
The International Journal of Advanced Manufacturing Technology (2018) 99:2789–2802
https://doi.org/10.1007/s00170-018-2674-6

ORIGINAL ARTICLE

Online fault detection and isolation of an AIR quality monitoring
network based onmachine learning andmetaheuristic methods

Radhia Fazai1 · Khaoula Ben Abdellafou2 ·Maroua Said1 ·Okba Taouali1

Received: 17 May 2018 / Accepted: 6 September 2018 / Published online: 15 September 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
The dynamic process monitoring is discussed in this paper. Kernel principal component analysis (KPCA) is a nonlinear
monitoring method that cannot be applied for dynamic systems. Reduced online KPCA (OR-KPCA)is used for fault
detection of dynamic processes, which is developed to built a dictionary according to the process status and then, it update
the KPCA model and uses it for process monitoring. Also the Tabu search metaheuristic algorithm is used in order to
determine the optimal parameter of the kernel function. In this paper, new approaches for online fault isolation, which is a
challenging problem in nonlinear PCA, are formulated. An extension of partial PCA and the elimination sensor identification
(ESI) to the case of nonlinear systems are presented in a feature space. The partial OR-KPCA and the elimination sensor
identification (ESI-KPCA) are generated based on the OR-KPCAmethod and they consist of developing a set of sub-models.
The sub-models are selected according to a pre-designed fault-to-residual structure matrix and by eliminating sequentially
one variable from the set of the variables. The proposed fault isolation methods are applied for monitoring an air quality
monitoring network. The simulation results show that the proposed fault isolation methods are effective for KPCA.

Keywords Principal component analysis (PCA) · Kernel PCA · OR-KPCA · Dynamic process · Fault detection ·
Fault isolation · Partial OR-KPCA · ESI-KPCA

1 Introduction

Process monitoring and fault diagnosis of industrial
processes have become ever-increasingly important because
of the rising demands for ensuring process safety and
improving product quality. As computer control systems are
widely used in modern industry, abundant process data are
collected and stored in historical database. Therefore, data-
driven fault diagnosis methods have received significant
interests from academics and engineers. Many data-
driven methods have been developed, including principal
component analysis (PCA) [1–4], independent component

1 Research Laboratory of Automation, Signal Processing
and Image (LARATSI), National School of Engineering
of Monastir, University of Monastir, Monastir, 4023, Tunisia

2 MARS (Modeling of Automated Reasoning Systems)
Research Lab LR17ES05, Higher Institute of Computer
Sciences and Communication Technologies (ISITCom),
University of Sousse, Sousse, Tunisia

analysis (ICA) [5–7], and fisher discriminant analysis
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(FDA) [8–10]. PCA is the most widely used data-driven
technique for process monitoring since it can effectively
deal with high-dimensional, noisy, and highly correlated
data by projecting the data onto a lower dimensional
subspace which contains sufficient variance information of
the original data.

Despite the proven performances of this technique, it is
necessary to mention that it is applied on a system whose
variables are mainly linearly related. In fact, PCA is a
linear projection method, which cannot effectively capture
the nonlinear variable correlations existing in real industrial
processes. To overcome the nonlinear short coming of
the classical PCA method, several nonlinear extensions of
PCA have been developed [11–13]. One of these methods
which is frequently used is Kernel principal component
analysis (KPCA) [14–17] KPCA can efficiently compute
the nonlinear principal components in high-dimensional
feature spaces by means of integral operators and nonlinear
kernel functions. The basic idea of KPCA is first to
map the input space into a feature space via nonlinear
mapping and then to perform PCA in that feature space.
The main advantages of KPCA are that it only solves
an eigenvalue problem and does not involve nonlinear
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optimization. KPCA has been applied successfully for
process monitoring and it has proven superior process
monitoring performance compared to linear PCA [18] and
[19]. In process monitoring with KPCA, fault detection is
performed with fault detection indices. Most used indices in
the feature space are the Hotelling’s T 2 index for monitoring
the principal component subspace and the SPE statistic,
which monitors the residual subspace [20] and [21].

