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Abstract
For control of real-time Internet of Things (IoT)-based remote welding process, continuous detection of defects occurring in the
weld sample is of utmost importance so that welding parameters can be changed accordingly to avoid further occurrence of such
defects. Time-frequency domain signal processing method, such as discrete wavelet transform (DWT), can be applied for
detection of such defects. DWT continuously decomposes a signal into detailed and approximate coefficients through its
associated filter banks and provides a time-frequency domain representation of a signal. Different levels of decomposition
capture different frequency components, and hence, there is a need for optimization of the level of decomposition of force and
power signals recorded during joining of two aluminum sheets by friction stir welding (FSW), for correct identification and
localization of defects occurring in the process. Internal defects in the weld samples are further verified by CT scan images.
Statistical tools have been used to study the variations in the DWT coefficients due to both internal and surface defects. An
attempt has been made to compare between force and power signals as to which gives better defect detection.

Keywords Discrete wavelet transform . Optimization . Force and power signals . Friction stir welding . Internal and surface
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1 Introduction

FSW is a new solid state joining process where two metals
(same or different) are joined by using a rotating tool. It was
invented and experimentally proven by TheWelding Institute,
UK in 1991 [1]. FSW finds a wide range of applications such
as in automobile, railway industries, fabrication of rolling
stocks, underground carriages, and goods wagons. In con-
struction industries, aluminum bridges and pipeline construc-

tions are made by this process. Aerospace industries also use
FSW to fabricate wings, aviation of fuel tanks, cryogenic fuel
tanks for space vehicles, etc. In electrical industries, FSW is
used to produce bus bar, electrical motor housing, etc. The
FSW tool contains shoulder, and a protruded part which is
called a pin. As a rotating FSW tool plunges into the weld
zone, frictional heat is generated and the pin provides stirring
action on the materials [2]. The temperature increases due to
the friction and the relative motion between the tool and the
materials. It increases up to a value 0.5–0.6 times the melting
point of the metal with lower value of melting point in case of
welding of the dissimilar materials. At this temperature, the
materials get transformed into plastic stage and are joined by
stirring action and axial pressure of the rotating tool, similar to
mixing of clay [3]. The process parameters are: tool rotating
speed (ω), welding speed (v), tilt angle (α), plunge depth (δ),
and tool geometry. Often, various types of surface as well as
internal defects occurred in the weld region at improper values
of process parameters, such as increased values of ω at the α
value of 0° that leads to several surface and internal defects.
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These defects lead to the degradation in the mechanical and
metallurgical properties.

This process has several advantages. It is energy efficient as
compared to other fusion welding techniques such as arc
welding, laser beam welding, electron beam welding etc. It
has very low environmental impact. The strength of the joint
formed by FSW is comparable to that formed by conventional
fusion state welding techniques. Since no extra material is
used in this process, the composition of the weld is almost
the same as that of the original metals taken. However, there
are certain limitations too. An exit hole is left behind while
taking out the tool from the work surface, at the end of the
process. This leads to some amount of material loss.
Inappropriate values of process parameters may lead to weak
mixing of the materials known as “kissing bond”. The use of
backing plate is must as the process requires adequate reaction
force from the bottom side for producing sound weld.

In this study, an attempt has been made to study the axial
force and power signals of FSW. The magnitude of the force
depends on the resistance by the weld materials on the FSW
tool. In addition, its values are significantly higher as the tool
has greater interaction with the weld materials. Abrupt chang-
es in the force or power indicate change in its interaction
between the weld materials so they reflect defects (internal
or surface) [4]. Due to improper process parameters and het-
erogeneity of the materials, welding may be affected.
Scanning the welded zone at each moment during the welding
process to locate defects is time consuming and also a costly
affair. So, it is easier to study the output variables such as force
signal or power signal of the job. In this paper, distortion in the
power and force signals are used as a measure of defect anal-
ysis during the welding process. The signals were recorded
using force and power sensors. For time-frequency domain
representation of the signals, DWT is deployed to localize
the defects.

