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Abstract
Geometric errors measurement and identification for rotary table are important. However, precisely adjustment for the setup
position of a double ball bar in eachmeasurement pattern is inconvenient. This study proposes a novel optimization identification
method using a double ball bar to recognize the position-dependent geometric errors (PDGEs) of rotary axis. A mathematical
model for ball bar measurement is firstly constructed to map the relationship between measurement direction and position of the
double ball bar. And then, the setup positions of the double ball bar for PDGEs identification are analyzed. According to analysis
for setup positions of the double ball bar, simplified measurement patterns would be conducted by adjusting only two setup
positions for the ball bar and thus reduce the procedure of accurate adjustment for the ball bar. The PDGEs can be fitted as an nth
B-spline curve, on the account of its being smooth and continuous. To identify the PDGEs, an optimization method, by
computing the suitable value of control points of nth B-spline curve of errors to minimize the optimal value of the target function
between the actual measured value and the value derived from a theoretical measurement model, is proposed. Moreover, in order
to obtain the accurate value of control points of the error curve, the sensitivity analysis is conducted to acquire the sensitivity
matrix with respect to control points of errors. The PDGEs are able to be identified simultaneously after calculating the
appropriate values of control points of errors. The proposed identification method is validated by simulation and experiment.
The results prove the effectiveness of the proposed method.
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1 Introduction

A multi-axis machine tool, providing the ability to process
parts with complex shapes and high efficiency, is essential in
the field of processing industry [1]. The machining precision
is essential for multi-axis machine tool. Elements that cause
the processing inaccuracy include geometric errors, thermal
errors, and servo tracking errors [2]. Considering the non-

cutting conditions, the primary error sources are caused by
geometric errors [3]. The geometric errors resulting from im-
perfect assembly can be compensated for the repetitive nature
[4]. Therefore, accuracy geometric errors measurement for
machine tool is a key issue for improving the machine tools
accuracy, especially in ultra-precision occasion.

Geometric errors identification for linear axis is investigat-
ed from considerable studies by laser interferometer [5, 6].
However, the geometric errors for multi-axis machine tool
are difficult to measure directly because of the existence of
rotary axis. In terms of ISO 230-7 [7], position-dependent
geometric errors (PDGEs) and position-independent geomet-
ric errors (PIGEs) are the two primary error sources for geo-
metric errors of rotary axis. Geometric errors direct measure-
ment for rotary axis is still difficult now [8]. For indirect mea-
surement method, it is feasible to separate errors from mea-
surement results by a precise instrument. Several indirect
methods with a double ball bar [9–17], laser interferometer
tracker [18, 19], tough trigger probe [20, 21], and R-test [22]
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are proposed recently. The double ball bar, which convenient
to place on rotary axis without accessory equipment, is a suit-
able instrument for geometric errors measurement for rotary
axis by the control of linear axes simultaneously.

During the past decades, considerable researches have been
taken to geometric errors measurement and identification for
rotary axis by double ball bar. Zhu [4] presented an identifi-
cation method to recognize the geometric errors of rotary axis
for five-axis machine tool by a double ball bar. The test was
applied with the ball bar that is motionless relative to the
rotary axis reference coordinate when the axis rotates. Three
measurement positions of ball bar would be needed during the
test. Jiang [23] proposed an identification method for the
PIGEs of rotary axis by the ball bar. During the whole mea-
surement, the ball set on the workbench without disassembly
and the measurements were applied with or without extension
bar to isolate errors from other axes. Lee [24] proposed a
method to recognize the PIGEs of rotary axis with two mea-
surement paths. Chen [25] presented a method to recognize
the PDGEs and PIGEs of rotary table with a tilt table by two
steps. To identify the PDGEs, the ball bar is adjusted to three
different directions in turn. In each ball bar measurement po-
sition, the precisely adjustment procedure would be needed.
Lasemi [10] presented an identification method with double
ball bar for geometric errors of rotary axis by three-axis con-
trolled motions. A very large number of measurement points
are required to be measured for geometric errors identification
of rotary axis. Xiang [26] use ball bar to identify five PDGEs
of each rotary ax by five patterns. The PDGEs were measured
in sensitivity direction of double ball bar in each pattern and a
number of disassembly for double ball bar was conducted. Fu
[27] proposed a six-circle identification method based on dif-
ferential motion matrix. Six measurement patterns in three
different setup positions are implemented and each pattern is
required to measure in the sensitivity direction of double ball
bar. A decoupled method was proposed to identify geometric
errors of rotary axis [28]. However, the method required sev-
eral measurement patterns and every pattern needs accurately
adjustment for double ball bar.

From the above researches, troublesome adjustment for the
double ball bar would be needed. In order to propose a con-
venient identification method, this paper decreases the mea-
surement positions of double ball bar so as to decrease trou-
blesome adjustment for the double ball bar. The minimum
setup positions of double ball bar for recognition of six
PDGEs are investigated and B-spline curve of errors are used
for reducing the number of measuring points in each measure-
ment pattern. According to the previous researches, it is more
complicated to identify PDGEs rather than PIGEs for rotary
axis [8]. The approach that identifies PIGEs of rotary axis is
relatively mature [23, 24] and the method, which identifies
PDGEs of rotary axis, needs more setup and measurement
points of double ball bar or simultaneous control of axes

motion. In addition, numerous disassembly and setup posi-
tions of double ball bar would cause more setup errors and
thus affect the identified result of geometric errors. Precisely
adjusting double ball bar in each measurement pattern is also
troublesome. Moreover, the aforementioned studies mainly
concerned about the machine configuration with a tilting or
rotary table. For those configurations, the identification pro-
cedure can be simplified for setting the ball bar at the reference
coordinate origin of rotary axis. For the configuration with a
tilting head, little research has been done.