However, a major limitation of KPCA-based monitoring
is that the KPCA model is time-invariant. Most real
industrial processes are time-varying. The time-varying
characteristics of industrial processes include changes in
the variance, changes in the mean, changes in the number
of significant principal components (PCs). Monitoring
processes with fixed KPCA model may lead to the
occurrence of false alarms which significantly reduce
the reliability of this method. To track the changing
characteristics of the industrial process, attention should be
paid more on the recent data and the adaptation of KPCA
model is necessary. To update the KPCA model, several
dynamic KPCA methods have been proposed [22–26]. One
of these methods is online reduced KPCA (OR-KPCA)
[27], which consists to extract a reduced number of kernel
function and then it updates the old KPCA model and
uses it for process monitoring. The OR-KPCA method
is performed in an online phase (One phase) and takes
into consideration the dynamic behaviors of the systems
by changing the model structure. It reduces significantly
the computation time required to detect faults in nonlinear
systems while conserving the structure of the data in the
feature space. It has been applied successfully for fault
detection of dynamic process data.

Once a fault is detected by the statistical monitoring
method, it is important to identify which variables are
responsible for causing the abnormality in the process. This
phase is named isolation. Based on the literature, only few
papers propose new nonlinear method for isolation [18, 28,
29]. To locate the faulty variables, [18] propose a method
for fault diagnosis employing the reconstruction method of
[30], which looks at fault identification index obtained when
a fault detection index has been reconstructed along the
direction of a variable However, this technique applies to
sensor faults or a process fault with a known direction, it
cannot be applied to identify faulty variables with unknown
directions. To cope with this problem, reconstruction-based
contribution for KPCA (RBC-KPCA) [28] is proposed for
fault identification. This method can guarantee the correct
diagnosis of the variable with the largest contribution to
the fault. However, these methods are applied to diagnosis
fault for nonlinear statistical process. Thus, they do not
consider the variation of parameters according to the
process operation changes. To handle the problem posed
by nonstationary data, extended versions of partial PCA

[31–34] and the elimination sensor identification (ESI)
[36] methods to nonlinear case have been proposed. These
methods aim to identify the faulty variable by taking into
account the changing characteristics of data. They consist
to apply the OR-KPCA method to a set of sub-models. The
sub-model is violated if a sensor or actuator associated with
any of the variables in the subset is faulty, but is insensitive
to faults associated with variables outside the subset. The
effectiveness of the two proposed monitoring methods
are evaluated using an air quality monitoring network
(AIRLOR). The simulation results prove the performances
of these methods.

The paper is outlined as follows. The concept of KPCA is
introduced in Section 2. The online reduced KPCA method
for fault detection is described in Section 3. The Tabu
search metaheuristic algorithm is presented in Section 4.
Section 5 presents the proposed online fault isolation
methods. Section 6 describes the application of the proposed
methods for monitoring the AIRLOR process. At the end,
the conclusions are presented in Section 7.

2 Kernel principal component analysis

To derive KPCA, we first map the training set X =
[
x(1) x(2)...x(N)

]T ∈ R
N×m, where N is the number of

samples and m is the number of process variables, into a
high-dimensional feature space F via a nonlinear mapping
φi = φ(x(i)) and then to apply a linear PCA in the feature
space F .

In the feature space, the inner product of two vectors
φi and φj is determined via a kernel function of the
corresponding vectors x(i) and x(j) as follows:

φT
i φj = k(xi, xj ) (1)

The function k(., .) is called kernel function. There exist
several types of these functions [37]. The representative
kernel functions are :

– Polynomial kernel : k(x, y) =< x, y >d

– Sigmoid kernel : k(x, y) = β0 < x, y > +β1

– Radial basis kernel : k(x, y) = exp
(
− (x−y)T (x−y)

σ

)

where d, β0, β1, c are specified a priori by the user.
Assuming that the vectors in the feature space are scaled

to zeros mean, the training data are denoted as

X = [
φ(x(1)) φ(x(2)) ... φ(x(N))

]T ∈ R
N×h (2)

where h >> m is the dimension of the feature space.
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The covariance Q can be expressed in the extended
feature space as follows:

Q = 1

N − 1
X T X

= 1

N − 1

N∑

i=1

φ(x(i))φT (x(i))

(3)

The kernel principal components can be obtained by solving
the eigenvector equation in the feature space:

μv = Qv (4)

where μ and v are an eigenvector and eigenvalue of Q.
From Eqs. 3 and 4 can be expressed as follows:

μv = 1

N − 1

N∑

i=1

φ(x(i))φT (x(i))v (5)

Unfortunately, the right-hand side of Eq. 5 is not tractable
since the kernel mapping is defined by an inner product
only. However, the following related matrix is tractable.

