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Abstract
The power system dynamic response is impacted by uncertainties in the system operation such as load variation and large
penetration of intermittent generation. This paper presents a method based on the solution of the nonlinear Riccati equation
for the design of coordinated robust damping controllers for power systems. The resulting robust controller is of practical
application (fixed-order) with a performance guarantee based on quadratic stability. The method is applied to the 68-bus 5-
area benchmark test system and the designed controllers are assessed by modal analysis and nonlinear time simulation. The
obtained results show better performance of the proposed method compared to benchmark controllers.

Keywords Power system small-signal stability · Oscillatory dynamics damping control · Analytical optimization
methods · Uncertainties · Riccati equation

1 Introduction

1.1 Motivation

In the last years, the power system industry is going through
important changes with the inclusion of different types
of technologies such as intermittent renewable generation
(wind and solar photovoltaic), power electronic devices
(HVDC, FACTS and storage devices), and intensive use of
communication and information technologies tools (PMUs
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and smart meters). In this scenario, the high intermittent
electricity penetration may have negative impacts on a
system’s stability and reliability as well as other operational
issues [4, 18]. The most important consequence is the effect
in the inertial response capability of the power system due to
a reduction of the system inertia and so affecting its ability
to recover frequency and rotor angle stability with respect to
large and small disturbances, such as discussed in [22, 24,
29, 31].

The random variations of load, wind, and solar photo-
voltaic (PV) generation may also introduce uncertainties
in the power system operating conditions and so changing
how the power system electromechanical modes will evolve
turning difficult the design of damping controllers, such as
the Power System Stabilizers (PSSs). These difficulties can
be offset by several new power electronic devices installed
in the power network. These devices, such as HVDC,
FACTS, and storage devices even in wind turbines, together
with advanced monitoring, such as Wide-Area Measure-
ment Systems (WAMS), can improve the power system’s
observability and controllability. In this context, the devel-
opment of methods for the coordinated design of damping
controllers with guaranteed robustness in relation to changes
in power system parameters is necessary to ensure optimal
and reliable system operation [3].

Several methods were proposed in the literature to
solve the robust control problem for power systems under
different types of uncertainties [10, 12, 19, 21, 25, 30].
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Design tools based on Linear Matrix Inequalities (LMIs)
[21, 30] and Bilinear Matrix Inequalities (BMIs) [12, 13]
techniques were extensively explored because they can
guarantee global optimal solution considering uncertainties
in the form of linear time-invariant systems in polytopic or
norm-bounded domains. The LMI/BMI solvers are based on
convex optimization algorithms and it is well known that
they are strongly affected by the plant size (dimensionality).
The practical results of these limitations are that the current
LMI/BMI solvers quickly break down when plants get
sizable. Therefore, an usual practice is to adopt model
reduction techniques for the control design, but it means
controllers without guarantee of stability and performance
robustness. In contrast, in the early 2000, the evolution-
based search methods were extensively explored because
they proved to be able to deal with large dimensional
systems [5, 9, 14, 17, 20]. Another recently proposed design
method is based on support vector regression [32]. However,
these methods present a lack of a formal performance
guarantee based on quadratic stability as well as may have a
high computational burden.

1.2 Literature review

A deep and relevant literature review and discussion of
the main methods and challenges related to damping of
electromechanical oscillatory modes are presented in [1,
19]. The authors in [19] proposed a coordination method
based on conic programming with promising results.
However, the approach does not have a formal proof of
stability for all different operating points. Furthermore,
the numerical results presented in [19] were performed
in the well-known New England New York test system
by considering power system stabilizers (PSSs) in all
the generators; however, generators 13 to 16 are area-
equivalents and PSSs cannot be practically located on these
generators.

Several approaches combine LMI/BMI [12, 26, 30]
with H2 and H∞ minimization [7]. However, they rely
on reduced order system and are heavily dependent on
weights selection. To tackle these issues, the authors in [1]
proposed a fixed-order shaping damping controller design
considering parametric uncertainties. The main drawback of
the approach is that it is restricted to SISO (Single-Input
Single-Output) systems.

