi-class hand detec-
tion [35]. A gesture-based interface based on EMG and IMU
sensing report the classification of 16 discrete hand gestures
which are mapped to robot commands [12]. This was mate-
rialized in point-to-goal commands and a virtual joystick for
robot teleoperation. A challenging study deals with a situa-
tion in which users need to manually control the robot but
both hands are not available (when users are holding tools or
objects in their hands) [23]. In this scenario, hand, body, and
elbow gestures are recognized and used to control primitive
robot motions. Gestures can also be used to specify the rel-
evant action parameters (e.g., on which object to apply the
action) [36]. The study refers that according to the experi-
ments with 24 people the system is intuitive to program the
robot, even for a robotics novice [36]. The required HRI
reliability and efficiency can be achieved through a multi-
modal interactive process, for example combining gestures
and speech [37]. Multimodal interaction has been used to
interact with multiple unmanned aerial vehicles from sparse
and incomplete instructions [38].

Gesture recognition associated to HRI is today an
important research topic. However, it faces important
challenges such as the large amount of training data required
for gesture classification (especially for deep learning) and
problems related with appearance of false positives and false
negatives in on-line classification. Moreover, many studies
approach gesture-based HRI in an isolated fashion and
not as an integrated framework that includes segmentation,
classification and the interface with the robot.

2 Segmentation and classification

The segmentation of continuous data streams in static and
dynamic blocks depends on several factors: (1) interaction
technologies, (2) classification method (supervised or
unsupervised), (3) if gestures are static, dynamic or both, (4)
if the inter-gesture transitions (IGT) were previously trained
or not, among other factors. Another problem is related with
the difficulty to eliminate the appearance of false positives
and false negatives. In the context of gesture segmentation,
it can be stated that false negatives are more costly than false
positives since they divide the data representing a dynamic
gesture into two sections, corrupting the meaning of that
gesture. False positives are more easily accommodated by
the classifier, which can report that the pattern is not a
trained gesture.

Real-time segmentation relies on the comparison of
the current state (frame) fi with the previous states,{
fi−1, . . . , fi−η

}
. We propose a method to segment a

continuous data stream into dynamic and static segments in
an unsupervised fashion, i.e. without previous training or
knowledge of gestures and the sequence, unsegmented and
unbounded [25]. The method detailed in [25] was partially
implemented and customized to the specific sensor data
used in this study (input data, sliding window size and
thresholds). We propose establishing a feasible (optimal
or not) single threshold for each motion feature using
a genetic algorithm (GA) – because the performance
function is non linear and non smooth – fed by a set
of calibration data. The GA parameters were obtained by
manual search. Gesture patterns with sudden inversions of
movement direction are analyzed recurring to the available
velocities and accelerations. The proposed method deals
with upper body gesture motion patterns varying in scale,
rate of occurrence and different kinematic constraints. A
sliding window addresses the problem of spatio-temporal
variability.

We consider that there is motion if there are motion
features above the defined thresholds. The threshold is a
vector, t0, with a length equal to the number of motion
features chosen, p. The features obtained from a frame
are represented by the vector t. The sliding window T is
composed of w consecutive frames of t. At an instant i, the
real-time sliding window T(i) is:

T(i) = [
t(i − w + 1) · · · t(i − 1) t(i)

]
(1)

At each instant i, the w sized window slides forward one
frame and T(i) is updated and evaluated. A static frame is
only acknowledged as such if none of the motion features
exceed the threshold within the sliding window. This way,
we guarantee that a motion start is acknowledged with
minimal delay (real-time). On the other hand, this also
causes a fixed delay on the detection of a gesture end, equal
to the size of the window w.