Till date, researchers have worked on FSWaxial force, v, ω,
torque, and various other factors to establish their inter-
relationship and choose the parameters accordingly to produce
sound weld. It was observed that the FSW force versus time
plot has an initial high value and then drops down to a lower
one, there after remaining steady till the end of the welding
period [5]. It was shown that tangential force can be measured
in order to compute coefficient of friction by using load cell
[6]. A relation was established between tangential force and
coefficient of friction. A generalized relation between torque
(MZ) as a function of ω, v was established [7]. The authors
showed thatMZ decreases exponentially with the ω, whereas v
has a linear relationship withMZ . From the study of welding
forces and heat input with varying parameters, it was conclud-
ed that ω, v, and tool shoulder diameters are the most signifi-
cant parameters that affect axial force and heat input [8]. A
model capable of predicting tool forces for different welding
parameters and regions of tool failures was developed [9]. It

helped to identify tool pin designs to process the work-piece
more efficiently. It was shown that the force reaches to a max-
imum value during plunge stage and experiences a fall of 35%
during translational stage. A torque-based model for various
alloys (7075, 5083, 2024) was developed and their relation-
ship between FSW parameters was studied [10]. A methodol-
ogy was proposed in which the currents and power transients
of the electrical motors (which drives the motions) were mon-
itored to measure the torque and the traverse force [11]. In the
method, use of costly dynamometer was avoided and the pro-
cess was completely independent of changing welding condi-
tions. The best welding conditions are achievable at low
welding speed (≤ 40 mm/min) and high rotational speed (≥
1000 RPM) in FSW of AA2024-T4 aluminum alloys [12]. It
was found that joint fabricated with an axial force of 5 kN
exhibits superior tensile properties as compared to several
other joints and axial forces significantly influence the forma-
tion of defects [13]. For very small α (≤ 1.5°) or very large α
(≥ 4.5°), main defects are formed for butted 6061 aluminum
alloy plates having three equal gaps [14]. Variation of α af-
fects plastic material flow patterns in the stir zone which in
turn controls the weld properties. The authors also pointed out
that oxide of aluminum is the major cause of formation of
defect at the welding region. Welding parameters like v, ω,
δ, etc. were optimized to obtain a weld free of internal defects
[15]. By controlling the geometric parameters, the number of
defects can be lowered [16].

Artificial neural networks (ANN) were used to find corre-
lation between acoustic signals emitted by FSW process and
the parameters of it [17]. They used statistical and temporal
parameters of the discrete coefficients obtained from the
wavelet analysis as the input of the ANN. Discrete wavelet
transform (DWT) was used to show band energy of
decomposed acoustic emission in signals as a measure to
judge defects in weld [18]. Fast Fourier transform (FFT) and
DWT were applied on force signals to show the effects of
changing parameters in FSW. It was stated [19] that signals
that were in the higher frequency range disappeared if the
contact between the tool and the job is lost. An attempt was
made to monitor FSW process by analyzing the weld surface
images and classify good and defective weld using support
vector machine [20]. DWTwas used to obtain the useful fea-
tures of the images and classify the defects into good and bad
welds.

FSW voltage and current signals from main spindle mo-
tor and current signal from feed motor were obtained and
regression models were developed to correlate the signal
characteristics with ultimate tensile strength (UTS) and
yield strength (YS) of joints. It was found that main spindle
motor current signal influenced UTS and YS most [21].
Authors developed a model for effective monitoring of
the FSW process with recorded signals for better control
of outcome of the process.

624 Int J Adv Manuf Technol (2018) 99:623–633



In reference [22], researchers applied Fast Fourier trans-
form, DWT, and other signal processing techniques on
acoustic emission signal to identify defects in FSW.
DWT was applied on force signal data to localize the sur-
face weld defects [23]. In reference [24], researchers pro-
posed a method to determine the best possible basis func-
tion for wavelet packet decomposition based on energy to
entropy ratio of the decomposed coefficients. This method

Fig. 1 NC-controlled FSW
machine

Fig. 2 a Schematic diagram for
integration of power sensor with
machine. b Power sensor

Table 1 Process parameters of the welding process

Process parameters Values (sample 1) Values (sample 2)

ω 500 rpm 2000 rpm

v 40 mm/min 40 mm/min

δ 0.1 mm 0.1 mm

α 0° 0°
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was utilized for feature extraction to determine the weld
quality. The authors have also shown that prediction of
UTS and YS of weld from decomposed wavelet packets
can be better performed by a multi-layer feed forward neu-
ral network than a network model based on radial basis
function. Various real-time image processing techniques
have been applied to study the variation of weld quality
due to pin failure and pin depth change in FSW [25].