K = XX T

=
⎡

⎢
⎣

k(x(1), x(1)) · · · k(x(1), x(N))
...

. . .
...

k(x(N), x(1)) · · · k(x(N), x(N))

⎤

⎥
⎦

(6)

Multiplying X with both side of Eq. 5, the following
equation is obtained :

λX v = XX T X v (7)

where λ = (N − 1)μ.
Using kernel trick K = XX T , Eq. 6 can be expressed as

a simplified form as follows:

λX v = KX v (8)

Denote α = X v and rewrite (8) as follows:

λα = Kα (9)

Equation 8 shows that α and λ are an eigenvector and its
corresponding eigenvalue of the kernel matrix K .

From the expression of α = X v, v can be represented by
the following simple form:

v = λ−1X T α (10)

In the feature space, to determine the PCA model (λi and
vi), we first perform eigen-decomposition of Eq. 9. Then,
use Eq. 10 to determine vi . To guarantee that vT

i vi = 1,
Eq. 3 and the expression of α = X v are used to derive the
following form:

αT
i αi = vT

i X T XVi

= vT
i λivi

= λi

(11)

Therefore, αi needs to have a norm of
√

λi . Let us define a
unit norm eigenvector corresponding to λi by α0

i , such that
the following equation is satisfied:

αi = √
λiα

0
i (12)

In the feature space, the eigenvectors vi form a matrix Pf =[
v1 v2...v�...vN

]
, where � is the number of retained kernel

principal components. The first part P̂f = [
v1 v2 ... v�

]

represents the principal subspace that spans the maximal
variance between data. The second part P̃f = [

v� ... vN

]

defines the residual subspace that contains the noises. The
two subspaces are complementary. Using this configuration,
we estimate the KPCA model. Therefore, the number of
significant principal components (PCs) � is determined
based on the cumulative percent variance (CPV) criterion.
The CPV is a measure of the percent variance determined
by the first � PCs:

CPV(�) = 100

∑�
j=1

∑N
j=1

(13)

In this paper, the number of principal components is retained
when CPV attained a predetermined limit (95%).

From Eq. 10, P̂f can be rewritten in the following form:

P̂f =
[

1
λ1
X T α1

1
λ2
X T α2 ... 1

λ�
X T α�

]

=
[
X T α0

1λ
− 1

2
1 X T α0

2λ
− 1

2
2 ... X T α0

�λ
− 1

2
�

]

= X T PΛ− 1
2 (14)

where P = [
α0
1 α0

2 ... α0
�

]
and Λ = diag(λ1...λ�) are

the � principal eigenvectors and eigenvalues of the matrix
K , respectively, corresponding to the largest eigenvalues in
descending order.

Denote x as a new measured data of the sensor, φ(x) is
its mapped vector in the feature space F . The projection of
φ(x) on the principal and residual spaces are defined by:

t̂ = P̂f φ(x) (15)

t̃ = P̃f φ(x) (16)

In the feature space, it is preferred to have centered data.
Therefore, the centered vector φ is given by:

φ(x) = φ(x) − 1

N

N∑

i=1

φ(x(i))

= φ(x) − [
φ(x(1)) φ(x(2)) ... φ(x(N))

]
IN (17)

where IN = 1
N

[
1 . . . 1

]T ∈ RN .
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From Eq. 17, the kernel function of two centered vectors
φ(x(i)) and φ(x(j)) is expressed as follows:

k(x(i), x(j)) = φ(x(i))T φ(x(j))

= k(x(i), x(j)) − kT (x(i))IN

−kT (x(j))IN + IT
N KIN (18)

where k(x) = [
k(x1, x) k(x2, x) . . . k(xN, x)

]T
.