This paper proposed a novel identification method with
double ball bar to recognize the PDGEs of rotary axis on
machine configuration with a tilting head. A mathematical
model based on kinematic analysis is applied to deduce the
relationship between measurement direction and position of
double ball bar. In order to reduce the procedure of accurate
adjustment for double ball bar, only two setup positions would
be implemented and three measuring paths on each setup po-
sition of double ball bar would be applied during the measure-
ment. The angular errors and displacement errors would be
considered as an nth B-spline curve for its being smooth and
continuous. The value of these errors would be determined by
the control points of the nth B-spline curve. The PDGEs of
rotary axis is identified by calculating the appropriate value of
the control points of nth B-spline curves of errors, which min-
imize the target value of the objective function between the
actual measured value and the value derived from the theoret-
ical measurement model. Furthermore, sensitivity matrix with
respect to control points of errors was derived from sensitivity
analysis so as to acquire the more accurate control points.

The structure of this paper is as follows. Section 2 described
the detail for kinematic model of rotary axis. The identification
method for the PDGEs of rotary axis and the optimization
method are discussed in Section 3. In Section 4, the simulation
and experiment are conducted and their results are discussed.
Finally, the contribution of this article is given in Section 5.

2 Kinematic analysis of rotary axis

2.1 Geometric error of rotary axis

According to the ISO 230-7, the PDGEs consist of three dis-
placement errors and three angular errors. Their value changes
when the table rotates. The displacement errors and angular
errors of PDGEs are represented as symbol δi(j) and εi(j), re-
spectively. The direction of error is represented by subscript.
The character in brackets represents the motion axis. Taking
rotational axis B as an example, these symbols are shown in
Fig. 1 and written as Table. 1. As Fig. 2 shows, a commonly
used machine tool with a tilting head is taken to validate the
proposed method. On the workbench side, the rotational axis
B is set on the linear axis Z and rotates around Y direction. On
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the spindle side, a rotational axis C is equipped on the linear
axis Y. The linear axis Y is installed on the linear axis X.

2.2 Kinematic model

According to the kinematic theory [28, 29], the relationships
between the kinematic pair are shown in Fig. 3. As the method
that identify PIGEs of rotary axis is relatively mature to be
measured and compensated, assume the PIGEs of rotary axis
has been compensated. Based on the position Bi, the origin of
body Bi + 1connected with Bi can be expressed as

riþ1 ¼ ri þ si iþ1ð Þ þ εi iþ1ð Þ ð1Þ

where ri is the position vector in the direction from the refer-
ence frame (O0X0Y0Z0) to the reference frame of Bi (OiXiYiZi).
Si(i + 1) is the constant vector in the direction from the reference

frame (OiXiYiZi) to the reference frame(Ob
i X

b
i Y

b
i Z

b
i ),and εi(i +

1) is the position error vector.
The orientation transformation matrix of Bi + 1could be

expressed as

Aiþ1 ¼ AiC
0
i iþ1ð ÞA

0
i iþ1ð ÞA

00
i iþ1ð Þ ð2Þ

where Ai is the transformation matrix of Bi (OiXiYiZi) relative
to the reference frame (O0X0Y0Z0) and C

0
i iþ1ð Þ is the transfor-

mation matrix of the frame (Ob
i X

b
i Y

b
i Z

b
i ) relative to the refer-

ence frame (OiXiYiZi).

The origin of body Bi + 1can be expressed as follows:

riþ1 ¼ ri þ Ai S
0
i iþ1ð Þ þ C

0
i iþ1ð Þ A

0
i iþ1ð Þε

0
i iþ1ð Þ

� �� �
ð3Þ

Taking rotational axis B as an example, the transformation
matrixes can be expressed as

A
0
i iþ1ð Þ ¼

cos βð Þ 0 sin βð Þ
0 1 0

−sin βð Þ 0 cos βð Þ

2
4

3
5;A00

i iþ1ð Þ ¼
1 −εz βð Þ εy βð Þ

εz βð Þ 1 −εx βð Þ
−εy βð Þ εx βð Þ 1

2
4

3
5

; ε
0
i iþ1ð Þ ¼

δx βð Þ
δy βð Þ
δz βð Þ

2
4

3
5

ð4Þ

The detailed derivation procedure can be found in
Reference [28]. In comparison with the homogeneous trans-
formation matrices method [30], the modeling based on kine-
matic theory has the advantage: it provides explicit relation-
ship between the errors and the motion of kinematic bodies.