The proposed method to achieve the motion function
m(i) relies in the computation of the infinite norm of a
vector � that contains feature-wise binary motion functions:

m(i) =
{
1, if ‖�‖∞ ≥ 1
0, otherwise

(2)

where vector �, for each instant of time i, is calculated by
comparing the sliding window with the threshold vector:

�m = (max
g

∣∣Tmg

∣∣ ≥ ks · t0m), m = 1, . . . , p,

g = 1, . . . , w
(3)

in which ks represents a user-defined threshold sensitivity
factor and t0m the vector of thresholds of the motion
features. t0m is determined by an initial calibration process
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in which two sets of data with equal length/time are
acquired: static samples (recorded with the user performing
a static pose) and motion samples (recorded with the
user performing slow movements that activate the selected
motion features). These data are used to estimate the
segmentation error caused by an arbitrary threshold vector,
which is then optimized by a GA with variables bounded
by their maximum and minimum value in these data, a
population size of 100 and mutation rate of 0.075. The
sensitivity factor is then adjusted online for each user when
needed by trial and error according to the human body
shaking behaviour and the speed a dynamic gesture is
performed, especially for gestures with sudden inversions of
movement direction.

In an ideal system, the absence of movement would be
defined by null differences of the system variables between
frames. Therefore, the simplest set of features that can be
used for this method is the frame differences, �f, that at an
instant i is given by:

�f (i) = f (i) − f (i − 1) (4)

However, these features do not yield consistently reliable
results. For example, if we consider as input a position
in Cartesian coordinates, this approach performs poorly,
since the differences would be relative to the coordinated
axis. A motion pattern with a direction oblique to an axis
would have lower coordinate differences compared to a
pattern parallel to an axis with similar speed, thus producing
different results. This issue can be solved by replacing the
three coordinate differences with the respective Euclidean
length, directly acquired from the IMUs angular velocity
ω(i).

‖ω (i)‖ =
√

ωx(i)
2 + ωy(i)

2 + ωz(i)
2, i ∈ R

+ (5)

In the presence of gesture patterns with sudden inversions
of direction false negatives are very detrimental to the
classifier accuracy. The proposed solution is adding an extra
motion feature, the acceleration, a(i). The acceleration is
at its highest when an inversion of direction occurs, which
solves the low velocity problem. This feature does not cause
false positives in a static gesture and deals successfully

with the inversions of movement on dynamic gestures. The
accelerations are directly acquired from the IMUs.

In summary, the features for segmentation by motion
are the IMUs parameters representing motion, namely the
accelerations and angular velocity. They are organized in a
feature vector t:

t(i) = [
ω1(i) a1(i) · · · ωu(i) au(i)

]T
(6)

where ωu(i) is the angular velocity for IMU number u, and
au(i) is the acceleration for IMU number u.

2.1 Multi-layer neural networks

A two-hidden-layer Multi-Layer Neural Network (MLNN)
is proposed, Fig. 2. The state y(q+1) of each layer (q + 1) is
defined by the state y(q) of the previous layer (q):

y(q+1) = f (q+1)(y(q))=s(q+1)
(
b(q+1) + W(q+1)y(q)

)
(7)

where s is the transfer function, b is the biases vector and
W is the weight matrix. The estimation of b and W is
obtained by training the network with samples of which we
know the classification result a priori (training samples).
Given a set of training samples X with known target classes
tg (supervised learning), the objective is obtaining weights
and biases that optimize a performance parameter E, e.g.,
the squared error E = (t − y)2. The optimization is very
often done with a gradient descent method in conjunction
with the backward propagation of errors, method called
Backpropagation (BP). Specifically, we used the Scaled
Conjugate Gradient (SCG) BP method [39] which has the
benefits of not requiring user-dependent parameters and of
being fast to converge.

The performance function used was cross-entropy,
Ece = −tg· log y, which heavily penalizes very inaccurate
outputs (y ∼ 0) and penalizes very little fairly accurate
classifications (y ∼ 1). This is valid assuming a softmax
transfer function was used on the last layer. A log-sigmoid
function is also often used slogsig(x) = 1/1+e−x, s ∈ [0, 1].