Using Eq. 18, the centered kernel vector k(x) is
determined as :

k(x) = [
φ(x(1)) ... φ(x(N))

]T
φ(x)

= F(k(x) − KIN)
(19)

where

F = I − E (20)

with I is the identity matrix and E = IIT
N .

Finally, the centered kernel matrix K can be expressed
from the non-centered kernel matrix K , as follows:

K = [
φ(x1) ... φ(xN)

]T [
φ(x1) ... φ(xN)

]

= FKF
(21)

Once the KPCA model is estimated during the learning
phase, faults can be detected by defining statistics in
the feature space. In general, KPCA-based fault detection
methods use the squared prediction error (SPE), which is
defined as the norm of the residual vector in the feature
space and is calculated as [27] and [38]:

SPE(x) = t̃ T t̃ (22)

From Eqs. 16, 17, 22 becomes equal to

SPE(x) = φ(x)T P̃f P̃ T
f φ(x) (23)

The product P̃f P̃ T
f can be determined as the projection

orthogonal to the principal component space as follows:

P̃f P̃ T
f = I − P̂f P̂ T

f (24)

Inserting (24) into (23), we obtain :

SPE(x) = φ(x)T (1 − P̂f P̂ T
f )φ(x)

= φ(x)T φ(x) − φ(x)T P̂f P̂ T
f φ(x) (25)

Inserting (14) and (19) into (25), the SPE index can be
written as

SPE(x) = k(x, x) − k(x)T PΛ−1P T k(x)

= k(x, x) − k(x)T Ck(x) (26)

where C = PΛ−1P T . The processus is considered in
normal operation if the following condition is satisfied:

SPE(x) < SPEα (27)

The control limit SPEα of the SPE statistic is calculated
from the χ2 distribution and it is given as

SPEα = gχ2
h,α (28)

where g = b
2a and h = 2a2

b
, with a and b are the mean and

variance of the SPE index.

3 Online Reduced KPCA for fault detection

Online Reduced KPCA (OR-KPCA) [27] is a method for
feature extraction and dimension reduction. It aims to find
a reduced data set, referred as dictionary, to represent
the original training set. Then, it consists to update the
KPCA model and use it for fault detection. The dictionary
is formed by the evaluation of the SPE index and an
approximation criterion [39–42]. Therefore, under normal
operating condition, an approximation criterion determines
whether it is necessary to update the dictionary or not.

3.1 Unchanged dictionary

In this case, the kernel function φ(x(k + 1)) corresponding
to the observation x(k + 1) is not included in the dictionary,
since it can be approximated by its elements. This can be
done by comparing φ(x(k + 1)) to its projection onto the
space spanned by the other r kernel functions , yielding the
following optimization problem :

εk+1 = minβ‖φ(x(k + 1)) −
r∑

j=1

βjφ(x(wj ))‖2H < ν (29)

where ν is a positive threshold parameter that controls the

level of sparseness. The optimal vector β = [
β1 · · · βr

]T
is

determined by the minimization of the left term of Eq. 29.
By developing the left term of the expression (29), this leads
to the following condition expression :

εk+1 = min
β

r∑

j,i=1

βjβik(x(wj ), x(wi))

−2
r∑

j=1

βjk(x(wj ), x(k + 1)) + k(x(k + 1), x(k + 1))

= min
β

βT Krβ − 2βT kr(x(k+1)) + k(x(k +1), x(k + 1))

(30)

where Kr
k ∈ Rr×r is the Gram matrix of the dictionary Dk

which is given by

Kr
k =

⎡

⎢
⎣

k(x(w1), x(w1)) · · · k(x(wr), x(w1))
...

. . .
...

k(x(w1), x(wr)) · · · k(x(wr)), x(wr))

⎤

⎥
⎦ (31)

The vector kr(x(k + 1)) is defined as follows:

kr(x(k+1)) = [k(x(w1), x(k + 1)) · · · (x(wr), x(k + 1))]T

(32)
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By solving (30), we obtain the vector β:

β = (Kr
k )−1kr(x(k + 1)), k = 1, ..., N (33)

In this case, the size of the dictionary remains unchanged.
Thus, Dk+1 = Dk .

