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Abstract
Due to its relatively high gravity material removal, the thin-walled part machining would go through a complex process, from
stable to unstable and/or reverse repeatedly. As a result, the monitored signals generally exhibit full-oscillatory behaviors, which
require that the chatter indicators should meet the dynamic conditions. However, the conventional indicators, including time
domain indicators and time-frequency domain indicators, could only capture the state mutation point in the continuous process.
In this paper, a novel chatter indicator, Q-factors, is proposed for chatter detection. The relationship between Q-factor and signal
oscillatory behavior is illustrated from the perspective of signal’s frequency characteristics and tool-workpiece system’s response.
Chatter indicator’s identification ability for thin-walled part flank and mirror milling is analyzed, i.e., its ability to express
characteristics of machining state, sensibility to change machining state, and its chatter-related information inclusion. It can be
indicated that as a multi-dimensional indicator,Q-factor can be used to identify chatter-related signal component and quantify the
level of chatter simultaneously. The value of Q-factor exhibits obvious difference between stable state and chatter state. The
obvious mutation at the place where the machining state changes will supply more useful and effective information for the
following chatter prediction and suppression before the chatter is completely developed.
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1 Introduction

For thin-walled part machining, chatter is always a thorny and
complex problem which would do great harm to surface qual-
ity, escalate tool wear, and limit productivity [1]. Online mon-
itoring based on process variables, including cutting force,
acceleration, vibration, sound, torque, and so on, has been
an effective way for chatter detection and machining state
diagnosis [2]. Whatever kind of process variable signal can
apply, the dimensional or non-dimensional chatter indicator
varying with machining state will be the key to the identifica-
tion of the machining chatter of thin-walled parts.

Generally, for the common tool-workpiece system with
high rigidity, the corresponding chatter frequency is generally
fixed around a series of constant frequencies (commonly the
natural frequencies) [3]. But for the thin-walled part machin-
ing, some factors, such as material removal [4–6] and cutting
tool position along toolpath [7–11], should be considered as
well. These factors indicate participation of time-varying
workpiece modes at different positions and variation process
of machining. These time-varying modal parameters, coupled
with the cutting movement of the cutter, make the measured
vibration signal more aperiodic and complex. Therefore, in
order to detect or identify chatter effectively and timely, the
chatter indicator should possess the following characteristics:

& The indicator should contain the chatter-related signal in-
formation, i.e., the time-varying modal parameters and the
chatter level. In other words, it can not only reflect the
change of modal parameters and locate the chatter-related
signal component but also quantify the level of chatter.

& The indicator should be sensitive to the exchange of the
machining state, and its value or variation should show
great correlation with the machining state.
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& The indicator can be used for different machining process-
es without the time-consuming recalibration process.
Therefore, its value should be much less susceptible to
cutting condition changes, i.e., its variation range is inde-
pendent of process parameters [12].

Until now, numerous indicators have been proposed to
identify machining chatter or evaluate the chatter level.
Generally, they can be divided into time domain indicators
and time-frequency domain indicators according to the time-
frequency characteristics of adopted signals. The time domain
indicators mainly include standard deviation [13–17], root
mean square error [13, 15, 18], peak value [13–15, 18], crest
factor [13, 14, 19], coefficient of variation [20, 21], kurtosis
[19, 22, 23], energy of signal [23–25], impulse factor [26, 27],
skewness [14, 15, 17, 23], clearance factor [27], shape factor
[27], permutation entropy [28, 29], and so on. By contrast, the
time-frequency domain indicators try to reveal the character-
istics in time-frequency domain. Besides the common indica-
tors including amplitude, energy of dominant spectral spec-
trum [13, 18, 30–32], standard deviation, root mean square,
skewness, and kurtosis of the power spectrum distribution
[18], some complex indicators like complexity [33], spectral
kurtosis [34, 35], and power spectral entropy [36] are more
and more widely used in chatter diagnosis and detection.
Meanwhile, with the development of advanced signal process-
ing methods including wavelet transform (WT) [24], Hilbert-
Huang transform (HHT) [37, 38], independent component
analysis (ICA) [39], singular spectrum analysis (SSA) [40],
blind source separation (BSS) [41, 42], and so on, many quan-
tities have derived from these methods and been applied to
characterize chatter behaviors in different perspectives.