BP is an iterative method that relies on the initialization
(often done randomly) of the weight and bias vector, w̃1

(k = 1). The next step is determining the search direction
p̃k and step size αk so that E (w̃k + αk) < E (w̃k). This

Fig. 2 Architecture of a
feed-forward MLNN with n

layers
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Fig. 3 Control architecture highlighting the central role of the PRTM.
The PRTM receives information from the gesture recognition system
and sends commands to the robot. In addition, the PRTM manages the
feedback provided to the human co-worker

leads to the update of w̃k+1 = w̃k + αkp̃k . If the first

derivative E′
(
w̃k 	= 0̃

)
, meaning that we are not yet at a

minimum/maximum, then a new iteration is made (k =
k + 1) and a new search direction is found. Else, the process
is over and w̃k should be returned as the desired minimum.
BP variations typically rely on different methods to find
p̃k , determination of αk or new terms to the weight update
equation. This often leads to the introduction of user-defined
parameters that have to be determined empirically.

2.2 Feature dimensionality reduction
and regularization

For the SG, no dimensionality reduction is proposed,
since the feature space is still small. To solve the issue

of undetermined feature size of the DG, we propose re-
sampling with bicubic interpolation. It allows to transform a
DG sample X(i), i ∈ iD, X ∈ M

d×η, which has a variable
number of frames η, into a fixed-dimension sampleX′,X′ ∈
M

d×η′
. Usually η′ ≥ η, being η′ arbitrarily defined as the

maximum η in all the samples i so that i ∈ iD . So, although
in almost every case the proposed transformation is up-
sampling the sample, it is also valid for new cases where
η′ < η, effectively down-sampling the sample.

interp : 
d×η → 
d×η′

X → X′ (8)

3 Robotic taskmanager

The gesture recognition acts in parallel with the called
Parametrization Robotic Task Manager (PRTM), which is
used to parametrize and manage robotic tasks with the
human co-worker in the loop, Fig. 3. Additionally, PRTM
is used to provide speech feedback to the user through
computer text-to-speech (TTS), and visual feedback using
a monitor. The gesture recognition has implemented the
methods presented in previous sections such as data sen-
sory acquisition, raw data processing, segmentation, and
static and dynamic gesture classification. The communica-
tion between PRTM and the gesture classification module
is achieved by using sockets TCP/IP. The PRTM communi-
cates with the robot through Ethernet.

When a gesture (static or dynamic) is recognized a
socket message is sent to the PRTM with information
about the recognized gesture. It works as a phone auto
attendant providing options to the human (speech feedback)
which selects the intended robot service using gestures. The
proposed PRTM includes in the first layer 2 options, BRING
and KINESTHETIC, Fig. 4. The BRING option refers to the
ability of the robot to deliver parts, tools, and consumables
to the human co-worker, while the KINESTHETIC is
related with the operation mode in which the co-worker can
physically guide the robot to the desired poses in space to
teach a specific task or to hold a part while he/she is working
on it. In the second layer, and for the BRING option, the
user can select Tools or Parts, with different possibilities

Fig. 4 The three layers of the proposed PRTM. The BRING and KINESTHETIC options are in the first layer. For the BRING option, we have in
the second layer two options to select PARTS and TOOLS. In the third layer, we have all the parts and tools available to be selected
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Fig. 5 BRING architecture with the role of the human co-worker, robot, and feedback

in each one (third layer). The BRING functionalities and
operation actions related with the human co-worker, robot
and user feedback are detailed in Fig. 5. The robot poses
were previously defined using teach-in programming, i.e.,
moving the robot end-effector to the target poses and saving
them.

The interactive process starts with the user performing a
gesture called “Attention.” This gesture makes the system
to know that the user wants to perform a given robotic task
parametrization. The speech and visual feedback informs
the human user about the selection options in the first
layer. The user has few seconds (a predefined time) to
perform a “Select” gesture to select the desired option.
After this process, the PRTM through images and text
displayed in the monitor and TTS asks the user to validate
the selected option with a “Validation” gesture. If validated
the PRTM goes to the next layer, if not validated the system
continues in the current layer. If the user does not perform
the “Select” gesture during the predefined time period, the
PRTM continues with the other options within the layer. The
procedure is repeated until the user selects one of the options
or until the PRTM through TTS repeats all of the options
three times. The process is similar for the second and third
layer. In the third layer the PRTM sends a socket message

to the robot to perform the parametrized task. If required, at
any moment the user can perform the “Stop” gesture so that
the system returns to initial layer and the robot stops.