The Riccati Lyapunov-based methods are able to deal
with large dimensional systems such as presented in [11].
Similar to other Lyapunov-based methods, they are based on
a control law that forces the system to descend trajectories
around an equilibrium point. Recently, the authors in [33]
proposed a control scheme using dynamic stated estimation
and an extended linear quadratic regulator (ELQR) to
decentralized control design in power systems. The ELQR

method proves to have fast convergence and an adequate
performance to deal with the design of the proposed control
scheme. However, the proposed ELQR is restricted to SISO
systems and does not take uncertainties into account.

In [15], the authors present a Riccati Lyapunov-based
method to design a centralized damping controller for a two-
level control structure. The resulting controller uses phasor
measurements from a Wide-Area Measurement System
(WAMS) and then time delays were included in the design
stage. Although largely explored in literature the centralized
control structure is not used in industry. Additionally, the
proposed method does not consider uncertainties in the
operating condition.

A robust Linear Quadratic Regulator (RLQR) method
was proposed by the authors in [6]. This approach includes
system uncertainties that must satisfy matching conditions,
imposing proper requirements for the choice of weighting
matrices. The main disadvantage of this method is that not
all types of uncertainties satisfies the necessary matching
conditions. In addition, some empirical parameters must
also be properly configured and there is not a formal
procedure for it. These parameters have a strong potential
to affect the method convergence making difficult the
application for large power systems.

1.3 Contribution

The paper’s main goal is to present a robust design of
coordinated fixed-order decentralized damping controllers
for power systems. The proposed method is able to
deal with high-order power systems, without relying
on modal reduction methods. The method also includes
parametric uncertainties in the design with stability and
performance guarantee resulting on low-order robust
controllers. Furthermore, the method presents a simple
application and it is not necessary to contrate weights of
special parameters that can complicate the control design
especially for large power systems.

The method can be applied to different control schemes,
such as centralized, quasi-decentralized, and decentralized
[15]. The decentralized control scheme is more challenging
because of the controllability and observability constraints.
This control scheme was also chosen by the recent IEEE
benchmark models, which is the basis of comparison
[8]. The proposed method presents better results when
compared to IEEE benchmark controllers [8]. It should be
noted that the benchmark models rely only on conventional
generation in a way to properly evaluate the proposed
method performance; however, this method can be directly
applied for power systems with high penetration of
intermittent generation.

The paper is organized as follows. Section 2 presents the
power system modeling and control structure. The design
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method is presented in Section 3. Section 4, describes
the application of this method for power system control
design. In Section 5, the performance evaluation for the
damping controllers designed by the proposed technique is
performed via small-signal stability analysis, time-domain
nonlinear simulations, and a comparative analysis with
the stabilizers originally designed for the two adopted
test systems. Section 6 includes the conclusion and final
comments.

2 Control problem formulation

A structure based on phase compensation network is
adopted in this paper for the PSS-type damping controllers,
which is the structure commonly used by the power system
industry. The transfer function dci(s) for the ith controller
(in a total of p controllers) can be written in the Laplace
domain as

dci(s) = Ui(s)

Yi(s)
= ni

3s
3 + ni

2s
2 + ni

1s + ni
0

s3 + ai
2s

2 + ai
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0

(1)

≡ bi
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where three stages of phase compensation networks are
being considered. Also, Ui(s) and Yi(s) are the Laplace
transforms of the output ui(t) (an additional input signal
for the automatic voltage regulator) and the input yi(t)

(generator speed) of the compensator, respectively. The
equivalence between (1) and (2) is given by the relations
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Let us describe the transfer functions dci(s), i = 1, ..., p,
of the damping controllers to be designed in the following
form

U(s) = DC(s)Y (s) (4)

where U(s) = [U1(s) · · · Up(s)]′, Y (s) =
[Y1(s) · · · Yp(s)]′ andDC(s) is the transfer matrix given by

DC(s) =

⎡
⎢⎢⎢⎣

dc1(s) 0 · · · 0
0 dc2(s) · · · 0
...

...
. . .