2.3 Double ball-bar measurement

In a practical application of ball bars, one ball is set on spindle,
and the other ball is placed on the workbench, shown in Fig. 4.
The geometric errors cause the deviation from ideal position
for the ball on the workbench. The ball bar fixed on the spindle
is also affected by the geometric errors of linear axes.
Fortunately, the errors of linear axes can be measured and
compensated directly [4]. Thus, for the spindle side, the error
of the ball can be eliminated. In this article, as the methods that
identify PIGEs of rotary axis are relatively mature to be mea-
sured and compensated, assume that the PIGEs of rotary axis
have been compensated. Therefore, only the PDGEs of rotary
axis cause the measurement deviation for double ball bar.
According to the kinematic method [28], the deviation be-
tween two balls can be represented by

Φdist ¼ rw−rtð ÞT rw−rtð Þ−R2 ð5Þ
where rw is the central position of the ball on the workbench. rt

Fig. 1 The PDGEs of rotary axis

Table 1 The notations of PDGEs of rotary axis B

Axis B Displacement errors Angular errors

X Y Z X Y Z

PDGEs δx(β) δy(β) δz(β) εx(β) εy(β) εz(β)

Fig. 2 Configuration of multi-axis machine tool
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is the central position of the ball on the spindle. R represents
the ideal ball bar length.

Based on the kinematic model, rw and rt can be deduced as

rw ¼ rb þ AbA
0
bw ε

0
bw þ A

0 0
bwr

0
p

� �
ð6Þ

rt ¼ rb þ AbA
0
bw r

0
p þ S

0
R

� �
ð7Þ

where r
0
p ¼ Px Py Pz

� �
T is the position vector between the

origin of the reference frame (Ob
i X

b
i Y

b
i Z

b
i ) and central posi-

tion of the ball on the workbench. S
0
R ¼ Rx Ry Rz½ �T is the

direction vector between two balls.
Because the errors of rotary axis are very small, ignore the

high-order deviations. Putting Eqs. (4), (6)–(7) into Eq. (5),
the distance can be written as

Φdist ¼ 2
Rx

Ry

Rz

2
4

3
5
T 0 −Pz Py

Pz 0 Px

−Py Px 0

2
4

3
5 εx βð Þ

εy βð Þ
εz βð Þ

2
4

3
5−2 Rx

Ry

Rz

2
4

3
5
T δx βð Þ

δy βð Þ
δz βð Þ

2
4

3
5 ð8Þ

Assume that ΔR is the ball bar variation distance.
Neglecting the high-order deviations for it is relatively small.

According to Reference [28], the variation distance for the
double ball bar are represented as

Φdist ¼ Rþ ΔRð Þ2−R2 ¼ 2RΔRþ ΔR2 ¼ 2RΔR ð9Þ

According to the Eqs. (8)–(9), the ball bar measurement
variation caused by geometric errors are deduced

RΔR ¼
Rx

Ry

Rz

2
4

3
5
T 0 −Pz Py

Pz 0 Px

−Py Px 0

2
4

3
5 εx βð Þ

εy βð Þ
εz βð Þ

2
4

3
5−

Rx

Ry

Rz

2
4

3
5
T δx βð Þ

δy βð Þ
δz βð Þ

2
4

3
5 ð10Þ

Eq. (10) can be simplified as

RΔR βð Þ ¼ −�PR−R½ � ε βð Þ
δ βð Þ

� �
ð11Þ

where P ¼ Px Py Pz½ �T is the position vector between the

origin of the reference frame (Ob
i X

b
i Y

b
i Z

b
i ) and the central

position of the ball on the workbench. R ¼ Rx Ry Rz½ �T
is the direction vector between two balls. The symbol �P rep-
resents the function P×. The operator ‘×’ performs the cross
product. ε(β) is the angular errors of rotary axis B. δ(β) is the
displacement errors of rotary axis B.where ε βð Þ ¼ εx βð Þ½ εy
βð Þ εz βð Þ� and δ βð Þ ¼ δx βð Þ½ δy βð Þ δz βð Þ�.

3 Identification of PDGEs of rotary axis

The PDGEs consist of three displacement errors and three
angular errors. Their value changes when the table rotates.
Some researchers applied method, which require three or
more setup procedures for double ball bar and two or more
measurement patterns in each setup position, for the identifi-
cation of six PDGEs simultaneously. It is inconvenient to pre-
cisely adjust the setup procedures for ball bar in eachmeasure-
ment pattern. For reducing the troublesome adjustment, the
minimum ball bar setup positions for recognition of six
PDGEs are investigated. The geometric errors are modeled
by the nth B-spline curve, which has the characteristic of local
control, which is contributed only in the range between the
first and last of specific knots and is zero elsewhere. By this
means, limited control points of errors are measured to deter-
mine the curve shape of errors rather than measure the whole
range of rotary axis. In addition, three measurement paths on
each setup position of double ball bar would be conducted,
which ensure each error of PDGEs contributes to the effect of
measurement deviation of double ball bar in each measure-
ment range. Moreover, a boundaryless constraint optimization
algorithm was applied to calculate the control points of errors
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Fig. 3 Kinematic notations of rotary axis

Fig. 4 Installation of double ball bar
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through the discrete measurement data and thus recognize the
six PDGEs of rotary axis.