In reference[26], a genetically optimized artificial neural net-
work structure is developed which uses five neural networks to
predict UTS, YS, elongation, hardness (weld mat), and hard-
ness (Haz) which are used to predict ω and v. These parameters
were used as feedback inputs for the neural networks. Reliable
weld quality was prediction models that were built from weld
parameters like ω, v, δ, and using techniques like K-nearest
neighbor, bee colony optimization to save manufacturing cost
[27]. Adaptive neuro fuzzy logic-based models were used for
optimization of FSW process parameters to obtain desirable
mechanical properties of the weld [28]. Optimum parameter
prediction for FSW was done by using genetic algorithm [29]
and various experimental design techniques [30, 31] to maxi-
mize weld quality. FSW defects were detected using fractal
dimensions of signals for plunging, dwelling, and welding
stages [32]. Image processing algorithms like image pyramid
[33] were used to classify various defects like voids, cracks,
grooves, flash, keyhole, etc. occurring in FSW [34]. Defect
detection of FSW defects was done using scalogram of contin-
uous wavelet transform (CWT) coefficients of force signal [35],
wavelet packet decomposition, and Hilbert–Huang transform
[36]. Volumetric defect analysis in FSW based on 3D recon-
structed weld surface images was performed for detection of
defect volume [37]. Optimization of FSW parameters was car-
ried out to obtain desired UTS, compressive strength, welding
angle, weld bead thickness, etc. using hybrid fuzzy Taguchi
basedmethod [38]. Reflection of ultrasonic waves incident with
multiple angles was used for FSW defect identification [39].

There have been several researches on FSW parameter op-
timization, surface defect detection, and classification using
various signal and image processing techniques. But for

Industrial Internet of Things (IIoT)-based applications, it is
necessary to reduce time complexity. Here, we have used
DWT to exactly localize both surface as well as internal de-
fects occurring in FSW. DWT has the time complexity in the
order of O(log2n), where n is the number of samples in the
analyzing signal. This is suitable for IoT-based applications.
Previous researches using wavelet transformation for defect
detection did not specifically mention the required number of
levels of wavelet decomposition for defect detection. If we
take into consideration all the possible levels of decomposi-
tion, the computational time will increase. Here, we have op-
timized the number of levels of wavelet decomposition for
weld defect localization using a coefficient of error localiza-
tion ( χe), a factor defined in Sect. 2.4. This work is focused to
study the DWT coefficients of both FSW force and power
signals. χe had also been used to compare between the two
signals as to which gives better defect localization. Voids and
defects occurring inside the surface of the weld are validated
through CT scan images. Statistical tool, square of mean de-
viation, which is also termed as square of errors is used to
localize the defects. This kind of continuous defect localiza-
tion technique can be applied for real-time applications in a
sense that once a defect is localized, FSW parameter values
can be changed accordingly to avoid their further occurrence.
This scheme for defect detection can be embedded in an IoT
device for online defect monitoring and control in FSW.

Fig. 3 Plot of variation of power with time for sample 1

Fig. 4 Plot of variation of power with time of sample 2

Fig. 5 Plot of variation of force with time for sample 1
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2 Experimental details

2.1 Experimental set ups and methodology

FSW was used to produce butt joint between 2.5-mm-thick
sheets of commercially pure AA1100. Chemical composition
of work material was studied with the help of optical emission
spectroscopy (ARL 3460). The length and the width of the
rectangular samples were 100 and 45 mm, respectively. The
sheets were cleaned properly and placed along 100 mm length
in FSW fixture. A FSW tool made up of H13 carbon steel has
a cylindrical pin. The height of the pin was 2.1 mm, whereas
the diameter of shoulder and pin was 16 and 5 mm, respec-
tively. The experiments were carried out at ω and v of
500 rpm, 2000 rpm, and 40 mm/min, by keeping a constant
value of δ and α at 0.1 mm and 0°, respectively (Table 1). All
the experiments were carried out at displacement control
mode.

FSW experiments were done by a 2.0 ton NC FSW ma-
chine manufactured by ETA Technology Pvt. Ltd., India, as
shown in Fig. 1. Themachine had several sensors integrated to
it to measure X-position of the tool, ω,MZ, X-velocity, X-load,
Z-position, etc. A power sensor (Montronix, PS100AC) con-
nected externally measures power consumed during the pro-
cess. Figure 2 shows schematic diagram of integration power
sensor with machine. The machine also has a load cell

integrated to it to measure forces along the Z direction. A three
phase AC induction motor rotates the tool and drives the main
spindle. The machine was connected to a PLC-based control
system with PC and LabVIEW software for real-time data
acquisition. The data obtained for vertical axial force from
the load cell was used for the processing. Further, a
laboratory-based high-resolution 3D X-ray micro-CT system
with open and close tube X-ray source configurations was
used for scanning the weld in order to find internal defects
such as voids, kissing bond, etc.