The above interactive process consumes a significant
amount of time. In response to this problem, the PRTM can
be setup with the pre-established sequence of operations so
that the human intervention resumes to accept or not the
PRTM suggestions in some critical points of the task being
performed. The pros and cons of this mode of operation are
discussed in the Section 4.

4 Experiments and results

4.1 Setup and data acquisition

Five IMUs and a UWB positioning system were used to
capture the human upper body shape and position in space,
respectively, Fig. 6. The collaborative robot is a KUKA iiwa
with 7 DOF equiped with the Sunrise controller.

The 5 IMUs (Technaid Tech-MCS) are composed by
3 axis acelerometers, magnetometers and gyroscope. The
IMUs are synchronized in the Technaid Tech-MCS HUB
and an extended Kalman filter is applied to fuse sensor

Fig. 6 Wearable sensors applied
for the proposed HRI interface,
5 IMUs and a UWB tag
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Fig. 7 Representation of the 8
SGs

data to estimate IMUs orientation Euler angles α, β and γ .
In Bluetooth connection mode and for 5 IMUs the system
outputs data at 25 Hz. These data will be the input for the
gesture recognition module.

The UWB (ELIKO KIO) provides the relative position
of the human co-worker in relation to the robot. This
information is used to define if the human is close to the
robot. If the human is at less than 1 meter from the robot the
interactive mode is valid. The UWB tag is in the human’s
pocket and the 4 anchors are installed in the working room.

The sensors are connected to a computer runningMATLAB.
Sensor data are captured and stored in buffers. A script reads
the newest samples from the buffers and processes them.
The stream of data is segmented by the motion-threshold

method detailed in Section 2, Eq. 6, considering a sensitivity
factor of 3.0, and with the following segmentation features
related with the 5 IMUs:

t = [ω1 a1 ω2 a2 ... ω5 a5]
T (9)

Concerning the classification features, a full frame of data
from the IMUs is represented by f, Eq. 10, namely the IMUs
accelerations and Euler angles in a total of 30 DOF. These
features represent almost all representative data from IMUs
and were selected by manual search. A binary segmentation
variable m, Eq. 2, represents whether the frame belongs to a
dynamic segment or not.

f = [
ax1 ay1 az1 ... az5 α1 β1 γ1 ... γ5 m

]
(10)

Fig. 8 Representation of the 4
DGs
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Where axh, ayh and azh represent the accelerations
(including gravity effect) from IMUh with h = 1, ..., 5
along the coordinated axis of IMUh. The Euler angles αh,
βh and γh are relative to IMUhwith h = 1, ..., 5. The frames
f are arranged in static and dynamic samples according to
the segmentation output m.

4.2 Gesture data set

According to the functionalities to be achieved and industry
feedback, a dataset of continuous static/dynamic gestures
is used. It contains 8 SG, Fig. 7 and 4 DG, Fig. 8. These
gestures are composed by upper body arm data captured

Fig. 9 Example of 3 composed
gestures. B-DG indicates the
beginning of a DG, E-DG
indicates the end of a DG and
IGT the inter-gesture transition
between gestures



Int J Adv Manuf Technol (2019) 101:119–135 129

from IMUs, Eq. 10. Industry feedback was provided by
production engineers from automotive sector and by two
shop floor workers that experienced the system. They
indicated that the number of gestures to be memorized by
the robot co-workers should be relatively small, the co-
workers should be able to customize each gesture to a given
robot functionality, error in gesture classification should not
cause a safety problem or to be detrimental to the work
being done, and the co-workers should have feedback about
the process (for example they need to know if the robot is
moving or is waiting for a command). They selected these
gestures from a library of possible gestures we provided.
To avoid false positives/negatives, we implemented what
we call composed gestures, which are a mix of the SGs
and DGs mentioned above. The composition of a composed
gesture can be customized by each different user according
to the following rules: (1) the composed gesture begins
with a static pose with the beginning of a selected dynamic
gesture B-DG, (2) a DG, (3) a static pose with the end of
the dynamic gesture E-DG, (4) an inter-gesture transition
(IGT), and (5) a SG. Three examples of composed gestures
are detailed in Fig. 9. However, several other combinations
may be selected/customized by each different user.