3.1 Analysis of setup positions of double ball bar

Because the geometric errors are unavoidable, there is devia-
tion between the real position of the ball on the workbench
and the ideal position. Theoretically speaking, moving the ball
bar in the position P1 ( P1x P1y P1z½ � ) by the spindle to
three different direction R1 ( R1x R1y R1z½ � ) , R2

( R2x R2y R2z½ � ) and R3 ( R3x R3y R3z½ � ), the variation
distance ΔR ([ΔR1 ΔR2 ΔR3]) can be acquired from the ballbar
test software. From Eq. (11), it can be simplified as

RΔR ¼ R
ΔR1

ΔR2

ΔR3

2
4

3
5 ¼

−�P1R1−R1

−�P1R2−R2

−�P1R3−R3

2
4

3
5 ε βð Þ

δ βð Þ
� �

ð12Þ

In order to let Eq. (12) have the unique solution, according
to linear algebra theory [31], there exit three coefficients (κ1,
κ2and κ3). Only when they are all equal to zero (κ1 = 0, κ2 = 0
and κ3 = ;0), Eq.(13) is workable. It can be simplified as

κ1 −�P1R1−R1½ � þ κ2 −�P1R2−R2½ � þ κ3 −�P1R3−R3½ � ¼ 0 ð13Þ

where κ1, κ2,and κ3 are corresponding parameters. Obviously,
if the three directions (R1, R2, R3) of double ball bar are non-
linear correlation relative to each other, the coefficient matrix
in Eq. (12) would be nonsingular. Thus three non-linear

correlation directions (R1, R2, R3) exit making the solution in
Eq. (12) unique.

Then, adjust the position of the ball, on the workbench, to
the positionP2 ( P2x P2y P2z½ � ) andmoving the ball bar by
the spindle to two different directions (R4, R5), the variation
ΔR (ΔR4, ΔR5) can be acquired. From Eq. (11), it can be
simplified as

RΔR ¼ R

ΔR1

ΔR2

ΔR3
ΔR4

ΔR5

2
6664

3
7775 ¼

−�P1R1−R1

−�P1R2−R2

−�P1R3−R3

−�P2R4−R4

−�P2R5−R5

2
66664

3
77775

ε βð Þ
δ βð Þ

� �
ð14Þ

In order to let Eq. (14) have the unique solution, according
to the above theory, there exit five coefficients (κ1, κ2,
κ3, κ4,and κ5) . Only when they are all equal to zero, Eq.
(15) is workable. It can be simplified as.

κ1 −P1R1−R1

h i
þ κ2 −P1R2−R2

h i
þ κ3 −P1R3−R3

h i

þκ4 −P2R4−R4

h i
þ κ5 −P2R5−R5

h i
¼ 0

ð15Þ

With multiple P1 on both sides of Eq. (15), it can be
expressed as

κ1 −P1P1R1−P1R1

h i
þ κ2 −P1P1R2−P1R2

h i
þ κ3 −P1P1R3−P1R3

h i

þκ4 −P1P2R4−P1R4

h i
þ κ5 −P1P2R5−P1R5

h i
¼ 0

Table 2 Measurement patterns for PDGEs of rotary axis B

1st measurement pattern

2nd measurement pattern 3rd measurement pattern 4th measurement pattern

5th measurement pattern 6th measurement pattern 7th measurement pattern
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It is obviously, P1�P1 =0, then

κ1 0−P1R1½ � þ κ2 0−P1R2½ � þ κ3 0−P1R3½ � þ κ4 −P1P2R4−P1R4

h i

þκ5 −P1P2R5−P1R5

h i
¼ 0

ð16Þ

According to the Eq. (16), if the (− P1�P2 κ4R4 þ κ5R5ð Þð Þ
≠0 ), Only when they are all equal to zero (κ1 = 0, κ2 = 0, κ3 =
0, κ4 = 0, κ5 = 0), Eq.(16) is workable. Obviously, it is easily
to find two non-linear correlation directions (ΔR4, ΔR5) of the
double ball bar to make the formula P1�P2 κ4R4 þ κ5R5ð Þð Þ
not equal to zero and not parallel to P2 and P1 if five coeffi-
cients (κ1, κ2, κ3, κ4,and κ5) are not equal to zero together.

Finally, moving the ball bar by the spindle to one additional
direction (R6), the variation ΔR (ΔR6) can be obtained. From
Eq. (11), it can be simplified as

RΔR ¼ R

ΔR1

ΔR2

ΔR3
ΔR4

ΔR5
ΔR6

2
666664

3
777775
¼

−�P1R1−R1

−�P1R2−R2

−�P1R3−R3

−�P2R4−R4

−�P2R5−R5

−�P2R6−R6

2
6666664

3
7777775

ε βð Þ
δ βð Þ

� �
ð17Þ

Firstly, the three direction (ΔR4, ΔR5,and ΔR6) of double
ball bar should be a non-linear correlation relative to each
other to ensure the formula ( −�P2R4−R4

�
−�P2R5−R5 −�P2R6−

R6� ) is nonsingular. In order to let Eq. (17) have the unique

solution, according to the above theory, there exit six coeffi-
cients (κ1, κ2, κ3, κ4, κ5, and κ6), Only when they are all equal
to zero, Eq.(18) is workable. It can be simplified as.