2.2 Signal processing

Traditional time domain analysis of signals fails to present a
picture of the frequencies (spectral components) present in a
signal. Fourier transform (FT) of a signal represents the fre-
quency domain plot. The discrete time Fourier transform
(DTFT), discrete Fourier transform (DFT), fast Fourier trans-
form (FFT), discrete cosine transform (DCT), etc. are frequen-
cy domain analyses of discrete time signals. But the major
drawback of these transformations is that they are effective
only for stationary signals. To know exactly what frequencies
are present at a particular time, time-frequency domain anal-
ysis is useful.

Fig. 7 Plot of power versus X-position of the welding tool in the weld
zone for sample 1

Fig. 6 Plot of variation of force with time for sample 2 Fig. 8 Plot of power versus X-position of the welding tool in the welding
zone for sample 2

Fig. 9 Plot of force versusX-position of the welding tool in the weld zone
for sample 1
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The short time Fourier transform (STFT) is a primitive
time-frequency domain analysis where a window of finite
width is chosen and shifted along the direction of the signal.
The window function is multiplied with the signal and the
Fourier transform of the effective is taken which gives an idea
of within what range a particular frequency is present. But due
to the constant width of the window, several problems related
to resolution occur.

2.3 Discrete wavelet transform

To solve this ambiguity, DWT method is found to be
most suitable. In DWT, a mother wavelet is scaled and
translated along the entire duration of the signal to ob-
tain the required child wavelets. This solves the resolu-
tion problem occurring in STFT. DWT is used when the
input signal is discrete. Wavelet coefficients are given
by Eq.1.

A ¼ ∫∞−∞x tð Þ 1
ffiffiffiffiffi

2 j
p Ψ

t−k2 j

2 j

� �

dt ð1Þ

where x(t) is the given signal, j is the scale parameter, k is the
shift parameter, and Ψ(t) is the chosen mother wavelet.

The computation of DWT is done by passing the signal
through high-pass and low-pass filters. The output of high-
pass filters after down sampling gives the detailed coefficients
(Eq. 2), whereas the same for the low-pass filters, it gives
approximate coefficients (Eq. 3).

CD k½ � ¼ ∑
N
x n½ �:g 2k−n½ � ð2Þ

CA k½ � ¼ ∑
N
x n½ �:h 2k−n½ � ð3Þ

These coefficients are actually values of convolution of
input signal and impulse response of the filters. To increase
frequency resolution, the output of the low-pass filter is again
passed through high- and low-pass filters to obtain detailed
and approximate coefficients, respectively. This process is
repeated.

Here, in this study, it has been attempted to optimize
the level up to which such decomposition of force and
power signals are to be carried out for the best detection
of defects in FSW. The approximate coefficients signify
rough features of the signal, while detailed coefficients
capture the distinct features of force signal. By studying
these, detailed coefficients for abrupt changes and defects
in FSW can be detected.

DWT has varied applications which include data and image
compression. Also, it is used in fields of pattern recognition,
texture analysis, noise recognition, etc.

Table 2 Comparison of coefficient of error localization of force and power signals at different levels of sum of squares of errors of detailed coefficients

Sum of squares of errors
of detailed coefficients up
to level Di

Sample 1 Sample 2

χf (coefficient of error
localization of force signal)

χp (coefficient of error
localization of power signal)

χf (coefficient of error
localization of force signal)

χp (coefficient of error
localization of power signal)

D2 − 0.62 0.06 − 0.14 − 0.81
D3 − 0.91 − 0.41 − 0.08 − 0.83
D4 0.38 − 0.3 − 0.25 − 0.32
D5 0.63 0.73 0.13 0.62

D6 0.01 0.13 − 0.29 0.03

Fig. 10 Plot of force versus x-position of the welding tool in the weld
zone for sample 2

Fig. 11 Sum of square of errors of detailed coefficients (Di) of power
signal up to 5th level of decomposition for sample 1
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2.4 Square of errors (statistical parameter)

It is the square of difference of each term from the mean value
of the terms. Example: Let a, b, c, … be a set of data with
mean value K. Then, (a −K) ∗ (a −K), (b −K) ∗ (b −K), (c −
K) ∗ (c −K), … are the square of errors or square of mean
deviation terms.