...
0 0 · · · dcp(s)

⎤
⎥⎥⎥⎦ (5)

It is important to point out that the block diagonal form
in Eq. 5 guarantees the decentralization of the damping
controllers, which is a practical requirement of the power

system industry. A state-space realization of Eqs. 4–5 can
be obtained in the observable canonical form given by

ẋc = Acxc + Bcy (6)

u = Ccxc + Dcy (7)

where xc, y, and u are the vectors with, respectively, the
states, inputs, and outputs of the controllers in the time
domain. Also,

Ac =
⎡
⎢⎣
Ac1 · · · 0
...

. . .
...

0 · · · Acp

⎤
⎥⎦ , Bc =

⎡
⎢⎣
Bc1 · · · 0
...

. . .
...

0 · · · Bcp

⎤
⎥⎦ , (8)

Cc =
⎡
⎢⎣
Cci

· · · 0
...

. . .
...

0 · · · Ccp

⎤
⎥⎦ , and Dc =

⎡
⎢⎣

d1 · · · 0
...

. . .
...

0 · · · dp

⎤
⎥⎦ , (9)

where matrices Aci
, Bci

, and Cci
, i = 1, ..., p, are given by

Aci
=

⎡
⎣
0 0 − ai

0
1 0 − ai

1
0 1 − ai

2

⎤
⎦ , Bci

=
⎡
⎣

bi
0

bi
1
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Cci
= [

0 0 1
]

(11)

The most widely used techniques for the design of
damping controllers for synchronous generators are based
on a linear model of the power system in the state-space
form given by

ẋ = (A + �A)x + Bu (12)

y = Cx (13)

where x ∈ �n is the state vector. Also, u ∈ �p is the
vector with the outputs of the damping controllers, which
are introduced into the excitation systems at the input to the
AVR/exciter and y ∈ �p is the vector with the inputs of
the damping controllers, which comes from measurements
of the power system, such as the rotor speed of the
generators. In addition, A, B, and C are known matrices
of adequate dimensions, while �A is unknown but norm-
bounded matrix of an adequate dimension, representing
parameter uncertainties.

Now, the closed loop system formed by the intercon-
nection of the power system Eqs. 12–13 with the set of p

damping controllers in the state-space form (6)–(7) can be
described as

˙̄x = Āx̄ (14)

where x̄ = [
x xc

]T
and

Ā =
[
A + BDcC BCc

BcC Ac

]
(15)
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Fig. 1 68-bus test system [8]

Alternatively, by defining the matrices

Aa =
[
A BCc
0 Ac

]
, Ba =

[
B 0
0 I

]
, (16)

Ca = [
C 0

]
(17)

Ga =
[
Dc

Bc

]
(18)

and the augmented state vector xa = [
xT xT

c
]T
, an

augmented system can be obtained by

ẋa = Aaxa + Baua (19)

ya = Caxa (20)

where the closed loop system given by Eqs. 14–15 is
equivalent to the augmented system given by Eqs. 19–20
with the output feedback law given by ua = GaCaxa. If the
poles of the damping controller are fixed, the parameters ai

2,
ai
1 and ai

0, i = 1, · · · , p, are previously known, as well as
matrices Aa, Ba, and Ca. The control problem of interest is
then to determine matrices Dc and Bc, which corresponds to
the gain and zeros of the damping controllers.

3Methodology

The proposed method aims to find a robust static output
feedback controller, through the solution of Algebraic
Riccati Equation (ARE). The traditional unconstraint ARE
solution, for a known closed loop linear system, presents a

unique optimal solution for the state feedback control law
given by:

ua = −Kxa (21)

where K is the state feedback gain and must satisfy

K = R−1BT
a P (22)

and P is the solution of ARE:

AT
a P + PAa − PBaR−1BT

a P + Q = 0 (23)

The unconstraint problem is well known and can be
easily solved with traditional optimization methods. For the
sake of power system control system practical design, two
structural constraints must be satisfied: output feedback and
decentralization.

3.1 Structural constraints

By definition, the decentralization constraint must use only
the local states, measured in a specific bus, to feedback a
controller installed in the same location. This can be easily
implemented by imposing a block diagonal structure on the
state feedback matrix. The inclusion of the output feedback
constraint is more demanding than decentralization, as
described in [16]. In order to fulfill the output feedback
constraint, the author in [34] showed in Lemma 2 that every
K can be written as

K = GaCa − L (24)

where

Ga = (K + L)CT
a (CaCT

a )−1 (25)
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Fig. 2 Eigenvalues for the 68-bus 5-area power system without PSSs

Notice that the calculation ofGa from Eq. 25 determines the
output control law and, consequently, the matrices Dc and
Bc of the controllers (see Eq. 18).