κ1 −P1R1−R1

h i
þ κ2 −P1R2−R2

h i
þ κ3 −P1R3−R3

h i

þκ4 −P2R4−R4

h i
þ κ5 −P2R5−R5

h i
þ κ6 −P2R6−R6

h i
¼ 0

ð18Þ

Multiple P1 on both sides of Eq. (18), it can be expressed as

κ1 0−P1R1½ � þ κ2 0−P1R2½ � þ κ3 0−P1R3½ � þ κ4 −P1P2R4−P1R4

h i

þκ5 −P1P2R5−P1R5

h i
þ κ6 −P1P2R6−P1R6

h i
¼ 0

ð19Þ

A c c o r d i n g t o E q . ( 1 9 ) , i f t h e
− P1�P2 κ4R4 þ κ5R5 þ κ6R6ð Þð Þð ≠0Þ, only when they are

all equal to zero (κ1 = 0, κ2 = 0, κ3 = 0, κ4 = 0, κ5 = 0,

Table 3 The measurement parameters for double ball bar in
measurement patterns (mm)

Patterns 1st 2nd 3rd 4th

Position (0, 40,0) (0, 40,-15) (0, 40,-15) (0, 40,-15)

Direction (0,100, 0) (94.8,0,31.6) (70.7,70.7,0) (0,70.7,70.7)

Patterns 5th 6th 7th 8th

Position (− 15, 40,0) (− 15, 40,0) (− 15, 40,0) (− 20, 80,80)
Direction (94.8,0,31.6) (70.7,70.7,0) (0,70.7,70.7) (43.3,75,50)

Fig. 5 Flowchart of identification of PDGEs of rotary axis
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and κ6 = 0), the Eq. (19) is workable. However, because
the three directions (ΔR4, ΔR5, and ΔR6) are non-
linear correlations relative to each other, there are al-
ways exits (κ4 ≠ 0, κ5 ≠ 0andκ6 ≠ 0) to make the formula
(κ4R4 + κ5R5 + κ6R6) parallel to the position vector in
the direction from the origin to the position P2 so as
to make the formula − P1�P2 κ4R4 þ κ5R5 þ κ6R6ð Þð Þð
¼ 0Þ. Thus, Eq. (17) is a singular matrix and does not
have a unique solution for geometric errors.

From Eq. (14), the five geometric errors in PDGEs can
be recognized in two setup procedures for double ball
bar. According to Eq. (17), six PDGEs of a rotary axis
could not be identified in only two setup positions.
Fortunately, the displacement error δy(β) is easily mea-
sured and compensated. The ball bar direction, which
perpendicular to the workbench, is in accordance with
the error δy(β). Thus, separate displacement error δy(β)
from other PDGEs of a rotary axis and then measure
and compensate it. For doing that, the rest of the five
PDGEs can be identified in only two setup positions.

3.2 Measurement path of double ball bar

An effective method is performed for PDGEs identification
with only two setup positions. The measurement procedures
are shown in Table 2.

In the first measurement pattern, place the ball on the rotation

center of workbench, and set the ball bar direction S
0
R ¼

0 R 0½ �T and choose setup position r
0
p ¼ 0 Py1 0½ �T

on rotary table. Substitute those parameters into Eq. (11); the
equation is deduced below

RΔR βð Þ ¼ −
0
R
0

2
4

3
5
T δx βð Þ

δy βð Þ
δz βð Þ

2
4

3
5 ð20Þ

According to Eq. (20), the direction of the ball bar is in ac-
cordance with the error δy(β) without the influence of the other
errors in PDGEs, substituting Eq. (20) into Eq. (10) to deduce the
variation RΔR(β).Thus, the error δy(β) is expressed as

δy βð Þ ¼ −ΔR βð Þ

In order to identify the rest of the PDGEs, three measure-
ment directions derived from a space spherical helix motion
path on each measurement setup position of double ball bar
are conducted. The space spherical helix formula is expressed
as follows

SR ¼
Sx
Sy
Sz

2
4

3
5 ¼

Rsin 0:5βsð Þcos nβsð Þ
Rsin 0:5βsð Þsin nβsð Þ

Rcos 0:5βsð Þ

2
4

3
5 ð21Þ

where R is the radius of the measurement path, n is the number
of helical line, βs is the rotation angle of spherical helix. Sx, Sy,
and Sz are the vector components in the x, y, and z directions of
the ball bar, respectively.

The measurement procedures contain four steps and are
listed as follows.

(a) The 2nd measurement pattern is selected. Adjust the po-
sition of ball, which is located on the workbench, to the

position rp1 ¼ H Py1 0½ �T and moving the ball by

the spindle to the direction SR1 ¼ Sx1 Sy1 Sz1½ �T .
When the rotary table rotates, keep the ball bar stationary

Fig. 6 The generated displacement errors and angular errors of rotary axis

Table 4 The parameters
for modeling of PDGEs PDGEs δi(j) εi(j)

Number of control points 7 6

Order 4 4
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relative to the rotary axis coordinate system and record
the deviation of the ball bar. The full process will be
repeated until the measurement procedure is finished.