Fig. 10 Human arms described by 2 unit vectors each (representing
orientation of arm and forearm)

The training samples for SGs S(iS) and DGs S(iD) were
obtained from two different subjects, subjects A and B
(60 samples each subject for each gesture (8 SGs and 4
DGs) in a total of 720 trained patterns). These two subjects
participated in the development of the proposed framework.

4.3 Features

For the SG, m = 0, the features for classification are all
the elements of f, excluding m. The notation for the ith-SG
feature vector is z′S ∈ R

30:

z′S = (
ax1 ay1 az1 ... az5 α1 β1 γ1 ... γ5

)
(11)

For DG, the features will be derived from f, Eq. 11,
namely the unit vectors representing the human arms
orientation. Each arm will be described by two rigid
links, with a unit vector representing each, arm oa(i) =(
oax, oay, oaz

)
i
and forearm of(i) = (

of x, ofy, of z

)
i
. From

the Euler angles of each IMU we can define the spherical
joints between each two sensors, such that we get three
orthogonal rotation angles between each two sensors. From
these, we can construct the direct kinematics for each arm
of the human body and obtain the unit vectors, Fig. 10. The
notation for the ith-DG feature vector is z′D ∈ R

12:

z′D = (oa1 oa2 of1 of2) (12)

Each DG, including gestures in the same class, normally
have a variable number of frames. For classification
purposes, we need to establish a fixed dimension for
all DGs, recurring to bicubic interpolation as detailed in
previous section. Given a sample X(i) : i ∈ iD with η

frames (X(i) ∈ M
12×η), the objective is to resample it to a

fixed size η′. The value for η′ can be chosen arbitrarily but
higher values have a detrimental effect on the classification
accuracy. For that reason, η′ should have an upper bound
such that η′ ≤ η, ∀η|X(iD) ∈ M

12×η. For the proposed
gesture dataset, the gesture length varies between 42 and
68 frames. Therefore, we choose the lowest η of the the
DG samples, η′ = 42. Applying the bicubic interpolation,
the result is a matrix Z ∈ R

12×42. Figure 11 shows an
example of gesture data before and after compression and
regularization for DG 2 (length reduced from 48 to 42
frames). It is visible that the data significance is maintained.
By concatenating every frame vertically, Z is transformed
into a vector z ∈ R

504:

z(i) = concat(Z(i)) =
⎛

⎜
⎝

Z(i)
•1
...

Z(i)
•42

⎞

⎟
⎠ (13)

The last feature processing step is feature scaling. It is
essential for achieving smaller training times and better
network performance with less samples. It harmonizes the
values of different features so that all of them fall within
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Fig. 11 DG 2 gesture data before (at left) and after compression and regularization (at right)

the same range. This is especially important when some
features have distinct orders of magnitude. Applying linear
rescaling, l:

l(x) = 2x − X̂T

X̂T
(14)

where ̂ is the max+min operator defined in Eq. 15. XT =(∪z(i) : i ∈ iT
)
is the set of unscaled features of the training

set. This operator is valid both for static and dynamic
gestures but the sample subsets used should be exclusive.

X̂i = maxXi• + minXi•, i = 1, ..., d (15)

4.4 Results and discussion: gesture recognition

Experiments were conducted to verify the performance and
effectiveness of the proposed framework. It was tested by
two subjects (subject A and B) that contributed to the
development of the system and created the gesture training
data set, and five subjects (subject C, subject D, subject E,
subject F and subject G) that are not robotics experts and
are using the system for the first time. Subjects F and G
are automotive plant workers with 25-30 years old and with
expertise in the assembly of components for gear boxes. For
the testing dataset, each subject performed each SG 60 times
(for the 8 SGs we have a total of 480 testin patterns for each

subject) and each DG 60 times (for the 4 DGs we have a
total of 240 testing patterns for each subject).