The average Mk of the dictionary Dk , at instant k, is
defined by

Mk = 1

r

r∑

i=1

φ(x(wi)) (34)

The centering of the vector φ(x(k + 1)), at instant k + 1, is
given by

φ(x(k + 1)) = φ(x(k + 1)) − Mk (35)

The vector Mk+1 of the dictionary Dk+1 is not updated
(Mk+1 = Mk). Therefore, the centered Gram matrix
remains unchanged, K

r

k+1 = K
r

k .
Using Eq. 10, the eigenvector V r

k+1, at the instant k + 1,
can be written in the following form:

vr
k+1 = λ−1

k+1

r∑

i=1

αr
k+1,iφ(x(wi)), k = 1, ..., N (36)

The centered kernel vector k
r
(x(k + 1)) is given by

k
r
(x(k+1)) =[

k(x(w1), x(k + 1))...k(x(wr), x(k +1))
]T

(37)

3.2 Changed dictionary

In this case, the kernel function φ(x(k + 1)) corresponding
to the observation x(k + 1) cannot be efficiently approx-
imated by the other elements of the dictionary and thus
should be added in the dictionary. Thus, the size of the dic-
tionary is incremented to r + 1. Therefore, the dictionary
will be given by

Dk+1=[
φ(x(w1)) φ(x(w2)) . . . φ(x(wr)) φ(x(wr+1))

]T

(38)

The update of the vectorMk+1, at instant k+1, is determined
by

Mk+1 = 1

r + 1
(rMk + φ(x(wr+1))) (39)

The eigenvector is updated as follows:

V r
k+1 = λ−1

k+1

r+1∑

i=1

αr
k+1,iφ(x(wi)), k = 1, ..., N (40)

where wr+1 = k + 1.

The Gram matrix is updated by adding a column and a
row to the previous one, as follows:

K
r

k+1 =
[

K
r

k k
r
(x(k + 1))

k
r
(x(k + 1))T k(x(k + 1), x(k + 1))

]
∈ Rr+1×r+1

(41)

The inverse of the Gram matrix (Kr
k+1)

−1 is obtained by
applying the Woodbury matrix identity:

Kr
k+1

−1 =
[
(Kr

k )−1 0
0 0

]
+ 1

εk+1

[ −(Kr
k )−1kr(x(k + 1))

1

]

× [ −kr(x(k))T (Kr
k )−1 1

]

=
[

(Kr
k )−1 0
0 0

]
+ 1

εk+1

[ −βk

1

] [ −βT
k+1 1

]
(42)

According to Eq. 42, the vector of the coefficients βk+1 can
be expressed as

βk+1 = (Kr
k+1)

−1kr(x(k + 1)) (43)

The SPE index of the observation x(k + 1) using the
dictionary Dk+1 is defined by

SPE(x(k + 1)) = k(x(k + 1), x(k + 1))

−(k
r
(x(k + 1)))T Cr(k

r
(x(k + 1)))

(44)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
r
(x(k + 1)) = [

k(x(w1), x(k + 1))...k(x(wr+1), x(k +1))
]T

Cr = P r(Λr)−1(P r )T

Λr = diag(λ�1 ...λ�r+1)

P r = [
ᾱr

�1 ᾱr
�2 . . . ᾱr

�r+1

]

�r+1 is the number of retained principal components using

the dictionary Dk+1.

During the abnormal conditions of the process (SPE(x(k +
1)) > SPEα,k), the dictionary Dk+1 = [φ(x(w1))φ(x(w2))

. . . φ(x(wr))]T remains unchanged.

4 Selection of kernel parameter using Tabu
search algorithm

4.1 Principle

The kernel function is the core of the kernel method which
helps it to get an optimal solution. In general, the RBF
kernel, as a nonlinear kernel function, is a reasonable
first choice. The parameter σ is key element of the RBF
kernel and directly exerts considerable influence on the
generalization ability of the online reduced KPCA. The
selection of the kernel function and the corresponding
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parameter is the key of KPCA. The parameter σ of kernel
function has an effect on the partitioning outcome in the
feature space. If the value of σ is too large, it will lead to
over-fitting. If the value of σ is too small, it will lead to
under-fitting. In this part, we present an approach to select
what is optimal Gaussian kernel parameter to use when
applying the proposed online reduced KPCA technique.
The optimal kernel parameter is defined as the one that
can improve the fault detection performance . For many
industrial applications, minimizing the false alarm rate may
be the greatest performance criterion. Therefore, the choice
of the Gaussian kernel parameter needs to be selected
based on the given application. The tabu search algorithm
is applied to optimize the kernel parameter to use when
applying the online reduced KPCA algorithm.