But not all the aforementioned indicators can meet the
characteristics mentioned above and work effectively for
thin-walled part machining. For the time domain indicators,
they can reveal the signal characteristics in time domain but do
not contain the information in frequency domain. Therefore,
they can only be used to quantify the level of chatter in time
domain, but cannot reveal the time-varying process of modal
parameters and locate the chatter-related signal component.
For time-frequency domain, some indicators corresponding
to multiple frequency bands have a great enlargement within
the machining process. It is inaccurate and curt to identify the
signal component with obvious enhancement of aforemen-
tioned indicators as the chatter-related one. Besides, for some
indicators, the exchange within the machining process is
smooth-going and not dramatic. There is no remarkable mu-
tation and the threshold of chatter identification is ambigu-
ous, which makes the machining state diagnosis difficult.
Moreover, few researches could detect the chatter-related
signal component in thin-walled machining process when
the frequencies and vibration modes vary with time, which
is especially important for the regeneration chatter state

where the chatter frequency and tool passing frequency
are close.

Therefore, a physical meaningful indicator including the
information about the time-varying modal parameters and vi-
bration characteristics will be proper for chatter identification
of thin-walled parts. As a quantification of the oscillatory na-
ture of a single transient, Q-factor affects the oscillatory be-
havior of the wavelet basis function and has been used for
tunable Q-factor wavelet transform (TQWT) [43, 44]. By
adjusting the Q-factor, the oscillatory behavior of the wavelet
basis can be chosen to match the oscillatory behavior of the
signal of interest. The relationship between signal’s oscillatory
behavior and Q-factor has been illustrated in [41, 43–46]. For
the vibration signal in machining process, the signal in stable
state exhibits periodic and high oscillatory behavior with a
high value of Q-factor. But the signal in unstable state shows
transient and low oscillatory behavior with a low value of Q-
factor. Besides, Q-factor estimates the state transmission from
the local waveform point of view, containing information
about both of center frequency and bandwidth. The center
frequency can be used for characterizing the time-varying
modal parameters, and the value of Q-factor can be used for
the quantification of the vibration level, which makes the Q-
factor suitable for chatter-related signal component identifica-
tion for thin-walled part machining.

In this paper, Q-factor is selected for chatter identification
and its identification ability for thin-walled part machining
will be analyzed. In order to illustrate the physical meaning
of Q-factor in thin-walled part machining process, the rela-
tionship between Q-factor and the signal oscillatory behavior
is proposed in Section 2. Then, the calculation procedure ofQ-
factor based on linear predictive analysis is discussed. Finally,
the identification ability in terms of the ability to express char-
acteristics of machining state, the sensibility to the change of
machining state, and chatter-related information inclusion be-
tween the common indicators andQ-factors are analyzed with
two different thin-walled part machining methods.

2 Relationship between Q-factor
and the signal oscillatory behavior

Q-factor is denoted by the ratio of the center frequency to the
bandwidth of an oscillatory pulse signal,

Q ¼ f 0
Bw

ð1Þ

where f0 represents the center frequency and Bw represents the
bandwidth of one impulse signal.

The value of Q-factor reflects the oscillatory properties of
the signal. The relationship between Q-factor and signal os-
cillatory behavior is shown in Fig. 1. For the periodic harmon-
ic signal shown in Fig. 1a, b, the frequency band is narrow and
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the Q-factor is higher based on the definition. In this case, the
energy of the signal dissipates at a low rate and the signal
exhibits better frequency aggregation. Comparatively, for the
transient pulse signal shown in Fig. 1c, d, the frequency band-
width is wide and the Q-factor is lower. It means that the
energy of the signal dissipates at a high rate and the signal
exhibits worse frequency aggregation. In a sense, theQ-factor
counts the number of oscillation in temporal response [44].