The proposed solution for gesture segmentation aims to
accurately divide a continuous data stream in static and
dynamic segments. The conducted experiments consisted
in the analysis of samples containing sequences of static
and dynamic behaviors. For each subject, ten composed
gestures were analysed, each with 2 motion blocks and 3
static blocks, Fig. 9.

Segmentation performance depends largely on the size
of the sliding window. The segmentation accuracy was
measured for different sliding window sizes. Considering
small sliding windows, there is excessive segmentation
(oversegmentation), leading to low accuracy. The best
results were achieved for a window size of 20.

The proposed unsupervised solution was compared with
two supervised methods, a one-class feed-forward neural
network (ANN) and a Long Short-Term Memory (LSTM)
network, Fig. 12. For both networks, inputs are the sliding
window data and a single output neuron outputting a motion
index. They were trained with the same calibration data
applied in the unsupervised method to achieve an optimal
sliding window size (data from subject A and subject B).

Table 1 shows the segmentation error results. Results
indicate that the segmentation error for the supervised meth-
ods (ANN and LSTM) is identical to the proposed unsu-
pervised solution. For subjects A and B, the segmentation
error is almost zero, justified by the fact that they tested

Fig. 12 LSTM network
architecture
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Table 1 Segmentation error (%) comparing the unsupervised proposed solution with two supervised methods

Subject A B C D E F G

Proposed solution (unsupervised) 0% 0% 8% 4% 10% 7% 9%

ANN (supervised) 0% 0% 6% 4% 6% 2% 8%

LSTM (supervised) 0% 2% 8% 4% 10% 4% 8%

a system calibrated/trained with data they produced. The
error detected for the other subjects (C, D, E, F, and G)
is mainly due to oversegmentation. Generally, oversegmen-
tation occurs in the IGT phase and is not critical for the
classification. The proposed unsupervised method is effec-
tive, especially if calibrated (threshold parameters) with
data from the user.

Concerning SG classification, §(i), i ∈ iS , 60 samples
from subject A and B were used for the training set (i ∈ iST )
and 60 samples from subjects A, B, C, D, E, F, and G for
the validation set (i ∈ iSV ). The validation set is not used
for optimization purposes. The loss of the network on this
set is monitored during optimization, which is halted when
this loss stops decreasing in order to prevent overfitting.

The MLNN architecture for SG classification, Fig. 13,
has 30 neurons in the input layer, which is the size of the SG
feature vector (Eq. 11). Also, it is composed by one hidden
layer with 50 neurons, having the hyperbolic tangent as the
transfer function. The output layer has 8 nodes, the number
of classes, with the softmax function as transfer function.

The accuracy results, Table 2, indicate an overall
classification accuracy on the testing set for subject A of
99.0% (475/480) and for subject B of 98.50% (473/480).
For subjects C, D, E, F and G that did not train the system
the accuracy was reduced, Table 2. SG1 was mistaken with
SG3, which are very similar gestures if the user is not
positioning the right arm correctly.

For DG classification §(i) : i ∈ iD , the training set is
composed by 60 samples from subject A and B (i ∈ iDT )
and 60 samples from subjects A, B, C, D, E, F, and G for the
validation set (i ∈ iDV ). The network architecture, Fig. 14,
has 504 input neurons, one hidden layer with 20 neurons and
the output layer has 4 output neurons, the transfer function
is the hyperbolic tangent in the first layer and the softmax
function in the last layer.

The gesture classification accuracy, Table 2, shows a
good accuracy for subjects A and B. Even for subject C,

D, E, F, and G that did not train the system the accuracy is
relatively high. These good results are due to the relatively
small number of DG classes. It should be noted that the
model was not trained with data from subject C, D,E, F and
G and no calibration was performed.