2.5 Experimental procedure for accurate defect
detection

I. From the data collected by the force and power sensors
during the welding process, the plots of force versus time
and power versus time, respectively, were obtained. The
plunging and dwelling periods of the process comprise
high-frequency components. For defect detection, the plung-
ing and dwelling were subtracted from the plot so that only
defects occurring in the welding period can be obtained.

II. From the discrete-time force and power signals of a weld
sample, wavelet analysis was done using ‘Daubechies’ as
the mother wavelet to obtain a time-frequency domain
representation.

III. The force signal was decomposed at levels 1 and 2, sep-
arately. The square of errors at each point of the signals
was calculated. Then, the sum of squares of errors of the
two signals was calculated and named D2. Similarly, the
signal was decomposed at level 3; the sum of squares of
errors of the first three levels were calculated and named
D3. In the same procedure, D4, D5, and D6 were calcu-
lated. The same process was carried out for the power
signal as well.

IV. The sum of square of errors of the weld region was plot-
ted against X-position of the welding tool. Sudden high
fluctuations in the square of error plot correspond to
sudden changes in the force or power data. So, it can
be said that sudden variations in the plot corresponds to
defects in the weld.

Fig. 14 Sum of square of errors of detailed coefficients (Di) of force
signal up to 5th level of decomposition for sample 2

Fig. 12 Sum of square of error of detailed coefficients (Di) of power up to
5th level of decomposition for sample 2

Fig. 13 Sum of square of errors of detailed coefficients (Di) of force
signal up to 5th level of decomposition for sample 1

Fig. 15 a Plot of sum of square of errors of detailed coefficients (Di) up to
5th level of decomposition of power signal versus X-position of the tool
for sample 1. b Plot of sum of square of errors of detailed coefficients (Di)
up to 5th level of decomposition of force signal versus X-position of the
tool for sample 1. c Front side of the welded sample 1. d Back side of the
welded sample 1
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The defects in the samples were measured by its length of
occurrence. The fluctuations in the sum of square of errors
were measured from the respective plots on MATLAB by its
length of existence and then they were compared. To compare

the extent of defect as obtained from the plot of sum of square
of errors and that observed physically from the sample, coef-
ficient of error matching (ρe) was defined as follows:

ρe1 = 1, for the region where defect in sample is equal to
the fluctuation in the plot of sum of square of errors.

ρe2 = − 1, for the region where there is a defect in the
sample but not reflected in the plot of sum of square of errors.

ρe3 = = 0, for the region where there is a fluctuation in the
plot of sum of square of errors, but no defect in the sample.

The coefficent of error localization χeð Þ can be defined as :

χe ¼
ρe1ð Þ � x1 þ ρe2ð Þ � x2 þ ρe3ð Þ � x3

x1 þ x2 þ x3
ð4Þ

x1 is the length of region where there is defect in the
sample as well as fluctuations are present in the plot of sum
of square of errors. The corresponding coefficient of error
matching is ρe1.

x2 is the length of region where there is a defect in the
sample but not reflected in the plot of sum of square of errors.
The corresponding coefficient of error matching is ρe2.

x3 is the length of region where there is a defect in the
sample but no fluctuation in the plot of sum of square of
errors. The corresponding coefficient of error matching is ρe3.

The value ofχe can range from − 1 to + 1. It can be said that
the level of decomposition showing the maximum value
of χe , localizes the error best. Also, when the optimum level
of decomposition is found out, comparison is made between
force and power signal data as to which gives a greater value
of χe . For a particular level of decomposition, if x1 is more
than x2, then χe will be positive. The more x1 dominates
over x2 the more the value of χe.