The relationship between Q-factor and machining signal
oscillatory behavior can also be expressed with the machining
dynamics. The dynamic motion equation of three DOF sys-
tems can be described as

M
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where M ¼
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2
4
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2
4

3
5 are the mass coefficients, damping

coefficients, and stiffness coefficient of the cutting system
respectively. Mxx =mx,Myy =my,Mzz =mz,Cxx = 2mxζxωx,Cyy =
2myζyωy,Czz = 2mzζzωz,Kxx ¼ mxω2

x ,Kyy ¼ myω2
y , and Kzz ¼

mzω2
z are the corresponding mode coefficients in X, Y, and Z

directions. mx,my,andmz;ζx,ζy,and ζz; ωx, ωy, and ωzare the
modal mass, relative damping, and angular natural frequency.
The coupling structural mode coefficients ofMxy,Mxz,Myx,Myz,
Mzx,Mzy,Cxy,Cxz,Cyx,Cyz,Czx,Czy,Kxy,Kxz,Kyx,Kyz,Kzx, andKzy

can be set as zero as structural mode coupling effect is
neglected. [Fx Fy Fz]

Tare the corresponding cutting forces
in X, Y, and Z directions, where,
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ap is the axial cutting depth. x tð Þ½ y tð Þ z tð Þ�T , x˙ tð Þ
�

y˙ tð Þ
z˙ tð Þ�T , and €x tð Þ½ €y tð Þ €z tð Þ�T are the vibration displacement,
vibration speed, and vibration acceleration in X, Y, and Z di-
rections considering the regenerative effect. Tis the tool pass-
ing period. hxx(t), hxy(t), hxz(t), hyx(t), hyy(t), hyz(t), hzx(t), hzy(t),
and hzz(t)are the cutting force coefficients. Applying the
Laplace transform to Eq. (2) gives
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According to the definition of the system transfer function
and applyings = iω, the transfer functions in X, Y, and Z direc-
tions can be obtained,
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ð4Þ

According to the dynamic equation for the thin-walled part
machining process, the regenerative displacement can be
expressed as [47]

Δx iωtð Þ ¼ x iωtð Þ−x0 iωtð Þ ¼ 1−e−iωt
� �

⋅Gxx iωð Þ⋅jFx tð Þj⋅eiω
Δy iωtð Þ ¼ y iωtð Þ−y0 iωtð Þ ¼ 1−e−iωt

� �
⋅Gyy iωð Þ⋅jFy tð Þj⋅eiω

Δz iωtð Þ ¼ z iωtð Þ−z0 iωtð Þ ¼ 1−e−iωt
� �

⋅Gzz iωð Þ⋅jFz tð Þj⋅eiω

8<
:

ð5Þ

The relationship between Q-factor and damp ratio can be
expressed as [48]

ξ ¼ 1

2Q
ð6Þ

Then, the regenerative displacement in Eq. (5) can be
expressed as

Δx iωtð Þ ¼ 1−e−iωtð Þ⋅jFx tð Þj⋅eiω

kx⋅ − ω
ωx

� �2
þ iω

Qx⋅ωx
þ 1
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ωz
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8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

As expressed in Eq. (7), with the decrement of theQ-factor,
the regenerative displacement becomes lower. The exchange
of step response for the machine tool-workpiece system with
respect to Q-factor in one direction is shown in Fig. 2. As is
shown in Fig. 2, for the systemwith lowQ-factors (Q < 1/2), it
is overdamped with no oscillation. On the contrary, the system
with high Q-factor (Q > 1/2) is underdamped and the system
will oscillate with input of specified frequency. For the system
with Q = 1/2, it is a critical damped system. As the
overdamped system, the critical system will not oscillate and
it is not overshoot. Therefore, the change of modal parameters
and the system response can be reflected with Q-factor.
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3 Linear predictive analysis for Q-factor
precise calculation

Q-factor can be obtained with the principle of the linear pre-
dictive analysis. The main calculation procedure is expressed
as follows [49]:

(1) Construct the auto-regressive model (AR model) with
the measured signal as [50, 51]

x nð Þ ¼ ∑
p

k¼1
akx n−kð Þ þ Gu nð Þ ð8Þ

where p is the model order and akis the model coefficients. G
is the gain coefficient. The transfer function of all-pole model
can be formulated as