For the composed gestures, the accuracy is directly
related with the accuracy of the SGs and DGs.

Deep learning algorithms require a large number of
training data, being more suitable for the classification
of images and sequences of images. The results we
obtained with the proposed ANN-based classification
solution are satisfactory, especially considering that we
have few training data from wearable sensors and only
from two subjects. Nevertheless, the results are acceptable
for subjects C, D, E, F, and G, and excellent for the
subject A and B. In this context, we compared the proposed
MLNN method with a common classification method,
SVM. The SVMwas not optimized. We tried different SVM
methods recurring to the MATLAB Classification Learner,
obtaining the best results with the Medium Gaussian SVM
with a Gaussian kernel function. Results indicate that
SVM method presents interesting results but compares
unfavourably with proposed MLNN method, Table 2. The
results for subjects F and G are in line, or even better, when
compared with the results for the other three subjects that
did not train the system. This can be justified by the fact that
these workers are relatively young (average age of 25 years
old) and familiarized with information and communications
technologies (ICT).

4.5 Results and discussion: robot interface

The collaborative robot acts as a “third hand” by assisting
the human co-worker in an assembly operation by delivering
to the human shared workplace tools, parts, and holding
work pieces, Fig. 15. After a gesture is recognized it
serves as input for the PRTM that interfaces with the robot

Fig. 13 ANN architecture for
SG classification
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Table 2 Classification accuracy for both static and dynamic gestures

Subject A B C D E F G

SGs (proposed ANN) 99.0% 98.5% 94.2% 93.5% 89.6% 95.0% 90.1%

DGs (proposed ANN) 99.5% 99.0% 95.8% 92.5% 94.6% 96.9% 95.4%

SGs (SVM) 98.6% 97.6% 92.4% 88.3% 84.3% 89.5% 87.5%

DGs (SVM) 98.2% 97.4% 92.1% 88.7% 91.1% 92.1% 88.1%

and provides speech and visual feedback to the human
co-worker (Section 4), Fig. 3.

The framework was tested by the seven subjects
mentioned above. Subjects C, D, E, F and G received a
15 minutes introduction to the system by subjects A and B
that contributed to the system development and created the
gesture dataset. From the library of 8 SGs and 4 DGs, the
seven subjects chose the gestures that best suited them to
associate with the PRTM commands: “attention,” “select,”
“validation,” “stop,” “abort,” and “initialize” (according to
the functionalities detailed in Section 4). Finally, subjects C,
D, E, F, and G were briefed on the assembly sequence and
components involved.

The complete assembly task is composed of subtasks:
manipulation of parts, tools, consumables, holding actions
and screw. Some tasks are more suited to be executed by
humans, others by robots, and others by the collaborative
work between human and robot. When requested by the
human co-worker (using gestures), the robot has to deliver
to the human workplace the parts, consumables (screws
and washers) and tools for the assembly process. The parts
and tools are placed in know fixed positions. Moreover,
the human can setup the robot in kinesthetic precision
mode [40] to manually guide it to hold workpieces while
tightening the elements, Fig. 15. Although the gestures
recognition rate is high, the occurrence of false positives
and negatives was analysed. Our experiments demonstrated
that if a given gesture is wrongly classified the “validation”
procedure allows the user to know from the speech and
visual feedback that it happened, so that he/she can adjust
the interactive process.

The collaborative activities may present the risk of
potential collisions between human and robot. From the
UWB positional data, when a threshold separation distance
is reached the robot stops. The estimation of the separation
distance contemplates the velocity and reach of both robot

and human (dimensions of the human upper limbs), and
the UWB error (about 15 cm). In our experiments we
considered a separation distance of 1 meter. This is valid
when the robot is delivering the tools and consumables to
the human co-worker. The robot is also performing these
actions with a velocity according to safety standards so that
this stop operation is not mandatory. For the kinesthetic
teaching, the separation distance is not considered. During
the interactive process, the reached target points can be
saved and used in future robot operations. The impedance
controlled robot compensates positioning inaccuracies, i.e.,
the co-worker can physically interact with the robot
(kinesthetic mode) to adjust positioning.