After the solution of Eq. 23, the matrixK can be obtained
from Eq. 22 and the matrices Ga and L in Eq. 24 with the
same strategy presented in [34]: using (18), compute the
product GaCa and compare to the values between GaCa
and K. As a result, the values of Ga will be automatically
obtained since the matrix Ca is composed by nonzero
elements and the remaining values of K.

3.2 Proposed robust designmethod

The author in [34] proof that a linear uncertain continuous
system given by Eqs. 12 and 13 is robust static output
feedback stabilizable if:

1. There is a symmetric and positive definite matrix P =
PT > 0 and a matrix K if any one of the following
conditions is satisfied:

[A + B(K + L)]T P + P [A + B(K + L)] + QL < 0

(26)

where

QL = [�A + B(K + L)]T P + P [�A + B(K + L)]

(27)

2. There exist positive definite matrices P = PT > 0 and
R = RT > 0 and matrices K and L satisfying the
following matrix inequalities

AT P + PA − PB
(
R−1 + I

)
BT P + QL−

KT RK − LT L + (L + BT P)T (L + BT P) < 0
(28)

(
RK + BT P

)T

φ−1
L

(
RK + BT P

)
− R < 0 (29)

where

φL = −[AT P + PA − PB
(
R−1 + I

)
BT P + QL

−KT RK − LT L + (L + BT P)T (L + BT P)

(30)

The author also claims that [34], for the nominal model (12)
and (13), an approximate solution P,K to the inequalities
(28) and (29) is given by these two matrix equalities

AT P + PB(I + R−1)BT P + Qcn = 0 (31)

where

Qcn = (L+ BT P)T (L+ BT P) − LT L−KT RK+Q (32)

and

K = −R−1BTPCT(CCT)−1y (33)

Based in these assumptions, the following algorithm is
proposed [34].

3.3 Algorithm

Step 01: Specify the order and the poles of the controller
and, build the matrices Ac and Cc in the
canonical form such as (8) and (9)

Step 02: Set i = 1, P0 = 0, L0 = 0, Rc = (I + R−1)−1

and Q10 = 0
Step 03: Compute

Qci = Q + [
Li−1 + BT

a Pi−1
]T [

Li−1 + BT
a Pi−1

]
+Q1(i−1) − LT

i−1Li−1 − KT
i−1RKi−1

(34)
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Fig. 3 Eigenvalues for three operating points for the system with the
PSSs shown in [8]
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Table 1 Parameters of the decentralized controller

dcn Kdc m3 m2 m1 m0 a2 a1 a0

dc1 11.1104 623.0338 12107.5498 502.3416 15625 75 1875 15625

dc2 −21.9466 74.4940 183.1893 −189.5205 15625 75 1875 15625

dc3 −1.4246 619.4720 2404.9658 −8907.5353 15625 75 1875 15625

dc4 7.3661 734.3461 6948.3362 −5984.9137 15625 75 1875 15625

dc5 6.7409 −236.1566 −443.7997 −6635.2704 15625 75 1875 15625

dc6 −1.3684 −4982.8836 −75163.0694 −104280.3777 15625 75 1875 15625

dc7 3.2645 −257.4835 9427.5892 −976.2775 15625 75 1875 15625

dc8 8.2253 −55.4991 2068.7985 −11558.7928 15625 75 1875 15625

dc9 −0.0843 −16784.4280 −82250.9532 −7737780.0436 15625 75 1875 15625

dc10 9.1931 −31.5103 5963.3515 −21085.9658 15625 75 1875 15625

dc11 15.4778 14.9759 1382.1573 382.9916 15625 75 1875 15625

dc12 −8.9352 −412.4180 −11869.8078 −9128.7251 15625 75 1875 15625

Step 04: Solve the ARE:

AT
a Pi + PiAa − PiBaR−1BT

a Pi +Qci = 0 (35)

where Pi = PT
i � 0.