H zð Þ ¼ G

1− ∑
p

k¼1
akz−k

ð9Þ

(2) By substituting z−1 = exp(−jωT) or z−1 = exp(−j2πf/fs) (fs
is the sampling frequency) into the transfer function and
modulus operation and minimizing the prediction error
in certain criterion, the model parameter of {ak; k = 1, 2,
⋯p} can be obtained through the Levinson-Durbin

Fig. 2 Step response for the
machine tool-workpiece system
with variable Q-factor
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Fig. 1 Waveform and frequency
response of signal with different
oscillatory behavior. a Waveform
of signal with Q = 4. b Frequency
response of signal with Q = 4. c
Waveform of signal with Q = 1. d
Frequency response of signal with
Q = 1
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algorithm [52]. Then, the power spectrum response can
be obtained through the FFT of the prediction
coefficients.

P fð Þ ¼ H fð Þj j2 ¼ G2

1− ∑
p

k¼1
akexp − j2πkf =fsð Þ

����
����
2 ð10Þ

(3) With the parabolic interpolation method, for every peak
in the power spectrum response curve, the center fre-
quency and corresponding bandwidth can be calculated.
The parameters of the quadratic equations of aiλ

2 +
biλ + ci are obtained as

ai ¼ Pmþ1 þ Pm−1−2⋅Pmð Þ=Δ f 2

bi ¼ Pmþ1 þ Pm−1ð Þ=Δ f 2

ci ¼ Pm

8<
: ð11Þ

where Pm − 1, Pm + 1, and Pm are the power spectrum values
responding to point m − 1,m + 1, and local peak point m.Δf is
the frequency space.

(4) Then the center frequency fi and bandwidth Bwi can be
represented as

f i ¼ −bi=2ai þ mð ÞΔf

Bwi ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi2−4ai ci−0:5Psið Þ

q

ai
�Δf

8><
>:

ð12Þ

where Psi ¼ bi2

4ai
− bi2

4ai
þ ci ¼ − bi2

4ai
þ ci is the parabolic inter-

polated power spectrum value through the derivation of qua-
dratic equation, d(aiλ

2 + biλ + ci)/dλ = 0.

(5) With the calculating method, Q-factors of the jth frequen-
cy during cutting time of {i, i + n} can be expressed as

Qi; j ¼
f i; j
Bwi; j

i ¼ 1; 2;⋯N j ¼ 1; 2;⋯m ð13Þ

where m is the number of the spectral lines.

4 Experiment setup of thin-walled part milling

In order to illustrate the effectiveness of Q-factor, two typical
thin-walled part machining processes, flank milling and mir-
ror milling, were conducted.

4.1 Flank milling

The flank milling process was carried on a thin wall open
geometry of a cantilever of 400 mm× 300 mm× 6 mm thick
workpiece overhanging for a length of 41 mm, as is shown in
Fig. 3, on aMikron HSM 500 vertical machining center with a
4.2-kW, 42,000-rpm spindle. The material of the workpiece
was aluminum alloy 7075. The parameters of the end mill are
listed in Table. 1. The machining process maintained a con-
stant cutting speed of 4000 rpm and feed rate of 400 mm/min
with axial and radial depth of cut (ap = 0.5 mm, ae = 5 mm). In
order to simulate the exchange of vibration modes, the bottom
middle side of workpiece with length of 100 mm was fixed
and flank milling proceeded along the long unfixed side. An
eddy current displacement sensor (Keyence EX-V10) was
mounted on the opposite of the cutting point to measure the
vibration displacement signal with the sample frequency of
3000 Hz. The setup of thin-walled part machining and the
measured vibration signal are shown in Fig. 3.