(b) As the 3rd measurement pattern shows, the rotary table
and linear axes move synchronously to change the direc-

tion of the ball bar to SR2 ¼ Sx2 Sy2 Sz2½ �T . It stops
to record the deviation of the ball bar at each measure-
ment angle during the measurement until the measure-
ment is finished.

(c) Then, the direction of the ball bar are adjusted to SR3
¼ Sx3 Sy3 Sz3½ �T by the simultaneous movement of
the rotary table and linear axes. As shown in the 4th
measurement pattern, it stops to record the deviation of
the ball bar. The full process will be repeated until the
measurement is completed.

(d) Finally, the ball bar has been adjusted to the mounting

position (rp2 ¼ 0 Py1 H½ �T ), and the ball bar is not
disassembled from the socket during the whole measure-
ment. Other measurement procedures (5th, 6th, and 7th

measurement patterns) will be executed as the above
measurement procedures. Thus, there are six measure-
ment values of the rotary table, which is enough to the
solution for five geometric errors.

The identification models consist of the six measurement
results and the six geometric errors from Eq. (11).

RΔR ¼ R

ΔR1

ΔR2

ΔR3
ΔR4

ΔR5
ΔR6

2
666664

3
777775
¼

−�rp1SR1−SR1
−�rp1SR2−SR2
−�rp1SR3−SR3
−�rp2SR1−SR1
−�rp2SR2−SR2
−�rp2SR3−SR3

2
666664

3
777775

ε βð Þ
δ βð Þ

� �
ð22Þ

The displacement error δy(β) in PDGEs has been identified
before the above measurement procedures. The rank of coef-
ficient matrix of Eq. (22) must be equal to 5 to ensure the
solution for Eq. (22). And, the setup parameter H should sat-
isfy the condition (H ≠ 0). The measurement results of

Fig. 8 Comparison results of real distance errors and predicted ones and residual errors

Fig. 7 The identified displacement errors and angular errors of rotary axis
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displacement error δy(β) are put in Eq. (22), and thus, the rest
of the five PDGEs can be identified simultaneously.

3.3 Parametric modeling of PDGEs

For angular errors and displacement errors are generally
smooth, continuous, and repeatable, some researchers
applied the polynomials to model geometric errors based
on discrete measurement results [5, 32, 33]. As it is
commonly used in numerical fitting, nth B-spline curve
has the characteristic of local control to change the
curve shape, which is contributed only in the range
between the first and the last of specific knots and is
zero elsewhere. And thus, some false measurement
points have little influence for the fitting curve of geo-
metric errors, and limited control points of errors are
needed to be measured to determine the curve shape
of errors rather than measure the whole range of rotary
axis. The nth B-spline models for these errors are rep-
resented as follows

δ* βð Þ ¼ ∑
n

i¼0
diN δ*i;k uð Þ

where direpresents the control point and N δ*i;k uð Þ is the
basis function for specific error δ∗. The subscript i rep-
resents the sequence number and the second subscript k
is the order.

Generally speaking, the control point determines the
curve shape of errors if the suitable number of control
points and order are chosen. To further determine the

values of the control points of errors, a method based on
optimization method is presented.

3.4 Identification based on optimization method
and sensitivity analysis

According to Eq. (11), the measurement deviation data of the
ball bar caused by the geometric errors of rotary axis is repre-
sented as ΦR(β). During the actual measurement test, the
measurement value in the ball bar measurement system can
be represented by ΦM(β) . Therefore, the objective function
can be deduced:

J ¼ ΦM βð Þ− ΦR βð Þð Þ2

where objective function J represents the square deviation
between the value of actual measurement and the value de-
rived from the kinematic theory.

Obviously, ΦM(β) is the measurement value. So, the value
of objective function J is related to the identified results of
geometric errors. If the identified results of geometric errors
are close to the measurement value, the value of ΦR(β) would
be close to theΦM(β), and thus, the objective function Jwould
be close to zero. Then, the optimization task is represented by

minJ ¼ min ∑
2π

β¼0
ΦM βð Þ−ΦR βð Þ½ �2

�����
δ;ε

ð23Þ

As is well known, optimization method is widely
used in engineering application. In this paper, a bound-
aryless constraint optimization algorithm has been ap-
plied to calculate the value of geometric errors.
However, the boundaryless constraint optimization algo-
rithm needs a troublesome iterative procedure, and it is
easy to calculate the inaccuracy results for the control
points of PDGEs and thus result in failure of identifi-
cation, if the search direction is not restricted and con-
firmed. For the accurate value of control points of errors
and improving the efficiency of the optimization algo-
rithm, the sensitivity analysis is adopted to acquire the

Table 5 The measurement parameters for double ball bar in measurement patterns (mm)

Patterns 1st 2nd 3rd 4th

Position (0, 83.4,0) (5, 83.4,0) (5, 83.4,0) (5, 83.4,0)

Direction (2.6,4.5, 99.8) (2.6,4.5, 99.8) (27.2,47.2,83.9) (89.1,0,45.4)

Patterns 5th 6th 7th 8th

Position (0, 83.4,5) (0, 83.4,5) (0, 83.4,5) (0, 83.4,3)

Direction (2.6,4.5, 99.8) (27.2,47.2,83.9) (89.1,0,45.4) (80.9,0,58.8)

Ball bar 

Mahr inductive lever-type 

two-freedom platform

Rotary axis B

Fig. 9 Setup error correction for double ball bar by lever-type probe
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matrix with respect to control points of PDGEs to con-
firm the search direction.