Step 05: Compute matrix Ki as

Ki = −R−1BT
a Pi (36)

Step 06: For given matrices Ki , Ca, compute the matrices
Gai and Li based on the strategy presented in
Section 3.1.

Step 07: Compute Q1i

Q1i = ||QLi ||I = I

(
nu∑
l=1

εlm||NT
l Pi + PiNl ||

)

(37)
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Fig. 4 Eigenvalues for three operating points for the system with the
proposed controllers

where εlm = max |εl |, l = 1, 2, ..., p and

Nl = Aal + Bal (Li + Ki ) (38)

Step 08: Compute er = ||Li − Li−1||, if er ≤ tol fo to
Step 10, otherwise increase i by one and go to
Step 3.

Step 09: If there is no solution, change Q and R or
decrease εlm and go to Step 3.

Step 10: Compute

Ga = (Ki + Li )CT
a (CaCT

a )−1 (39)

Step 11: Obtain Bc and Dc by

Ga =
[
Dc
Bc

]
(40)

4 Application to power system damping
design

In this section the coordinate controller design main steps
will be described as follows:
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Fig. 5 Rotor angle of the generator 14 for the load case −10%
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Fig. 6 Rotor angle of the generator 14 for the load base case

1. Weighting matrices: The methods based on Riccati
equation or linear quadratic regulator (LQR) are
strongly affected by the weighting matrices Q and R.
It is well known that Q penalizes the power system
states deviations and R the input to the excitation
system (control effort). The weights for the matrix
Q are chosen from the selected modes, mainly low
damped electromechanical modes, and these are heavily
weighted. In this work, the mode shapes, that give
an association of state variables and modes, are used
to determine the state variables to be weighted for
damping a set of oscillation modes. The R matrices
are weighted when some controller is injecting high
magnitude signals that may compromise the control
performance.

2. Controller Poles: There is no formal procedure for
selecting the poles. In general, the controller coordina-
tion main goal is to improve an existent controller con-
figuration. When the manufacturer installs the device,
for the utility company, it is already tuned using clas-
sical design methods and simplified models (infinity
bus machine) [19]. The proposed methodology can
be applied for re-tuning the existing stabilizers in the
system, aiming at the improvement of the oscillation
damping factor under several different operating condi-
tions. In this case, the poles of the controllers can be
chosen as the ones of the existing system stabilizers. On
the other hand, there is no particular constraint that they
must be the same.

3. Uncertainties: In this paper, these matrices were built
to cover the entire range of uncertainties of selected
operating points. This procedure guarantees that the
uncertain closed loop system will be quadratically
stable. For the selected operating points all elements
are included between the cases of −10% (C1) to +10%
(C2) of load variation w.r.t. the base case. In practice,
we set A equal to the state matrix obtained for the
case C1 and �A is the absolute difference between the
elements of the state matrices obtained for the cases

C1 and C2. In this work, the parameter εlm is set to
be limited between (−1, +1). If the method does not
converge εlm can be decreased to reduce the range of
the uncertainties.

5 Analysis and numerical simulations

A set of robust controllers was designed for the well-known
68-Bus 5-area power system considering three load levels:
a base load, such as specified in [8]; a decrease of “10%”
with respect to the base load (C1) and an increment of
“10%” of the base load (C2). The section starts with a
description of the 68-Bus 5-area power system following the
analysis of the controller performance for small-signal and
nonlinear time domain simulation perspective. The modal
analysis and nonlinear time domain simulations of these
three operating conditions were carried out with PacDyn
[28] and ANATEM software [2], respectively.

5.1 Test system description

The test system is an equivalent of the interconnected New
England and New York power system as shown in Fig. 1
[8]. All the generators are represented by the sixth-order
model as well as DC excitation systems (DC4B), except for
generator 9 which has a static excitation system ST1A. All
the loads are of constant impedance type.