In order to describe the oscillatory characteristics in details,
three signal segments and corresponding frequency spectrum
with different machining states deriving from the measured
vibration displacement signal are shown in Fig. 4. As is shown
in Fig. 4a in the first 1 s of the machining time, the machining
state was extremely unstable and the oscillatory characteristics
of the signal were chaotic. The energy of the signal mainly
distributed around the 257 Hz, and its corresponding band-
width was wider. Besides, the cutting frequency of 267 Hz
was shown in the frequency spectrum but it was not the dom-
inant frequency. For the slight chatter state during machining
time from 66.6 to 68.0 s, the vibration signal exhibited a cer-
tain degree of periodicity. In this case, the frequency of both
257 Hz and 267 Hz dominated the frequency spectrum. But
the frequency bandwidth of 257 Hz became narrower obvi-
ously. For the machining time in the last 1 s of the machining
time, the machining state was extremely unstable and the os-
cillatory characteristics of the signal was chaotic again. The
energy of the signal mainly distributed around 257 Hz. And its
corresponding bandwidth was wider again. Therefore, for the
machining process from unstable to stable and then unstable,
the energy and bandwidth of 257 Hz exhibited conspicuous
exchange and can be regarded as the chatter-related signal
component.

4.2 Mirror milling

Mirror milling has been an effective way for the stable
manufacturing method of thin-walled parts [53]. In this paper,
the mirror milling system (MMS), which is able to operate at a
high speed (18,000 rpm), was developed for the mirror milling
experiment. A thin-walled aluminum alloy 7075 plate with
1100 mm × 750 mm × 6 mm was vertically mounted on a
fixture with only two sides fixed. Mirror milling was tested
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with the same end mill as was used in the flank milling, and
the corresponding parameters are listed in Table. 1. A multi-
component dynamometer (Kistler 9317C), coupled with
charge amplifiers, was used to measure the supporting forces
in three orthogonal directions (fx, fy, fz). Three eddy current
displacement sensors (Keyence EX-V10) were mounted
around the dynamometer to measure the vibration displace-
ment signal. The experimental setup is shown in Fig. 5.

As is shown in Fig. 5a, tests in slot milling were performed
within a rectangular region of 80 mm× 80 mm on the thin-
walled parts. The machining process maintained a constant
cutting speed of 3000 rpm with axial and radial depth of cut
(ap = 2 mm, ae = 10 mm). In the middle of the slot milling, the
feed rate changed from 100 to 200 mm/min. The supporting
force signal is shown in Fig. 5c. For the machining process
with feed rate of 100 mm/min, the supporting force signal was
relatively chaotic. At the boundary where the feed rate ex-
changed, the supporting force signal was obviously aperiodic.
But then, the supporting signal became stable and periodic
when the feed rate reached up to 200 mm/min. The reason
for this can be explained that the cutting force in the axis
direction increased with the increment of the feed rate and
the restraint function between the cutter and workpiece was
reinforced. Therefore, the vibration derived from the intermit-
tent cutting of the cutter dropped off and the supporting force
on the opposite side exhibited a certain degree of periodicity.

In order to describe the signal oscillatory characteristics in
detail, three signal segments deriving from the measured

Fig. 3 Thin-walled part flank
milling. a Setup. b Measured
vibration signal

Table 1 Parameters of the end mill

Symbols Terminology Values

γ Helix angle (°) 30

γ0 Rake angle (°) 13

r Edge radius (mm) 0.4

Ap Maximum cutting depth (mm) 15

D Tool diameter (mm) 10

N Number of flutes 4
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Fig. 5 Thin-walled parts mirror
milling. a Setup. b Vibration
signals by supporting force sensor
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Fig. 4 Signal segments and corresponding main frequencies deriving from flank milling process
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supporting force and corresponding frequency spectrum are
shown in Fig. 6. For the signal segments shown in Fig. 6a
which derived from the machining time of the first 2.4 s, the
signal was aperiodic and the signal energy mainly distributed
around 872 Hz with a relative narrow bandwidth. For the
signal segments shown in Fig. 6b which derived from the
machining state exchange process, the signal was more aperi-
odic. For the signal segments in the last 2.4 s shown in Fig. 6c,
the signal became periodic and the energy began to distribute
around the spindle rotation frequency and its harmonics.
Therefore, the frequency of 872 Hz was defined as the
chatter-related signal component.