Substituting Eq. (23) into Eq. (11), the measurement vari-
ation of the ball bar with respect to the corresponding variation
of control point of PDGEs can be gotten as

∂ J=∂dδ ¼ ∂ J=∂dδx
∂ J=∂dδy

∂ J=∂dδz
∂ J=∂dεx

∂ J=∂dεy
∂ J=∂dεz

h iT

¼ 2 ΦM βð Þ− ΦR βð Þð Þ∑n
i¼0

RxN δxi;k uð Þ
RyN δyi;k uð Þ
RzN δzi;k uð Þ

− RyPz−RzPy
	 


N εxi;k uð Þ
− RzPx−RxPzð ÞN εyi;k uð Þ
− RxPy−RyPx
	 


N εzi;k uð Þ

2
6666664

3
7777775
ð24Þ

where Px Py Pz½ �T is the position vector between the or-

igin of the reference frame (Ob
i X

b
i Y

b
i Z

b
i ) and the central posi-

tion of the ball on the workbench. Rx Ry Rz½ �T is the di-
rection vector between two balls. N δ*i;k uð Þ is the basis func-
tion of the corresponding PDGEs (δ∗).

From the above equation, obviously, in order to recognize
the PDGEs of rotary axis from the error measurements results,
it needs the measurement procedures containing all the impact
of PDGEs. The parameters of the coefficient matrix in Eq.
(24) have to satisfy the conditions (Rx ≠ 0, Ry ≠ 0, Rz ≠ 0,
(RyPz − RzPy) ≠ 0, (RzPx − RxPz) ≠ 0, and (RxPy − RyPx) ≠ 0) in
one of the measurement patterns in Table 2. The basis function
of the corresponding PDGEs is confirmed if the suitable num-
ber of control points and order are chosen. Thus, measurement
variation of the ball bar with respect to the corresponding
variation of control point of PDGEs can be calculated when
recording the measurement points.

A boundaryless constraint optimization algorithm is ap-
plied to calculate the control points of nth B-spline curves of
geometric errors and a program has been developed to evalu-
ate the value of objective function J changingwith the value of
geometric errors control point of rotary axis at different rota-
tion angles.

As shown in Fig. 5, the calculation procedures are listed as
follows.

On the measurement side, the geometric errors of rotary
axis have been measured in terms of the above measurement
patterns using double ball bar in the whole workspace. The
deviation ΦM(β) of the ball bar would be recorded from soft-
ware. The position (P) of the ball cup on the workbench,
orientation (R) of the ball bar and the rotation angle (β) of
the axis B are recorded during the measurement.

On the calculation side, input a series of corresponding
initial points (d1, d2, ⋯, dn), which are represented by the
values of control points of nth B-spline curves of PDGEs.
Thus, geometric errors would be confirmed through B-spline
function (fδ∗(β), ⋯, fε∗(β)). And then, the theoretical value

( ΦR(β)) derived from Eq. (11) would be calculated through
the measurement equation of the ball bar.

The theoretical value (ΦR(β)) and the deviation(ΦM(β)) of
ball bar would be put into the objective function (J). If the
value of objective function did not satisfy the conditions
(J ≤Φ (The error tolerance)), the corrected control points
(d1∗, d2∗, ⋯, dn∗) of errors derived from sensitivity analysis
would be put into the objective function through the above
procedure. Finally, there is an optimum values of control
points of geometric errors to satisfy the conditions (J ≤Φ)
through iterative algorithm, which is called boundaryless con-
straint optimization algorithm, and corresponding measure-
ment data. Thus, all of the PDGEs (δreal, εreal) are identified
by calculating the corresponding control point of nth B-spline
curve of geometric errors.

4 Simulation and experiment

4.1 Simulation

To test the effectiveness of the proposed identification meth-
od, a simulation is performed for the rotary axis B on the
machine configuration with a tilting head (shown in Fig. 2).

Fig. 11 Measurement results of the measurement patterns

Fig. 10 The 2nd measurement process
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The measurement patterns of the simulation are shown in
Table 2. Assuming that the geometric errors of linear axis
and the PIGEs of rotary axis have been compensated, those
errors are given as zero. Table 3 shows the measurement pa-
rameters for the double ball bar in measurement patterns, re-
spectively. The number of control points and order for each
geometric error are shown in Table. 4. Figure 6 shows the
generated six PDGEs of rotary axis.

The displacement error εy(β) of PDGEs is firstly identified
by the 1st measurement patterns in Table 2. Then, the identi-
fication results of displacement error εy(β) are put into Eq.
(11). According to the measurement procedure in Section 3,
the rest of the identification patterns are taken to identify the
rest of the PDGEs. Finally, the measurement results are all put
in Eq. (23) and the corresponding sensitivity analysis are per-
formed to identify the PDGEs. The identification results of
PDGEs are shown in Fig. 7. To further verify the geometric
errors identification method for rotary axis, a comparison sim-
ulation is performed to estimate the ball bar variation. Based
on the results of generated errors and calculated errors, the
measurement results are compared by the 8th pattern. The
distance errors are measured at every 20°. Figure 8 shows

the residual error between the generated error and the predict-
ed one. For the residual error of rotary axis B, the maximum
deviation is 0.15 μm. Referring to the results of the simula-
tion, the effectiveness of the proposed method is verified.