On average, the time that passes between the recognition
of a gesture and the completion of the associate PRTM/robot
command is about 1 second. If the setup of the PRTM is
taken into account, with the selection of the desired options,
it takes more than 5 seconds.

The seven subjects filled a questionnaire about the pro-
posed interface, resulting in the following main conclusions:

1. The gesture-based interface is intuitive but delays the
interactive process. It can be complemented with a
tablet to select some robot options faster;

2. It was considered by all the subjects that the “vali-
dation” procedure slows the interactive process. The
subjects F and G indicated that this is discouraging from
an industrial point of view. Nevertheless, they indicated
that the problem is attenuated when we setup a given
sequence in the PRTM avoinding the validations;

3. The shop floor workers (subject F and G) indicated that
the main concerns they have are the safety (emergency
buttons recommended) and the need to make the
interactive process as simple as possible. They adapted
easily to the system but pointed that this can be a difficult
task for older workers. At this stage, we can assume

Fig. 14 ANN architecture used
for DG classification
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Fig. 15 Human-robot collaborative process. In this use case, the robot
delivers tools and parts to the human co-worker (top and middle) and
the robot holds the workpiece while the co-worker is working on it
(bottom). For better ergonomics the co-worker adjusts the workpiece

position and orientation through robot hand-guiding. The monitor that
provides visual feedback to the user is also represented, indicating the
task being performed, the next task and asking for human intervention
id required in each moment

that mainly these systems have to be operated by young
workers familiarized with basic ICT technologies;

4. Operating a version of the PRTM without all the
validations proved to be faster. Nevertheless, the system
presents lower flexibility, i.e., requires an initial setup
of the task sequence so that the human intervention
resumes to accept or not the PRTM suggestions with the
NEXT command;

5. The composed gestures are more complex to perform
compared to SGs and DGs. Nevertheless, they are more
reliable than SGs and DGs;

6. The automatic speech and visual feedback is considered
essential for a correct understanding of the interactive
process, complementing each other;

7. The subjects that were not familiarized with the system
(subjects C, D, E, F, and G) considered that working
with the robot without fences present some degree of
danger (they did not feel totally safe). The industry
workers indicate the need of one or several emergency
buttons placed close to the robotic arm;

8. All subjects reported that the proposed interface allows
the human co-worker to abstract from the robot
programming, save time in collecting parts and tools
for the assembly process, and have better ergonomic
conditions by adjusting the robot as desired. The

ergonomics factor was reinforced from subjects F and
G from industry.

The task completion time was analysed for the presented
assembly use case. The task completion time of the
collaborative robotic solution (eliminating the validation
procedures) is about 1.4 times longer than when performed
by the human worker alone. The collaborative robotic
solution is not yet attractive from an economic perspective
and needs further research. This result is according to similar
studies that report that the collaborative robotic solutions are
more costly in terms of cycle time than the manual processes
[41]. Nevertheless, the system demonstrated to be intuitive
to use and with better ergonomics for the human.

5 Conclusion and future work

This paper presented a novel gesture-based HRI framework
for collaborative robots. The robot assists a human co-
worker by delivering tools and parts, and holding objects
to/for an assembly operation. It can be concluded that the
proposed solution accurately classifies static and dynamic
gestures, trained with a relatively small number of patterns,
and with an accuracy of about 98% for a library of 8 SGs and
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4 DGs. These results were obtained having IMUs data as
input, unsupervised segmentation by motion and a MLNN
as classifier. The proposed parameterization robotic task
manager (PRTM) demonstrated intuitiveness and reliability
managing the recognised gestures with robot action control
and speech/visual feedback.

Future work will be dedicated to testing the proposed
solution with other interaction technologies (vision) and
adapt the PRTM to be easier to setup a novel assembly
task. In addition we will perform more tests with industry
workers.
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