4.2 Initial solution

In this study, the determination of the initial solution in the
tabu search algorithm is to optimize the σ for the current
online reduced KPCA model. Firstly, an initialization
solution is presented by random. To reduce the search
space referring to previous literature using the online
reduced KPCA model, it is recommended to introduce
the constraints of the parameter σ which respectively
attribute to the range σ ∈ [2−6, 26]. The solution is
computed by appending the nearest unused neighbor values
of the parameter with respect improve the fault detection
performance. The process repeats until all the neighbors are
visited.

5 Online fault isolation

In this section, two online fault isolation methods are
proposed. The partial OR-KPCA and the elimination sensor
identification (ESI) algorithm based on the OR-KPCA
method were developed in the nonlinear case. These
methods consist of developing a set of sub-models. This
sub-model is violated if a sensor or actuator associated with
any of the variables in the subset is faulty, but is insensitive
to faults associated with variables outside the subset.

5.1 Partial OR-KPCA

This method is an extension of partial PCA method which is
based on the generation of structured residuals [31–35]. The
concept of this method is to perform the OR-KPCA method
on a reduced vector where some variables are discarded
from the original vector. Therefore, the residual will only
be sensitive to faults associated with the variables which are
present in the reduced vector. These structured residuals are
generated according to a strongly isolable incidence matrix.

The rows of this matrix belong to residuals and its columns
to faults. The value “0” at an intersection indicates that the
residual does not respond to the fault while the value “1”
indicates that the residual is sensitive to this fault. Columns
of the incidence matrix are the Boolean fault codes obtained
in response to the particular faults. For the construction of
this matrix, it is necessary that

– The number of “0” contained in each column is equal
to that contained in each line.

– The number of lines is equal to the number of faults.

The incidence matrix strongly isolating if no column can
arise from another column by replacing a “1” with a “0”.

The procedure of achieving a structured partial OR-
KPCA set is as follows:

1. Apply the OR-KPCA method to the data matrix.
2. Construct an incidence matrix, preferably with strong

isolation properties.
3. Perform a set of partial OR-KPCAs with each one

implementing a row of the incidence matrix.

This procedure is illustrated in Fig. 1.
After the structured partial OR-KPCA set is obtained, it

can be used in online fault isolation. The procedure of online
isolation using partial OR-KPCA method is summarized by
the following steps:

1. Determine the SPEi (k), i ∈ 1, ..., q index and its
control limit of each partial model.

The control limit SPEα,i(k) of the SPEi (k) statistic
of each partial model is given as follows:

SPEα,i(k) = giχ
2
hi ,α

(45)

Fig. 1 Procedure of structured partial OR-KPCA
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Fig. 2 Procedure of localization
using partial OR-KPCA method

where gi = bi

2ai
and hi = 2a2i

bi
, with ai and bi are the

mean and variance of the statistic of each partial model.
2. Compare the indices to appropriate thresholds and form

the fault code SE(k) = [
SE1(k) . . . SEq(k)

]T
SEi

SEi (k) =
{
0 if SPEi (k) ≤ SPEα,i(k)

1 if SPEi (k) > SPEα,i(k)
(46)

3. Compare the fault code to the columns of the incidence
matrix to arrive at a localization decision.

The fault localization procedure using partial OR-KPCA
method is presented in Fig. 2.

5.2 The elimination sensor identification algorithm

The elimination sensor identification (ESI) algorithm has
been proposed by [36] in the linear PCA method. In
this paper, an extension of this method in the nonlinear
case is proposed. The ESI-KPCA algorithm consists, after
detecting the presence of a fault with the SPE index, to
eliminate each of the m variables sequentially from the set
of variables and recalculate the SPE index. Therefore, the
new SPE index calculated after the elimination of the j th
variable will be given by

SPE−j (x−j (k)) = k(x−j (k), x−j (k))−k(x−j (k))T C−j k(x−j (k))

(47)

where x−j (k) is the vector x(k) after the elimination of the
j th variables, C−j = P−jΛ−jP

T−j with P−j and Λ−j are
the � eigenvectors and eigenvalues of the matrix K after
elimination of the j th variables.