4.2 Experiment

The proposed method has been carried out on a Nanotech
350FG type machine tool, whose configuration is shown in
Fig. 2. A double ball bar (QC10, Renishaw) with a 100-mm
length bar is adopted for the PDGEs measurement of rotary
axis B in the designed test paths. The working range of ma-
chine tool is 350 mm× 150 mm× 300 mm. Before the iden-
tification tests, the geometric errors of linear axis and PIGEs of
rotary axis are compensated and eliminated by the software-
compensated method.

The installation errors of ball are unavoidable for the mis-
alignment between its axis and the spindle. For eliminating the
initial setup errors, a Mahr inductive lever-type probe is ap-
plied for the adjustment of ball bar. In Fig. 9, the probe is get
close to contact the surface of a reference ball. Then, rotate the
rotary table and adjust the micrometer on the two-freedom

Fig. 13 Comparison results real distance errors and predicted ones and residual errors

Fig. 12 The identified displacement errors and angular errors of rotary axis
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movement platform to ensure the axis of ball bar is in accor-
dance with the axis line of the rotary table. The procedures are
repeated, ensuring the deviation is within 1 μm from the
probe. In addition, in order to let the movement of themicrom-
eter fit in with the coordinate of the machine tool, the probe is
used to parallel one side of the platform to the movement of
axis Z by slightly rotating the rotary table. Finally, the setup
error can be eliminated.

In each measurement pattern, the distance between the two
balls are kept constant. However, due to the geometric errors
exits, the reading from ball bar should be changed during the
test. Before the test, the geometric errors of linear axes and
PIGEs of the rotary table have been compensated. Thus, the
deviation in measurement results can be considered a result
from PDGEs. For the PDGEs identification of the rotary table,
the proposed identification patterns are implemented. The num-
ber and order of control points for each geometric error are
shown in Table 4. Table 5 shows the measurement parameters
for the double ball bar in measurement patterns. The detailed
2nd measurement processes are shown in Fig. 10. During the
test, the deviation errors are measured at every 20° and thus
acquire 18 measurement results in each design pattern.
Compared to the published method [28], which needs 36 mea-
surement results in each design pattern, the method proposed in
this article increase the efficiency of measurement of PDGEs.
Fig. 11 shows the results of the measurement patterns.

The identification results of PDGEs are shown in Fig. 12.
Based on the results of measured errors and identified errors,
the measurement results are compared by the 8th pattern. The
distance errors are measured at every 20°. The residual error
between the measurement error and the predicted one is
shown in Fig. 13. In Fig. 13, the absolute distance error be-
tween the maximum andminimum is 14.1μm. The maximum
deviation of the residual error of rotary axis B between the
measured value and the predicted one is 2 μm. The measure-
ment patterns were conducted in about 100-mm-diameter cir-
cular paths. The accuracy of double ball bar is about ± 1 μm.
There are also exit errors in the spindle although using the
lever-type probe. The maximum deviation (2 μm) is close to
the limitation accuracy of double ball bar. Therefore, the meth-
od developed in this study can effectively recognize these
PDGEs of rotary axis and is possible for precision detection
in machine configuration with a tilting head.

5 Conclusion

This paper presented an optimization method using the double
ball bar for PDGEs identification of rotary axis. A mathemat-
ical model based on kinematic theory is constructed to map
the relationship between measurement direction and position
of the double ball bar. According to the kinematic model, the
PDGEs of rotary axis are able to be identified by selecting

suitable setup positions and directions of the ball bar. For
reducing the troublesome setup procedures for the double ball
bar, the minimum setup positions of the double ball bar are
investigated for identification of six PDGEs. According to the
kinematic model and the linear algebra theory, since the dis-
placement error δy(β) is easilymeasured and compensated, the
other five PDGEs are identified in only two setup positions. In
addition, geometric errors are able to be considered as an nth
B-spline curve on the account of its being smooth and contin-
uous. As an nth B-spline curve has the characteristic of local
control, limited control points of errors are able to be calcu-
lated to determine the curve shape of errors rather than mea-
sure the whole range of rotary axis so as to simply measure the
procedure. To further determine the control points of errors, a
method based on the optimization method is presented. A
boundaryless constraint optimization algorithm is applied to
calculate the control points of geometric errors through itera-
tive procedure. Moreover, In order to acquire accurate values
of control points of errors and improve efficiency of the opti-
mization algorithm, the sensitivity analysis is performed to
confirm the search direction. Therefore, the PDGEs are able
to be identified simultaneously after calculating the appropri-
ate values of control points of errors. Furthermore, the position
of the ball bar is accurately adjusted by a micrometer resolu-
tion movement platform, and thus, the ball on the workbench
is not disassembled during the whole measurement. Finally,
simulation and experiment are performed to testify the identi-
fication method. According to the results of simulation and
experiment, it demonstrates that the effectiveness and accura-
cy of proposed method.
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