5 Chatter identification ability analysis using
Q-factor

In this part, facing the two different thin-walled part machin-
ing processes, the common used time domain and time-
frequency domain indicators were chosen to illustrate the
chatter state of flank milling process and mirror milling pro-
cess. The time domain indicators include standard deviation,
root mean square, peak value, crest factor, coefficients of var-
iation, kurtosis, energy of signal, impulse factor, skewness,
clearance factor, and permutation entropy. The time-
frequency domain indicators include power spectral entropy,
complexity, spectral kurtosis, and Q-factors proposed in this

paper. Their identification ability in terms of its ability to ex-
press characteristics of machining state, sensibility to the ex-
change of machining state, and chatter-related information
inclusion was compared with the designed experiments.

The ability of indicators to express characteristics of ma-
chining state can be evaluated with the value of indicators.
With the change of the machining state, the corresponding
indictors should show relative variation with an obvious trend.
And the variation should show a certain degree of correlation.
The sensibility of the indicators to the change of machining
state can be evaluated with value transform at the place where
machining state exchanged. The chatter-related information
inclusion refers to the physical meaning of the chosen indica-
tor, i.e., it can not only reflect the change of modal parameters
and locate the chatter-related signal component but also quan-
tify the level of chatter.

5.1 Identification abilities in flank milling

For the flank milling process, the corresponding values of the
time domain indicators and time-frequency domain indicators
are shown in Fig. 7.

As is shown in Fig. 7, the time domain and time-frequency
domain indicators showed relative variation with the flank
milling process. The variation of these indicators can be
roughly divided into four trends. For standard deviation, peak
value, impulse factor, power spectral entropy, and complexity,
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Fig. 6 Signal segments and corresponding main frequencies deriving from mirror milling process
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the values were relatively higher in severe chatter state but
lower in slight chatter state. But the variation of these

indicators was in a slow trend. The variation in a slow trend
will make the threshold setting difficult. Similarly, the crest
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Fig. 7 The chatter indicators of vibration signal within flank milling process
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factor, skewness, and clearance factor experienced a reverse
exchange, i.e., lower in slight chatter state but higher in severe
chatter state. The variation was also in a slow trend. For coef-
ficients of variation and permutation entropy, the variation
was in a fast trend, which would make the threshold setting
easy. Another trend was exhibited by kurtosis and spectral
kurtosis. They only showed a certain degree of increment at
the end of the milling process but remained unchanged at the
beginning and middle parts of the milling process. The similar
trend was also exhibited by root mean square and energy of
signal. Therefore, for the indicators mentioned above, they
lacked the ability in expressing characteristics of machining
state.

For the designed flank milling experiment, the place where
machining state mutated was located at the critical point be-
tween the places where the parts were fixed and where they
were unfixed. Therefore, an employable indicator should also
have mutation near this place. As is shown in Fig. 7, although
these indicators showed relative exchange within the machin-
ing process, there was no obvious mutation at the place where
machining state exchanged. Based on the value of these indi-
cators, it was difficult to locate the place where the chatter
happened. Therefore, these indicators lacked the sensibility
to the change of machining state.

As a multi-dimensional indicator, Q-factors corresponding
to the dominant frequencies (the chatter-related frequency
254 Hz and the harmonics of spindle rotation frequency
100 Hz, 133 Hz, 166 Hz, 266 Hz) are shown in Fig. 8. As is
shown in Fig. 8, theQ-factors of 100 Hz, 133 Hz, 166 Hz, and
266 Hz experienced a relative gentle variation process.
Compared with the Q-factors of these frequencies, the Q-fac-
tors of 254 Hz exhibited more violent variation process. At the
beginning and end of the machining process where the ma-
chining state was unstable, Q-factors were relatively low. But

at the middle of the machining process where the machining
state was stable, the Q-factor was relatively high. Besides, Q-
factors corresponding to frequency of 254 Hz climbed steeply
at the place where machining state changed from unstable to
stable and declined steeply at the place where machining state
changed from stable to unstable.