This quantity suggests the existence of an abnormal
situation in the data when

SPE−j > SPE(α,−j) (48)

where SPE(α,−j) is the control limit of the SPE−j index.
A quantity designated as the Qr , or the ratio between

the SPE−j and its control limit SPE(α,−j), is accordingly
calculated for each of the m OR-KPCA models as follows:

Qr = SPE−j

SPE(α,−j)

(49)

The eliminated variable, for which the ratio Qr is the
smallest, is considered as the faulty variable.

6 Application to air quality monitoring
network

In this section, the proposed methods for isolation are
applied to diagnosis of an air quality monitoring network
[43–47].

6.1 Description of air quality monitoring network

The air quality monitoring network (AIRLOR) working in
Lorraine, (France) consists of twenty stations located in
rural, peri-urban, and urban sites. Each monitoring station
consists of a set of sensors for measuring concentrations
of pollutants: carbon monoxide CO, oxides of nitrogen
(NO and NO2) measured by the same analyzer, the dioxide
sulfur SO2 and ozone O3. Moreover, some stations are
dedicated to the recording of additional meteorological
parameters. The measured meteorological parameters are

– Temperature ◦C,
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Fig. 3 Air quality monitoring station

– Global solar radiation (W/m2),
– Relative humidity (%),
– Atmospheric pressure (hPa)
– wind direction (degree),
– wind speed (m/s)
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Fig. 5 Time evolution of the reduced number of observations

Ameasuring station is a room in which analyzers are located
as it is shown in Fig. 3.

Fig. 4 Evolution of the
measurements O3, NO2, and
NO for the first station
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Fig. 6 Time evolution of the number of principal components

The outside air is pumped and brought to the analyzer
which will measure its content of one or more specific
pollutants. The air is drawn at about 3 m. The measurement

is done continuously every quarter of an hour, 24 h a
day and all year round. The measurement stations, spread
over different geographic areas, are connected to a central
computer via telephone line. The data is transmitted every
day. They are validated manually, processed statistically,
and analyzed before being transmitted to the media and a
national database.

The purpose of data validation is to detect functioning
abnormalities of the sensors principally those of the ozone
concentration (O3) and nitrogen oxides (NO and NO2).

6.2 Sensor fault detection and localization

In the current work, only six neighbor measurement stations
are considered. The dataset matrix X contains 18 variables,
x1 to x18 which correspond, respectively, to ozone O3 and
nitrogen oxides (NO2 and NO). In this study, a set of
1000 observations are generated by these six stations. In
this paper, the tabu search algorithm is used to determine
the optimal kernel parameter of the RBF function. The
value of kernel parameter σ is equal to 41.5. Using the
CPV criterion, the number of kernel principal components
retained for the identification of the KPCAmodel is equal to
65. The detection indicator used is the SPE for a confidence
limit equal to 95%.

The evolution of the measurements O3, NO2, and NO

of the station 1 is presented in Fig. 4.
Using the OR-KPCA method, Fig. 5 presents the

variation of the reduced number over time and Fig. 6 shows
the number of principal components variation over time. As

Fig. 7 Time evolution of the
SPE index using the OR-KPCA
method under normal operating
condition
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Fig. 8 Time evolution of the
SPE index using the OR-KPCA
method in the case of the fault
on the variable x2

Observation Number 
100 200 300 400 500 600 700 800 900 1000

O
R-

KP
CA

(S
PE

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

SPE
95%

shown in these figures, for a data set of 1000 observations,
the number of reduced observations is equal to 144 which is
equivalent to 14.40% of the number of initial data.

Figure 7 shows the fault detection results of the OR-
KPCA using the SPE index under normal operating

condition. For a control limit equal to 95%, it is shown from
this figure that the SPE index present some false alarm rates.