This is the largest benchmark model for small-signal
analysis and control presented in [8]. The main challenge is
to damp its local and inter-area modes relying only on PSSs,
considering that three of its largest machines are system
equivalents and not actual power plants. There are four
inter-area modes with high participation from the generators
14, 15, and 16. Figure 2 shows the eigenvalues for the
three load levels considering the system without PSSs. It
can be observed that this system presents three unstable
oscillation modes as well as most of the oscillation modes
are not affected by the variation in the load conditions.
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Fig. 7 Rotor angle of the generator 14 for the load case +10%
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Fig. 8 Rotor angle of the generator 14 for the load case −10%

Three modes are strongly affected by the load conditions
and are highlighted in the Fig. 2. Modes 1 (M1) and 2 (M2)
are inter-area oscillation modes with high participation of
the generator 13. Mode 3 (M3) is a local mode with high
participation of the generator 9. These modes are differently
affected by the load variation: Mode 1 is strongly impaired
by the increase of load; on the other hand, Modes 2 and 3
are strongly impaired by low-load operating points.

This test system was also extensively explored in the
literature [8, 19, 27]. Due to the limited number of PSSs
installed, some inter-area modes with high participation
from generators 13 to 16 may be difficult to damp. Other
control schemes using WAMS or FACTS may fix this
issue; however, the main goal of this study is to check the
method performance in practical situations that do not allow
new control schemes or devices (limited controllability
and observability conditions). Consequently, following the
proposition of [8] only generators 1 to 12 are equipped with
PSS devices.

5.2 Small-signal evaluation

The eigenvalues for the three operating conditions con-
sidering the system with PSSs designed by the proposed
approach are presented in Fig. 4, while Fig. 3 presents the
eigenvalues with the PSSs shown in [8]. The authors in [8]
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Fig. 9 Rotor angle of the generator 14 for the load base case
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Fig. 10 Rotor angle of the generator 14 for the load case +10%

adopted classical methods for designing the PSSs [23]; how-
ever, some inter-area modes remained poorly damped. The
controller parameters of the robust control-designed method
are presented in Table 1. It can be observed in Fig. 3 that,
for the benchmark proposed controllers, the system became
unstable with the increase of the load. Additionally, the
Mode 4 (M4) related to generator 15 is also impaired by the
load increment.

Figure 4 shows that, despite the difficulties to damp
several electromechanical modes, the proposed method
is able to keep all the eigenvalues close to the suitable
minimum damping of 5% for the three load level conditions.
The load level variation slightly affects the modes behavior
as well as the proposed algorithm guarantee quadratic
stability performance for the three conditions.

5.3 Nonlinear time-domain simulations

A nonlinear time-domain simulation was carried out to
assess the system performance of the proposed approach
(LQR). Two large disturbances were applied: short-circuit
and disconnection of a transmission line.

5.3.1 Short-circuit

A 30-ms three-phase short-circuit was applied at bus 14,
cleared without any switching. The angle of generator 14
for the three load levels are presented in Figs. 5, 6, and
7. It is clear to see the better damping performance of
the controllers designed by the proposed approach (LQR)
compared to the performance of the controllers shown in [8]
(BCK). The proposed method is also able to keep the power
system stable for the load increment case (+10%) as shown
in Fig. 7.

5.3.2 Disconnection of a transmission line

This nonlinear simulation includes the contingency given by
a permanent disconnection of the transmission line 31–38 in
t = 1 s. The rotor angle of the generator 14 is presented for
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the three load levels in Figs. 8, 9, and 10. The simulations
results show that the controllers designed by the proposed
approach are able to damp out the oscillations faster than the
ones shown in [8] in all considered scenarios. The proposed
method is also able to keep the power system stable for the
load increment case (+10%) as shown in Fig. 10.

6 Conclusions

This paper presented a robust coordination approach
for designing decentralized controllers to stabilize multi-
ple oscillation modes. The resulting controller guarantees
quadratic stability for the specified range of uncertainties
as well as relax the restrictive matching condition speci-
fied in [6]. This method can be explored in different control
architectures [15] because it proves its satisfactory perfor-
mance for the challenging decentralized control scheme.
Test results in the 68-bus benchmark, with a limited number
of PSSs resulting in reduced controllability and observabil-
ity, show that the method is effective. No model reduction
methods were applied in the system and resulting con-
troller. The modal analysis indicates the control robustness
for different operating points at a range of uncertainties.
Furthermore, a nonlinear simulation performed verifies the
presented method concept and the designed decentralized
controller under various operating conditions.
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