Therefore, for thin-walled parts flank milling process, Q-
factor of the chatter-related signal component showed perfect
ability to express characteristics of machining state and more
sensitivity to the change of machine state. Besides, it included
the information about center frequency and oscillatory char-
acteristics of multiple dominant frequencies. The center fre-
quency 254 Hz could be used for chatter-related signal com-
ponent identification, and the value of 254 Hz could be used to
quantify the level of chatter.

5.2 Identification abilities in mirror milling

For the mirror milling process, the corresponding values of the
time domain indicators and time-frequency domain indicators
are shown in Fig. 9. It was clearly shown that there was obvi-
ous enlargement at the place where feed rate changed from
100 to 200 mm/min for standard deviation, peak value, im-
pulse factor, power spectral entropy, and complexity. For crest
factor and clearance factor, they experienced a reverse ex-
change. For coefficients of variation, kurtosis, and spectral
kurtosis, the enlargement at the place where machining state
changed was not as significant as the indicators mentioned
above. But the corresponding values of these indicators in
stable state and unstable state were at the same level. It was
difficult to identify if there was chatter or not with these indi-
cators. Therefore, these indicators showed a certain degree of
sensibility to the change of machining state but limited ability
to express the exchange of machining state.
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Besides, it should be noted that for the mirror milling
process, permutation entropy showed excellent perfor-
mance in machining state identification. The value of per-
mutation entropy remained at a low level for the unstable
state but spurted when the feed rate changed from 100 to
200 mm/min. But compared with the flank milling process
shown in Fig. 7, the indicative function of permutation en-
tropy was limited.

Q-factors corresponding to different frequencies are shown
in Fig. 10. As is shown in Fig. 10, theQ-factors corresponding
to frequency of 872 Hz reduced dramatically at the place
where machining state changed. But forQ-factors correspond-
ing to frequency of 220 Hz, 300 Hz, and 630 Hz, their values
increased slightly at the place where machining state changed.
This phenomenon indicated that with the increment of the feed
rate, the energy of the measured signal began to distribute
around the spindle rotation frequency and its couplings.
With the change of the Q-factors, the frequency of 872 Hz
can be identified as the chatter-related signal component and
the corresponding value of Q-factors can be used for quanti-
fying the level of chatter. Therefore, for mirror milling pro-
cess, Q-factors showed excellent ability to express the ex-
change of machining state and made great contribution to
the threshold setting for machining state identification. The
obvious mutation at the place where machining state changed
showed sensibility of Q-factors to the exchange of machining
state, which will be extremely useful in the machining state
identification.

6 Conclusions

In this paper, a novel chatter indicator, Q-factor, was pro-
posed to identify the machining state and its identification

ability was analyzed. In order to illustrate the effectiveness
of the proposed indicator, the relationship betweenQ-factor
and the signal oscillatory behavior was elaborated from the
perspective of signal’s time-frequency characteristic and
tool-workpiece system’s response. The comparison be-
tween two different thin-walled part machining processes,
i.e., flank milling and mirror milling, in the aspects of abil-
ity to express characteristics of machining state, sensibility
to the change of machining state, and chatter-related infor-
mation inclusion between time domain indicators, time-
frequency domain indicators, and Q-factors was conducted.
The comparison between the two different machining
methods shows that:

(1) The value of Q-factor exhibits obvious difference be-
tween stable state and chatter state and shows excel-
lent ability to express the exchange of machining
state. The obvious difference makes great contribu-
tion to the threshold setting for machining state
identification.

(2) There was obvious mutation at the place where the ma-
chining state changed. The obvious increment or reduc-
tion of Q-factor can be a useful indicator which will
supply more useful and effective information for the fol-
lowing chatter prediction and suppression before the
chatter is completely developed.

(3) Q-factor is a multi-dimensional indicator, including the
information about center frequency and oscillatory char-
acteristics of multiple dominant frequencies. The center
frequency can be used for chatter-related signal compo-
nent identification, and the value can be used to quantify
the level of chatter. The chatter information inclusion can
be helpful in chatter-related signal identification based
on the Q-factor variation.

Fig. 10 Q-factors corresponding
to different frequencies within
mirror milling process
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The potential application of theQ-factor can be extended to
fault diagnosis of rotary machineries, like bearings, gears, and
so on.
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