V. The CT scan images of the samples were studied for an-
alyzing internal defects.

Fig. 16 a Plot of sum of square of errors of detailed coefficients (Di) up to
5th level of decomposition of power signal versus X-position of the tool
for sample 2. b Plot of sum of square of errors of detailed coefficients (Di)
up to 5th level of decomposition of force signal versus X-position of the
tool for sample 2. c Front side of the welded sample 2. d Back side of the
welded sample 2

Fig. 17 Showing a CT scan
image of the weld sample 1
showing internal defects and b
plot of sum of square of errors of
detailed coefficients (Di) up to 5th
level of decomposition of power
signal versus X-position of the
tool for sample 1
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3 Results and discussions

3.1 Experimental validation

Figures 3, 4, 5, 6 show the power and force versus time plots
for both the samples. In both cases, median filter was applied
in MATLAB.

When the FSWmachine is turned on, all the components of
it suddenly draw in huge current which results into initial peak
in the power signal data.

From the time domain analysis of the signals, the time
information (the starting and the ending time) of the welding
was obtained. The corresponding X-position of the tool, i.e.,
the positions of the tool at eachmoment from the starting point
of welding, was measured. From this power signal versus X-
position of welding tool was plotted (Figs. 7 and 8). Similarly,
it was done for the force signal (Figs. 9 and 10).

Negative values of force signal denote huge defect forma-
tion, as a result of which the tool fails to touch the weld
sample.

In the power versus X-position, or force versus X-position
plot of the weld zone, the abrupt change in the signal repre-
sents defect at that region.

It can be said that the sum of square of errors upto 5th level
of decomposition gives the best result for both force and pow-
er signals (Table 2).

The nature of variation of χe corresponding to the proper
detection of defects in the weld region has been discussed in
Sect. 2.5. The decomposition was considered up to 6th level.
Beyond that, the plot of sum of square of errors showed huge
fluctuations throughout the working range. The machine vi-
bration read by the sensors has a certain amplitude and fre-
quency. These noises are not reflected for smaller levels of
wavelet decompositions, but when the force and power data
are decomposed beyond the 6th level six, the smaller fluctua-
tions are also reflected in the plot of sum of square of errors. In
those points, where fluctuations are present in the plot, phys-
ical defects may not be present.

Figures 11, 12, 13, and 14 show the variation of square of
error of the detailed coefficients with the X-position of tool for
power and force signals. Abrupt changes at some positions
reflect presence of defects (Fig. 15).

Referring to Figs. 16 and 17, it is seen that fluctuations in
sum of square of errors up to 5th level of decomposition of
force and power signals correspond to defects occurring in the
weld sample. Places where there is no such fluctuation in the
plot represents smooth weld region.

3.1.1 CT scan

An X-ray computed tomography (CT) scan makes use of
computer-processed combination ofmanyX-ray images taken
from different angles to produce total cross-sectional image of
the object under scan. Here, in this study, weld samples were
scanned for internal defect detection. The color code presented
(Figs. 17, 18, 19, and 20) shows the volume of internal

Fig. 18 Showing a CT scan
image of the weld sample 2
showing internal defects and b
Plot of sum of square of errors of
detailed coefficients (Di) up to 5th
level of decomposition of power
signal versus X-position of the
tool for sample 2

Fig. 19 CT scan image of the weld sample showing the surface and
internal defects for sample 1
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defect(s). Only internal defects are colored and not the surface
defects.

It may be noted that some additional peaks occur in the
square of errors plot which do not correspond to internal or
surface defects. These mainly occur due to unwanted noise
and machine vibrations which add up to the force and power
signal data.

In Fig. 19, the defect around the end of the weld region is
due to heterogeneity of the sample and not due to the welding
process.

4 Conclusion

DWT produces a time-frequency domain plot of the force
signal and power signal data in FSW. Abrupt changes in the
plots of detailed coefficients denote defects in the weld. It is
found out that on implementing statistical tool, sum of square
of errors, most accurate defect detection can be obtained by
using 5th order wavelet decomposition. Some abrupt peaks in
the plots reflect the defects mainly caused due to non-
homogeneity of the material. One noticeable feature is that a
few additional peaks occur in the sum of square of error plots
which do not correspond to any surface defect. Most of these
are due to internal defects within the weld. This has been
verified from CT scan study of the materials. For analyzing
defects, the power signal data has been found more effective
than the force signal data. The force sensor is inbuilt in the
FSWmachine and hence some unwanted noise and vibrations
of the machine add up to force signal data. However, the
power sensor is connected by an external circuit to the ma-
chine and so the disturbances related to the machine do not

add up to the power signal data. The power signal data repre-
sents the actual power consumed in the process. The results
clearly localize both internal and surface defects in the weld
by using 5th order DWT coefficients.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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