To illustrate the OR-KPCA method, a bias fault is
simulated on the variable x2 between samples 400 and 600.
The magnitude of the fault is equal to 35% of the range

Table 1 Incidence matrix for the AIRLOR

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18

r1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r2 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r3 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r4 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

r5 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

r6 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1

r7 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1

r8 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

r9 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

r10 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

r11 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

r12 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1

r13 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

r14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1

r15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

r16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

r17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

r18 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
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of variation of this variable. Using the OR-KPCA method,
the simulated fault is clearly detected with the SPE index
between measurements 400 and 600 as shown in Fig. 8.

After the presence of faults has been detected, it is
important to identify this fault. Therefore, we apply the
proposed partial OR-KPCA method. The incidence matrix
for the AIRLOR system is given in Table 1. According
to this table, a set of 18 partial OR-KPCAs model can be
constructed. Each model is insensitive to two variables.

The fault isolation results are shown in Fig. 9. The
experimental signatures are obtained from Fig. 8. A SPE
index greater than its control limit gives a “1” in the
corresponding fault code, and a SPE index less than its
control limit gives a “0.” Thus, the experimental signature in
the case of fault on variable x2 is given by (0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1). To identify the fault, we compare between the

experimental signature and the incidence matrix (Table 1).
As can be seen from Fig. 9 that the simulation results
showed complete agreement with the second column of the
incidence matrix. Therefore, the variable x2 is the faulty
one.

The result of application of the proposed ESI-KPCA
method to the AIRLOR process is shown in Figs. 10 and 11.
These figures represent, respectively, the time evolution
of the different indices SPE−j , ; j ∈ {1, ..., m} and the
quantity Qr . From Fig. 4, it is shown that the elimination of
the variable x2 makes it possible to obtain the index SPE−2

which is not affected by the fault. Therefore, the variable
responsible for this out-of-control situation is x2. Figure 11
shows that the variable x2 has the smallest quantity Qr

compared to the other variables which indicates that the
variable x2 is the faulty variable.

Fig. 9 Time evolution of
different SPEs corresponding to
the 18 partial OR-KPCA models
in the case of the fault on the
variable x2

S
P
E

1

0

1

S
P
E

1
0

0

1

S
P
E

2

0

1

S
P
E

1
1

0

1

S
P
E

3

0

1

S
P
E

1
2

0

1

S
P
E

4

0

1

S
P
E

1
3

0

1

S
P
E

5

0

1

S
P
E

1
4

0

1

S
P
E

6

0

1

S
P
E

1
5

0

1

S
P
E

7

0

1

S
P
E

1
6

0

1

S
P
E

8

0

1

S
P
E

1
7

0

1

Observation Number

200 400 600 800 1000

S
P
E

9

0

1

Observation Number

200 400 600 800 1000

S
P
E

1
8

0

1



2800 Int J Adv Manuf Technol (2018) 99:2789–2802

Fig. 10 The time evolution of
the different SPEs obtained
using the ESI-KPCA method
with a fault on variable x2
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Fig. 11 Isolation of the faulty
variable x2 using the quantity Qr
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7 Conclusions

In this paper, we propose a new fault detection and isolation
methods which are applicable to the process monitoring
using OR-KPCA technique. Recently, the fault detection
method using KPCA has been developed. In this paper,
an online RKPCA (OR-KPCA) method with a tabu search
algorithm are used in order to determine the optimal
parameter of kernel function. However, the fault isolation
scheme suitable for kernel PCA monitoring has rarely been
found. The proposed partial OR-KPCA and the ESI-KPCA
methods work like the standard partial PCA and the ESI in
linear PCA, which does not require the fault direction to
be known beforehand. The proposed partial OR-KPCA is a
useful method for fault isolation. By performing OR-KPCA
on subsets of variables, a set of structured residuals can be
obtained. The structured residuals are used in composing
a fault isolation scheme according to a properly designed
incidence matrix. Simulation results showed complete
agreement with the incidence matrix. An extension of the
ESI method in the linear PCA to the nonlinear case was
proposed in this paper, called ESI-KPCA. The ESI-KPCA
consists, after detecting the presence of a fault with the SPE
index, to eliminate each of them variables sequentially from
the set of variables and recalculate the SPE index. The fault
isolation power of the proposed methods have been tested
with real data of an air quality monitoring network process
with sensor faults. It was showed that, the proposed methods
were effective to correctly diagnose simple faults.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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